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Abstract :

A numerical model is presented which describes the evolution of a system containing a large number of deformable
spherical grains based on Newton’s second law. Starting from an initial state with fixed positions, velocities and
grain characteristics, the system evolution is simulated by successive steps. The acceleration of each grain results
from the application of an external force and from interactions with other particles. These contact forces are
evaluated as functions of the grain deformations during the collisions considered as elastic. The grain bed can
be deposited between vertical walls as well as with periodical conditions in the lateral directions. The properties
of these packings submitted to mechanical stresses are characterized by using numerical codes which operate on
unstructured tetrahedral grids on the scale of the individual grains.

Résumé :

Un modèle numérique est présenté qui permet de décrire l’évolution d’un ensemble important de grains sphériques
déformables, par application de la seconde loi de Newton. A partir d’un état initial où sont spécifiées les positions,
vitesses et caractéristiques des grains, on simule l’évolution du système par pas de temps successifs, pendant
lesquels l’accélération de chaque grain résulte de l’application d’une force extérieure et d’éventuelles interactions
avec d’autres particules. Ces forces de contacts sont évaluées en fonction de la déformation des grains lors de
la collision, considérée comme élastique. Le lit peut être déposé entre des parois verticales, ou en appliquant
des conditions de périodicité dans les directions horizontales. Les propriétés de ces empilements soumis à des
sollicitations mécaniques sont caractérisées à l’aide de codes de calculs qui opèrent sur un maillage tétraédrique
non structuré à l’échelle des grains individuels.

Key-words :

granular media ; sedimentation ; transport properties

1 Introduction

Granular materials can be found in various natural environments as well as in industrial appli-
cations and constitute a very interesting subject for scientific research due to their very complex
behaviour. This study addresses the numerical simulation of the dynamic process of grain de-
position and the characterization of the resulting packings through the resolution of transport
equations on the local scale of the individual grains and pores, with subsequent averaging of
the local fields. It is a continuation of previous works on the ballistic sequential deposition
by Coelho et al. (1997) with an application of the numerical approach based on finite volume
technique initially developped for other problems by Bogdanovet al. (2003).

2 Model

The formation of a granular medium is simulated as the process of deposition of spherical
elastic grains in a gravitational field. Each grain is also submitted to contact forces during the
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collisions with other grains or with the bottom plane, and an artificial viscous dumping force is
introduced in order to bring the system to an equilibrium state (see Cundall & Strack, 1979).
No rotation or friction are taken into account at this stage, but they should be introduced in the
model in the future.

The displacement of the spherei is described by the Newton equation

mir̈i + Ciṙi = mig + Fi (1)

wheremi is the mass,ri the center position,Fi the resultant of the contact forces,g the gravity
acceleration, andCi the artificial viscosity; the dots denote time derivatives. In this study, the
damping coefficient isCi = αmi whereα has the same value for all particles.

Two spheres are in contact when the distance between their centers is smaller than the sum
of their radii

dij = Ri + Rj − |ri − rj| > 0 (2)

Then, the total contact force exerced on a graini is calculated as the sum over all contacts

Fi =
∑

j

Fij, Fij = −nij

∫ t

tij

kijd(dij) = −nijkijdij(t) (3)

where the normal force between two grains is described by an elastic law whith a normal stiff-
nesskij; dij is the relative normal displacement, andtij is the time when the grains come into
contact;nij is the unit vector pointing from the center of the graini to that of grainj.

According to the solution of the Hertz problem when two elastic spheres are in contact,
their relative displacementdij is determined by the forceFij, the radiiRi and Rj, and the
elastic properties - the Poisson ratiosνi andνj, and the Young moduliiEi andEj (Landau &
Lifshitz, 1981). This solution gives the normal joint stiffness in the form

kij =
4

3

√
dij

(
1

Ri

+
1

Rj

)−1/2 (
1− ν2

i

Ei

+
1− ν2

j

Ej

)−1

(4)

A simpler variant of the elastic deformation is the linear model. In this case, the stiffness
is fixed and does not vary with the deformation of the grains. Due to the nonlinear chararacter
of the deformation of two elastic spheres, it is impossible to relate directly the linear stiffness
to the elastic constants of the material. However, one can estimate its order of magnitude by
supposing that the compression of the spheres is of the same order as that produced by their
own weight. Namely, for two identical grains with massm, the linear stiffnesskeff is

keff =

[
16mgRE2

9(1− ν2)2

]1/3

(5)

For quartz grains,ρ = 2.66 · 103kg/m3, E = 9.6 · 1010 Pa andν = 0.08. Substituting these
values in (5) forR = 10−3m yieldskeff ≈ 122 000kg/s2.

Two types of lateral boundary conditions are used, namely transverse periodicity and elastic
plane boundaries. The bottom is an elastic plane with the same propertes as the material of the
grains.

3 Numerical technique

The equations (1) are discretized by using an explicit finite difference method with self-adjustable
time steps. The grain center positions as well as the forces are determined at the same instants
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Figure 1: Deposition of 10000 spheres with the stiffnesski = 106kg/s2 in a periodic unit cell. Initial
position (a); colors show various layers. Position of grains fort = 0.3s, 1s, 2s and 4s (b-e) with colors
corresponding to the initial position. The data correspond to the vertical cross section at y=0. Bottom
part of the packings whenki = 106kg/s2 (f) or 105kg/s2 (g) for a periodic unit cell andki = 105kg/s2

for non periodic boundary conditions (h).

while the grains velocities are calculated at intermediate times. First, given the position of all
grains at the current time step, all contacts are detected according to the condition (2). Then,
the contact forces are calculated from Eqs. (3). They are used in order to solve the Newton
equations (1) and to find the grains velocitiesṙ+

i for the next intermediate time and to determine
the new positionsr+

i

ṙ+
i =

ṙi

(
mi

∆tk−1/2
− Ci

2

)
+ mig + Fi

mi

∆tk−1/2
+ Ci

2

, r+
i = ri + ṙ+

i ∆tk (6)

The grains move freely between the collisions; hence, the time step can be easily adapted in
order to follow the velocity evolution due to gravity. However, during an elastic interaction two
grains form a spring with the effective stiffness (5) and joint massmij = (1/mi + 1/mj)

−1.
The half period of oscillation of this spring isτcr = π

√
mij/keff which is exactly the duration

of the contact in the linear model. Due to rapid velocity changes during the collision, the time
step should be a fraction of this time interval∆t = δtτcr, small enough to simulate properly
these variations. This restriction imposes some limitations on the simulations because when
two particles come in contact the motion of all other grains should be modelled with the same
time step.

In the case of a non linear relationship between displacement and normal force during a
collision, the corresponding period of oscillationτcr depends on the amplitude or, in other
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Figure 2: Energy variation in the system of 10000 grains with stiffnesski = 106kg/s2 (a) or105kg/s2

(b). Kinetic energyK (red), potential energyP (blue), elastic energy due to contact between grainsEg

(magenta), elastic energy due to contact with the wallsEw (green), full energy (black solid lines) and
full energy together with the energy lost by dissipation (black broken lines).

words, on the initial kinetic energy of the system. This situation, however, is not considered
here.

In order to control the quality of the simulations, three kinds of mechanical energy are
evaluated for each time step: kinetic energyK, potential energyP and energyE of elastic
deformations

K =
∑

i

mi(ṙi)
2

2
, P =

∑
i

mig(zi − zb), Eg =
∑
ij

kij
dij(t)

2

2
(7)

The elastic energyEw accumulated during the deformation of grain during their interaction with
boundary walls, can be defined in the same way asEg.

4 Results

The simulations are performed by using a system of 10 000 spherical grains with the same
radiusR = 10−2m initially randomly distributed within a cell of0.2×0.2×5m3 at some height
above the bottom plane (Fig. 1a). All particles have the same characteristics, massm = 10−2kg
and individual linear stiffnesski = 105 or 106kg/s2 (the joint stiffness iskeff = ki/2). The
coefficientα = 5s−1 was used in all simulations.

Fig. 1b-e shows various stages of the evolution of the system in a periodic cell. One can
observe that the initial vertical ordering of the particles is in general well preserved.

Fig. 1f-h shows the bottom part for thee packings. When the stiffness decreases fromki =
106kg/s2 to 105kg/s2, the degree of overlap of the particles increases due to the decrease of the
elastic resistance. The particles form a denser structure. Although the difference is not visually
perceptible, the final bed thickness is 1.594m for the softer grains and 1.626m for the harder
ones.

The most striking difference is due to the boundary conditions. The simulation of deposition
with periodic boundary conditions does not yield any visible regularity in the final distribution
of the particles (Figs. 1f,g). Conversely, when the grains fall between elastic walls, a perfectly
regular structure appears (Fig. 1h). It should be noted that the lateral distance between the walls
is 10 times the grain diameter, which is, perhaps, partially responsible for this phenomenon.

4



18èmeCongrès Français de Mécanique Grenoble, 27-31 août 2007

0 1 2 3 4 5 6 7 8 9 10 11 12
0

500

1000

1500

2000

2500

3000

number of contacts

nu
m

be
r 

of
 g

ra
in

s

(a)

0 0.5 1 1.5
0.3

0.32

0.34

0.36

0.38

0.4

av
er

ag
e 

nu
m

be
r 

of
 c

on
ta

ct
s

Z, m

po
ro

si
ty

5.5

5.7

5.9

6.1

6.3

6.5

−→

(b)

Figure 3: The distribution of the number of contacts per grain (a), the average number of contacts per
grain as a function of the elevation forki = 106kg/s2 (o) and the porosity (¤) for various stiffnesses and
boundary conditions (b): periodic systems withki = 106kg/s2 (black lines) or105kg/s2 (red line) and
non periodic systems withki = 105kg/s2 (blue line)

The variation of the mechanical energy of the system is shown in Fig. 2. All particles
initially have a potential energy which progressively decreases when it is converted into kinetic
energy. Later on, due to the dumping force, most of this energy is dissipated. However, part of
it is converted into elastic energy, which progressively increases from zero to some equlibrium
value. It can be noted that a larger amount of energy is stored in the final state in the form of
elastic deformation for the softer grains than for the harder ones. The sum of the full mecanical
energy in the system and of the losses due to energy dissipation is almost constant which confirm
the robustness of the numerical technique used in this study.

The number of contacts per grain in the final state of the system varies between 4 and 9 with
an average about 6 in the case of theki = 106kg/s2 (see Fig. 3a). The average number slightly
decreases with the elevation in the packing (Fig. 3b).

The distribution of the porosity is also presented in Fig. 3b as a function of the elevation
for three types of grains packings. It is calculated per layers of thickness 0.1m from the bottom
to the height 1.5m, by summing up the grain volumes and removing the overlaps due to the
contacts. In the case of periodic cells, the porosity is almost uniform and slightly increases
with z especially for the softer grains. In the case of non-periodic boundary conditions the
distribution of the porosity is not uniform because it is strongly affected by the ordering of the
grain in the bed.

The next step of the study is the analysis of the transport properties of the resulting grain
packings: macroscopic thermal conductivity, permeability of the porous space and mechanical
properties. These problems are solved by numerically simulating the elementary processes on
the microscopic scale, with subsequent averaging on the scale of a large number of grains. This
approach is presented by Adler (1992).This part is under development and only preliminary
results concerning the defomation are discussed here.

First, in order to apply the numerical technique for the resolution of the elastostatic equations
on the microscopic level, the system under consideration should be discretized. Unstructured
tetrahedral meshes are used here. The principle of the mesh generation tool is presented by
Bogdanovet al. (2003). Figure 4a provides an example, where only the triangulation of the
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Figure 4: Unit cell with triangulated spheres and artificial planes (a). Cross section of a grain packing
obtained by deposition and submitted to vertical compression (b). Colors correspond to the trace of the
strain tensor and the arrows show the displacement field.

grain surfaces is shown.
Then the corresponding microscopic equations for the linear elastic deformation are solved

by using a finite volume formulation, under a prescribed external load. Figure 4b shows the
distribution of the trace of the strain tensor within the grains as well as the local displacement
field, when the packing is submitted to a vertical compression.

5 Conclusions

A numerical model for the simulation of grain deposition has been presented. The dynamic part
of the problem is simulated by using Newton laws and an elastic model for the grain contacts.
Then, the transport properties of the resulting packings can be analized by solving the governing
equations on the microscopic scale.
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