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Abstract :

The propulsion of a two-dimensional flapping airfoil is aptzed by controlling the kinematics of its motion for
an MAV application. The optimization is done numericallptigh the resolution of flow and sensitivity equations
for an incompressible low-Reynolds number configuratiohe @radient of a chosen functional, related to the
efficiency, is deduced and used to update the control pamseia a steepest-descent method. The results show
the ability of the method to find precisely the optimal kingesadespite the effort required to optimize the choice
of the spatio-temporal grid. Results confirm the optimatifya phase lag close to 9between pitching and
heaving and show a relatively higher sensitivity with redpe the pitching amplitude compared to the other
control parameters.

Résumeé :

La propulsion d’une aile battante bidimensionnelle, apations liées aux micro-drones, est optimisée en contro-
lant numériqguement sa cinématique a travers la résoluties équations du mouvement et des sensibilités d’'un
écoulement incompressible a faible nombre de Reynoldsrddient de la fonctionnelle choisie est déduit et uti-
lisé pour actualiser la valeur des paramétres de coletpar la méthode de la plus grande pente. Les résultats
montrent la capacité de la méthode a trouver d’'une manieézige le mouvement optimal de I'aile malgré les
difficultés liées au bon choix du maillage et du pas de tempsddfirme qu’un déphasage, entre I'oscillation ver-
ticale et le tangage, voisin de 9@st optimal et on montre que la sensibilité par rapport a |ditude du tangage
est relativement plus élevée que celle des autres parasgreontéle.
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1 Introduction

The progress accomplished in the miniaturization of etettrand mechanical devices has ren-
dered possible the realization of small autonomous aigsauring the last two decades. These
micro air vehicles (MAV) of 20 cm wingspan flying at speedsseldo 50 km/h have attracted
much attention due to their broad range of civil and militapplications (spying, studies of the
atmosphere, surveillance ...), to their easy and fast gledat, low cost, stealth, etc. (Hewish
(1997), Canan (1999)). A large number of studies has beeadaistently at the understand-
ing of the mechanisms of drag reduction and stall delay dgesl by fish and birds (Rayner
(1988), Speddinget al. (1995)). The desire to mimic the motion of birds has beemeraged

by a number of papers showing that at MAV's scale, flappindfligan be more efficient than
the fixed wings counterpart (Kroet al. (2001)).

The main limitation of MAV’s at present is their small autony typically between thirty
minutes and one hour. Improving the duration of MAVS’ miss@equires progress in the con-
ception of the propulsive system use@, better batteries and motors. The improvement can
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also be accomplished by increasing the efficiency of theftfligteasured by the ratio of the
useful power to the total required power) by acting directtythe kinematics of the wings.
This approach is adopted in the present work. Several auffioiantafyllou et al. (1993),
Wang (2000), Lewinet al. (2003), Guglielminiet al. (2004)) showed, by exploring the space
of parameters, that the efficiency of flapping can be optimmaksbme values of the relevant
parameters. Here, we aim at finding optimal flight regimesdsyiisg the sensitivity equations
and by driving to zero the gradient of an efficiency-relataactional.

Once the optimal kinematics is found, we relate our resalthdse by Triantafyllouet al.
(1993) and Isogaiet al. (1999) on the optimal Strouhal number and phase betweehimit
and heaving motions. Inspection of the sensitivity fieldsusti provide clues on the regions of
space where flow control is more efficient.

2 Governing equations
The flow is computed around a flapping two-dimensional dirfbhe incompressibility of the

flow allows to eliminate the pressure and to reduce the diroems the problem by introducing
two variables: the vorticitw and the stream function.

Figure 1: Definition of the flapping motion.

The airfoil is transformed into a circle via a Joukowski stormation. The flow equations are
then solved in a moving reference frame, fixed with the dirmd this renders the boundary
conditions on the airfoil easy to impose.

We consider the angular frequency of flappirigand the chord length as relevant scales
for time and length, and this leads to the following dimentgs equations fap andw:

{ ot + \/_ {UT%: _'_276?)_6} - RiJ [?)27‘; + %%: + r12 geﬂ ’ (1)
foimm =

where

v = \% %a—w (ftsin(a) - dY) ( %)50039 + 9 x sm@) - (ftcos(a) + dX) ( %’gcosé’ + 2 sm@ﬂ
Vg = % —% (hsin(oz) — aY) ( 9X 05 — ag sm@) (hcos(a) + aX) ( Xcos@ — ag sm@”

The dots denote derivation with respect to titn¢X, Y') are the coordinates in the Cartesian
frame based on the airfoil¢, ) are the transformed coordinates in the Joukowski pldris,

the Jacobian between these two franted]) are the polar coordinates in the transformed plane
and Re is the Reynolds number defined B¢ =
fluid. The boundary conditions are written in terms@hndw and the velocity is imposed
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equal toUZ, and 0 on the outflow boundary and on the airfoil, respectivitlg equations are
marched in time starting from an initial condition of varigpvorticity and stream function.

3 Kinematics and control parameters

The motion imposed to the airfoil is a combination of harneasscillations of translation and
rotation described by the equation (2).

h(t) =N hpsin(kt + 1),
2)
a(t)=a+ XN, agsin (kt + ¢p) .

We focus more particularly on the case= 0 and7, = 0. The configurationV = 1 is usually
assumed to mimic the motion of the fins of fish and the wings @ihiThe same frequency is
imposed for both oscillations. Under these conditions,cibretrol parameters are the heaving
amplitudeshy, hs, ...hy), the pitching amplitudegy; , as, ...ay) and the phasesg, ¢o, ...oN ).
The letterg will be used in the following to denote one generic contrabpaeter.

For any value ofV, the period of the motion of the airfoil is equal2e. The numerical sim-
ulations showed that the transients generally last abaupviods of oscillations, after which
periodic states are achieved. Therefore, the equatiorsoéred for two periods in time and the
mean quantities are averaged during the last period. Themiarching is done with an ADI
method where every temporal step is divided in two sub-s&gosh one treating the equations
in ther or @ directions. The size of the computational domain is typyclaétween 10 and 20
chord lengths, in which roughly 500 000 nodes are distritbut®& logarithmic distribution is
used in the radial direction in order to better solve the llauy layer, whereas a uniform dis-
tribution is adopted for the angular direction. The dimentass time step is typically between
10~* and10~3 and the classical Reynolds numljéte, = U;Lc) is taken of order 1000.

4 Sensitivities

The derivatives oty andw with respect to the control variables are called sensiit They
allow to determine the regions of the flow where control hasagomeffect and to compute
the gradient of the cost functional. Hence, the derivativthe flow equations (1) yields the
sensitivity equations:

Bw .1 g 1L vgOwg | O dw | 10vgdw] _ 1 [0Pwy | 10wy 1 9w,
+ \/_ [UT o T o8 g EjLFa_ge%} = ReJ [ a2 T i o Tz aeﬂ 3)
8 1/’9 + 71"8;3/)7‘9 + 7"12 883)29 = _‘]wﬂ
where
Uy g = % %agég - (hsin(a) — dY) Y ( %)g cosf) + 2 sm@) (hcos(oz) + dX),g ( %‘g cost) + 2 smﬁ)]
Vg.g = % —% - (hsm(a) - dY) Y ( %ifcos@ - ag sm@) (hcos(a) + dX) ( g};cose — %’gsmeﬂ

Compared to the flow equations, the sensitivity equations hasource term due to the depen-
dency ofv, andwvy on g. The system is uncoupled since for ", the equation fow, is first
solved with an ADI method using, att = ¢"~!; oncew, is known att = ¢", we inject it in the
second equation to compugg. The boundary conditions for the sensitivities are obihing
deriving the flow boundary conditions with respect to thetoarparameters.
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5 Cost functional and gradient

The efficiency of flighty, is the ratio of the useful power for flying to the total powequired.
The cost functional to be minimized is thus:

_ _ 1 2T 1 21
T = B2P + 2 Uy + 68— / Q2(t)dt + & — / B2 (t)dt )
21 Jo 21 Jo

where

P
F
are the mean power required to move the airfoil and the medndmdal force in the laboratory
reference. The negative or positive value of this forcedatlis whether the airfoil is mainly
producing thrust or drag, respectively. The third and thetfoterms in the functional (4) are

added in order to limit the cost of the control, thus prevemthe optimal kinematics from di-
verging. Furthermore, the non-dimensional valud/qf is computed a$/,, = # where fr

is the reduced frequency defined fas= ZU‘; when the airfoil is translating in the horizontal
direction (not hovering). In the present work, we chogse= 0.3665 leading tolU,, = 2.73.
Multiplying the horizontal force by the velocity at infinigllows to include the required and
the useful powers in the cost functional; it also prevendifig the minimum of the functional
for a motionless airfoil P = 0) if 32 = ~2 or for an airfoil which dissipates the energy of the

flow into drag P < 0) when3? < ~2.

=L 37 Fysin(a(t)h(t)dt — 2 57 Fycos(a(t))h(t)dt — = ¢ Mya(t)dt,

L 27 Fycos(a(t))dt — & 2 Fysin(a(t))dt,

6 Results

Before exploring the sensitivity fields, we start with thdidation of the gradient computa-
tion. Therefore, we compare the value of the gradient coetpwith the sensitivity method to
the gradient estimated by a simple finite difference methativee ensure a vanishing gradi-
ent when the minimum of the functional is reached. The plotigure 2 forN = 1, Re. =
1100, a; = —25°, ¢ = 90° and (3%,+2,4%,¢%) = (1,2,1,1) show a very satisfactory agree-
ment. We notice that the optimal solution is found for a thpreducing flapping airfoil. The
same kind of results can be obtained if we contrplor ¢,, fixing the other two parameters,
or if we control all the three parameters successively. Tiffeulty lies in the choice of the
computational domain and the grid, since the gradient totgo be very sensitive to such
choices. To drive the gradient to zero a steepest descehbohet adopted. It allows to locate
roughly the optimal conditions after a few iterations.

We confirm here the results obtained by Isogdial (1999) who showed that the high-
est efficiency occurs when the pitch oscillation leads thevleoscillation by an angle close
to 9¢°. As a matter of fact, the cost functional considered in tresent work is minimal for
¢ = 87.302° when(hy, o) = (3,—35°) and for¢, = 81.947° when(hy, o) = (2, —25°).
This high efficiency is related to the fact that the regioneparated flow remains confined to
a small neighborhood of the trailing edge. On the other hfigdre 3, where the opposite of
the efficency(—n) is plotted versus the heaving amplitude, shows that thermini of the cost
corresponds quite closely to conditions of maximal effigerfc snapshot of the vorticity field
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and its sensitivity with respect tlo, is shown in figure 4. All the sensitivity fields are similar.
They appear to be formed by layered structures of high andémsitivity functions in the wake
of the airfoil; however, the largest magnitudes are founcase proximity of the airfoil.
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Figure 2: Validation of the gradient computation. Top:lgfie cost functional, top-right: zoom of the
cost functional, bottom-left: the mean required powertditright: the mean horizontal force. Solid
lines denote the function, dashed lines its gradient coetpwith sensitivity method with comparison to
the 2 order finite-difference method (circles).

Figure 3: The effect of the heaving amplitude on the effigjefien) for a; = —25° and¢; = 90°.

7 Conclusions

The optimal propulsive properties of a two-dimensionalgiag airfoil are examined numer-
ically with the technique of flow sensitivities. The resudtsow the ability of the method to
identify the minimum of a given functional associated to dffeciency of the flight. The opti-

mal value found are in agreement with the values found initbature by extensive exploration
of the space of parameters; the functional chosen here epfmebe closely correlated to the
efficiency of flight. The present work is being extended toghbr number of harmonics, to ver-
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Figure 4: Vorticity field (left) and its sensitivity fields thi respect tav; (right) at¢=10.

ify the conjecture that a richer kinematics can yield higluga of the thrust with an acceptable
efficiency (Readet al. (2003)).
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