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Abstract :

The propulsion of a two-dimensional flapping airfoil is optimized by controlling the kinematics of its motion for
an MAV application. The optimization is done numerically through the resolution of flow and sensitivity equations
for an incompressible low-Reynolds number configuration. The gradient of a chosen functional, related to the
efficiency, is deduced and used to update the control parameters via a steepest-descent method. The results show
the ability of the method to find precisely the optimal kinematics despite the effort required to optimize the choice
of the spatio-temporal grid. Results confirm the optimalityof a phase lag close to 90o between pitching and
heaving and show a relatively higher sensitivity with respect to the pitching amplitude compared to the other
control parameters.

Résumé :

La propulsion d’une aile battante bidimensionnelle, applications liées aux micro-drones, est optimisée en contro-
lant numériquement sa cinématique à travers la résolution des équations du mouvement et des sensibilités d’un
écoulement incompressible à faible nombre de Reynolds. Le gradient de la fonctionnelle choisie est déduit et uti-
lisé pour actualiser la valeur des paramètres de contrôle par la méthode de la plus grande pente. Les résultats
montrent la capacité de la méthode à trouver d’une manière précise le mouvement optimal de l’aile malgré les
difficultés liées au bon choix du maillage et du pas de temps. On confirme qu’un déphasage, entre l’oscillation ver-
ticale et le tangage, voisin de 90o est optimal et on montre que la sensibilité par rapport à l’amplitude du tangage
est relativement plus élevée que celle des autres paramètres de contr̂ole.
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1 Introduction

The progress accomplished in the miniaturization of electronic and mechanical devices has ren-
dered possible the realization of small autonomous airplanes during the last two decades. These
micro air vehicles (MAV) of 20 cm wingspan flying at speeds close to 50 km/h have attracted
much attention due to their broad range of civil and militaryapplications (spying, studies of the
atmosphere, surveillance ...), to their easy and fast deployment, low cost, stealth, etc. (Hewish
(1997), Canan (1999)). A large number of studies has been aimed recently at the understand-
ing of the mechanisms of drag reduction and stall delay developed by fish and birds (Rayner
(1988), Speddinget al. (1995)). The desire to mimic the motion of birds has been encouraged
by a number of papers showing that at MAV’s scale, flapping flight can be more efficient than
the fixed wings counterpart (Krooet al. (2001)).

The main limitation of MAV’s at present is their small autonomy, typically between thirty
minutes and one hour. Improving the duration of MAVs’ missions requires progress in the con-
ception of the propulsive system used,i.e. better batteries and motors. The improvement can
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also be accomplished by increasing the efficiency of the flight (measured by the ratio of the
useful power to the total required power) by acting directlyon the kinematics of the wings.
This approach is adopted in the present work. Several authors (Triantafyllou et al. (1993),
Wang (2000), Lewinet al. (2003), Guglielminiet al. (2004)) showed, by exploring the space
of parameters, that the efficiency of flapping can be optimal for some values of the relevant
parameters. Here, we aim at finding optimal flight regimes by solving the sensitivity equations
and by driving to zero the gradient of an efficiency-related functional.

Once the optimal kinematics is found, we relate our results to those by Triantafyllouet al.
(1993) and Isogaiet al. (1999) on the optimal Strouhal number and phase between pitching
and heaving motions. Inspection of the sensitivity fields should provide clues on the regions of
space where flow control is more efficient.

2 Governing equations

The flow is computed around a flapping two-dimensional airfoil. The incompressibility of the
flow allows to eliminate the pressure and to reduce the dimension of the problem by introducing
two variables: the vorticityω and the stream functionψ.

Figure 1: Definition of the flapping motion.

The airfoil is transformed into a circle via a Joukowski transformation. The flow equations are
then solved in a moving reference frame, fixed with the airfoil, and this renders the boundary
conditions on the airfoil easy to impose.

We consider the angular frequency of flappingσ∗ and the chord lengthc∗ as relevant scales
for time and length, and this leads to the following dimensionless equations forψ andω:







∂ω
∂t

+ 1√
J

[

vr
∂ω
∂r

+ vθ

r
∂ω
∂θ

]

= 1

ReJ

[

∂2ω
∂r2

+ 1

r
∂ω
∂r

+ 1

r2
∂2ω
∂θ2

]

,
∂2ψ

∂r2
+ 1

r

∂ψ

∂r
+ 1

r2
∂2ψ

∂θ2
= −Jω,

(1)

where

vr = 1√
J

[

1

r

∂ψ

∂θ
−

(
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The dots denote derivation with respect to timet, (X, Y ) are the coordinates in the Cartesian
frame based on the airfoil,(ξ, χ) are the transformed coordinates in the Joukowski plane,J is
the Jacobian between these two frames,(r, θ) are the polar coordinates in the transformed plane
andRe is the Reynolds number defined byRe = σ∗c2

16ν∗
, with ν∗ the kinematic viscosity of the

fluid. The boundary conditions are written in terms ofψ andω, and the velocity is imposed
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equal toU∗
∞ and 0 on the outflow boundary and on the airfoil, respectively; the equations are

marched in time starting from an initial condition of vanishing vorticity and stream function.

3 Kinematics and control parameters

The motion imposed to the airfoil is a combination of harmonic oscillations of translation and
rotation described by the equation (2).











h (t) =
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k=1

hksin(kt+ τk),

α (t) = ᾱ+
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(2)

We focus more particularly on the caseᾱ = 0 andτk = 0. The configurationN = 1 is usually
assumed to mimic the motion of the fins of fish and the wings of birds. The same frequency is
imposed for both oscillations. Under these conditions, thecontrol parameters are the heaving
amplitudes(h1, h2, ...hN), the pitching amplitudes(α1, α2, ...αN) and the phases(φ1, φ2, ...φN).
The letterg will be used in the following to denote one generic control parameter.

For any value ofN , the period of the motion of the airfoil is equal to2π. The numerical sim-
ulations showed that the transients generally last about two periods of oscillations, after which
periodic states are achieved. Therefore, the equations aresolved for two periods in time and the
mean quantities are averaged during the last period. The time-marching is done with an ADI
method where every temporal step is divided in two sub-steps, each one treating the equations
in ther or θ directions. The size of the computational domain is typically between 10 and 20
chord lengths, in which roughly 500 000 nodes are distributed. A logarithmic distribution is
used in the radial direction in order to better solve the boundary layer, whereas a uniform dis-
tribution is adopted for the angular direction. The dimensionless time step is typically between
10−4 and10−3 and the classical Reynolds number(Rec = U∗

∞
c∗

ν∗
) is taken of order 1000.

4 Sensitivities

The derivatives ofψ andω with respect to the control variables are called sensitivities. They
allow to determine the regions of the flow where control has a major effect and to compute
the gradient of the cost functional. Hence, the derivative of the flow equations (1) yields the
sensitivity equations:
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Compared to the flow equations, the sensitivity equations have a source term due to the depen-
dency ofvr andvθ on g. The system is uncoupled since fort = tn, the equation forωg is first
solved with an ADI method usingψg at t = tn−1; onceωg is known att = tn, we inject it in the
second equation to computeψg. The boundary conditions for the sensitivities are obtained by
deriving the flow boundary conditions with respect to the control parameters.
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5 Cost functional and gradient

The efficiency of flight,η, is the ratio of the useful power for flying to the total power required.
The cost functional to be minimized is thus:

Υ = β2P̄ + γ2F̄U∞ + δ2
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are the mean power required to move the airfoil and the mean horizontal force in the laboratory
reference. The negative or positive value of this force indicates whether the airfoil is mainly
producing thrust or drag, respectively. The third and the fourth terms in the functional (4) are
added in order to limit the cost of the control, thus preventing the optimal kinematics from di-
verging. Furthermore, the non-dimensional value ofU∞ is computed asU∞ = 1

fr
wherefr

is the reduced frequency defined asfr = c∗σ∗

4U∗

∞

when the airfoil is translating in the horizontal
direction (not hovering). In the present work, we choosefr = 0.3665 leading toU∞ = 2.73.
Multiplying the horizontal force by the velocity at infinityallows to include the required and
the useful powers in the cost functional; it also prevents finding the minimum of the functional
for a motionless airfoil (̄P = 0) if β2 = γ2 or for an airfoil which dissipates the energy of the
flow into drag (̄P < 0) whenβ2 < γ2.

6 Results

Before exploring the sensitivity fields, we start with the validation of the gradient computa-
tion. Therefore, we compare the value of the gradient computed with the sensitivity method to
the gradient estimated by a simple finite difference method and we ensure a vanishing gradi-
ent when the minimum of the functional is reached. The plots in figure 2 forN = 1, Rec =
1100, α1 = −25◦, φ1 = 90◦ and(β2, γ2, δ2, ǫ2) = (1, 2, 1, 1) show a very satisfactory agree-
ment. We notice that the optimal solution is found for a thrust producing flapping airfoil. The
same kind of results can be obtained if we controlα1 or φ1, fixing the other two parameters,
or if we control all the three parameters successively. The difficulty lies in the choice of the
computational domain and the grid, since the gradient turnsout to be very sensitive to such
choices. To drive the gradient to zero a steepest descent method is adopted. It allows to locate
roughly the optimal conditions after a few iterations.

We confirm here the results obtained by Isogaiet al. (1999) who showed that the high-
est efficiency occurs when the pitch oscillation leads the heave oscillation by an angle close
to 90◦. As a matter of fact, the cost functional considered in the present work is minimal for
φ1 = 87.302◦ when(h1, α1) = (3,−35◦) and forφ1 = 81.947◦ when(h1, α1) = (2,−25◦).
This high efficiency is related to the fact that the region of separated flow remains confined to
a small neighborhood of the trailing edge. On the other hand,figure 3, where the opposite of
the efficency(−η) is plotted versus the heaving amplitude, shows that the minimum of the cost
corresponds quite closely to conditions of maximal efficency. A snapshot of the vorticity field
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and its sensitivity with respect toh1 is shown in figure 4. All the sensitivity fields are similar.
They appear to be formed by layered structures of high and lowsensitivity functions in the wake
of the airfoil; however, the largest magnitudes are found inclose proximity of the airfoil.
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Figure 2: Validation of the gradient computation. Top-left: the cost functional, top-right: zoom of the
cost functional, bottom-left: the mean required power, bottom-right: the mean horizontal force. Solid
lines denote the function, dashed lines its gradient computed with sensitivity method with comparison to
the2nd order finite-difference method (circles).
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Figure 3: The effect of the heaving amplitude on the efficiency (−η) for α1 = −25◦ andφ1 = 90◦.

7 Conclusions

The optimal propulsive properties of a two-dimensional flapping airfoil are examined numer-
ically with the technique of flow sensitivities. The resultsshow the ability of the method to
identify the minimum of a given functional associated to theefficiency of the flight. The opti-
mal value found are in agreement with the values found in the literature by extensive exploration
of the space of parameters; the functional chosen here appears to be closely correlated to the
efficiency of flight. The present work is being extended to a higher number of harmonics, to ver-
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Figure 4: Vorticity field (left) and its sensitivity fields with respect toh1 (right) att=10.

ify the conjecture that a richer kinematics can yield high values of the thrust with an acceptable
efficiency (Readet al. (2003)).
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