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Abstract :

For high Reynolds numbeBe = U, L /v, with an order of magnitude of a few thousands, a flow over asu
cavity becomes unsteady with the growth of two-dimensimsébilities. This phenomenon is studied by com-
puting : 1/ the branch of steady solutions with respects ¢oRleynolds number, using a branch tracking method ;
2/ the eigenvalues and eigenvectors of the global linedrigegerator with respects t®e. We thus show that the
cavity is subject to a Hopf bifurcation at a critical Reynsldumber denoted bige... After setting the computations
in a supercritical case for whicliRe > Re., we use an optimum control algorithm to minimize the enefgh®
perturbations at various terminal timé&s. The control will consist in unsteady blowing and succiorttencavity
wall. We will analyze the phenomenology of the control lath&idescription of the influence of the target tifie
and the cost of the control which will be denotedrby

Résumé :

Lorsque le nombre de Reynol®e = U L /v est suffisamment élevé, de I'ordre de quelques millierspliiement
affleurant une cavité de rapport d'aspety D = 1 devient instationnaire bidimensionnel. Ce phénoméne est
étudié en recherchant : 1/ la branche de solutions statiinesaen fonction du nombre de Reynolds a I'aide d'une
méthode de suivi de branche ; 2/ les valeurs et modes propréspgrateur linéarisé global en fonction dee. On
montre ainsi que la cavité subit une bifurcation de Hopf a ertain nombre de Reynolds critiquee... Puis, en se
placant dans un cas supercritiqu& > Re., on met en ceuvre le formalisme du contrdle optimal pour niseim
I'énergie des perturbations instables a un temps horizorariable. Le moyen de contréle choisi est constitué de
soufflages / aspirations instationnaires le long de la paleila cavité. On finira par une analyse physique de la
loi de contrble obtenue en décrivant I'importance du partmé: du co(t du contrdle.
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1 Introduction

The interaction of a fluid with a mechanical structure candialf under certain flow regimes,
to the integrity of the latter. In order to keep a structu@irbuffeting, it is thus essential to
control the interacting flow.

In the case of a driven cavity flow, the buffeting was first expéd by Rossiter (1964) as the
effect of a feedback loop where self-sustained oscillatiare due to the emission of acoustic
waves from the leading edge of the cavity. A better undedstenof the phenomena had been
brought later on by Bilaninet al. (1973), when a greater importance was given to the role
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played by the mixing layer in the excitation of the leadingedIt has been shown by Taet
al. (1978) that Rossiter’'s model predicted the correct tongsiorthe range of Mach numbers
going from 0.4 to 1.2.

The computation of the base flows’ eigenvalues and eigeorgt various Reynolds num-
bers, have brought up the existence of a globally unstabléemabove a critical Reynolds
number Re.. This global instability has its origin in the shear layer Kelvin-Helmholtz)
instability and its growth is responsible for the unsteabgof the flow.

The aim of this article is to present the adjoint based optmnoontrol algorithm (as de-
scribed by Bewley (2001)) used to minimize the energy of théupeations of a supercritical
mode (Re = 7500) at a terminal timel" for a costm. This is done by applying an unsteady
blowing and suction control law at the cavity wall.

2 Presentation of the geometry and computation of the base fis

We consider an open square cavity in a uniform stream of itgléc,. In the following, all
guantities are made non-dimensional with these two reteréangth and velocity scales. The
two-dimensional homogeneous incompressible Navier€tauations then read :

du+Vu-u+Vp—Re'Vu=0and V-u=0 (2)

whereu = (u, v) denote longitudinal and transverse velocity componendgdhe pressure of
the flow field. Re is the Reynolds number based on the length sEaead the velocity/,.
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Figure 1: Geometry of the computational dom&ind<2;,,,, Q. andoSlg,,, are the input, output and
upper boundaries. The cavity surface is presented by the solid beesd®;;, andoS)., where the
former is a slipping boundary and the latter a non-slipping boundary. $kefa slipping boundary is
to move away the origin of the boundary layer from the input and outputdemies so that it has the
least possible interaction with these. A longitudinal unitary velocity is appliethennput boundary
0Qnp (u = 1;v = 0) and a symetry conditiorv(= 0) is applied on the upper boundad¥ly,,,. The
condition on the output boundadf,.; is relaxed.

Figure 1 presents the computational domain in which thefoig steady base flow equa-
tions (2) are solved using a mixed finite element method (Brhehts for the pressure field and
P2 elements for the velocity components) :

(U-V)U+VP—-Re'V2U=0 and V-U =0, (2
which gives
F(Q) =0, ®3)

whereQ = (U, P) = (U,V, P).
Equation (3) is solved using Newton’s method in order to heveccurate solution for the
base flow. To initiate the computation, a converged direoufation solution at a lowRe is
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required as the initial “guess value ”. The branch of the Rigwoumbers is then followed and
base flow solutions for variouge are obtained as shown on Figure 2.
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Figure 2: Streamtraces féte = 250 (left) and Re = 7500 (right). We observe on these figures that the
cavity flow is composed of two regions : an outer flow and a recirculatiotleubside de cavity. For
Re = 250 we can see that the bubble is driven by the outer flow because of theibagisity, whereas
for Re = 7500 the axis of the bubble is centered inside the cavity. Furthermore, forRvigthree minor
recirculation bubbles appear in the lower and upper left corners ofavigyc It is the beating of this
mixing layer which will produce the vortices, which are convected dowasirby the outer flow and
which, by hitting the cavity leading edge produce the feedback effect.
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The use of the Newton’s method is essential in this caseeddugre since the unsteady
nature of the flow makes it impossible to obtain convergedtswis by a direct numerical
simulation.

3 Global stability analysis

To investigate the two-dimensional linear global stapitif the base flow to disturbances, we
decompose the velocity and pressure figlds (u, p) = (u, v, p) into a steady base flo®, to
which is superimposed a perturbatiey = ¢(u’,p’) = e(v/,v',p’) of amplitudes <« 1. We
thus obtain the linearized Navier-Stokes equatioAs¢’ = 9;B - ', which solutions at leading
ordere are sought in the form of normal modeq'(z, y,t) = §(z, y) exp(o,t) exp(io;t), with

the trivectorq = (1, p) = (u, 0, p), the eigenvector or global mode, associated to the complex
eigenvaluer = o, + io;, the global growth rate. By replacing in the linearized Nea8&okes
equations, we obtain the systém q = 0B - q, which is solved using the shift-invert Arnoldi’s
method. We thus compute the solutidns, o;) and Figure 3 presents one of the unstable mode
corresponding te,, = 0.89 ando; = 10.9.

Figure 3: Vorticity of the unstable mode Bk = 7500. We can see here unstable structures correspond-
ingto Kelvin-Helholtz type instabilites.
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4  Optimum Control

4.1 Fundamentals

The computation of the optimum control law is achieved byimining the cost functional :

559 = [ [0 oo ey + 5 [T 15,02 4 5,075t @)

where the first term accounts for the energy of the perturbatat the terminal tim& and the
second for the cost of the control. We denotecby, t) = (f(s,t), g(s,t)) the longitudinal and
transverse velocities of the blowing and suction at thetgavall ands is the coordinate along
the cavity wall. The cost of the contrel is a cost per unit of time and is given arbitrarily. The
higherm the more expensive is the control.

J is then minimized using its gradieRt.J, which gives the direction of the descent, and an
optimal stepy, which is the “distance” to go along this direction.

The computation oV J requires the computation of the adjoint state variableschvare
computed backward in time from= 7 to ¢t = 0. After setting an arbitrary initial control law
(c = 0 for instance), we then compute at each iteration a new ddatwac" ! = c* +a"VJ".

4.2 Analysis of the control mechanism

The following computations were made with a terminal time- 4 and costn = 141.
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Figure 4. Evolution of the transversal component of the perturbed ityelodén the center of the shear
layer (left figure) and of the energy of the perturbations (right figurea time interval from¢; = 0 to
ty = T = 4. The solid pink line corresponds to the case without control, the dashekl Ibia to the
controlled configuration. The dashed blue line is the flow induced by thecaattol. The solid black
line on the right figure is a plot of the norm of the control on the cavity wall.

The initial condition for the computation of the linearizeduations is the unstable mode
whose vorticity is shown in Figure 3. We can clearly obsemé-mure 4 that the perturbations
grow freely when no control is applied on the cavity wall.

To understand the control mechanism, a homogeneous prablalso solved (zero initial
condition) where only the unsteady optimum control is aggplon the cavity wall. The trans-
verse velocity of the flow induced by the control grows with hase being opposite to that
of the solution of the linearized problem. The sum of these $olutions shows the effect
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of the optimal control on the evolution of an unstable modd we can clearly see that the
perturbations are destroyed when the optimum control laappied on the cavity wall.

The unstable nature of this mode is also shown by the eneady(fagure 4 on the right).
The energy of the flow field induced by the control in the honrmageis computation is low in
the first half of the simulation because of the zero initiabdition, but as expected, it catches
up on the energy of the freely evolving perturbations, whdohfirms the fact that the induced
field reconstructs the opposite of the solution of the lireeak Navier-Stokes equations.

The energy of the optimally controlled perturbation fieldpwn by the dashed black line
of the right figure, decreases drastically instead of grgwike that of the freely evolving
perturbations.

4.3 Parametric study

m=141.4, Re=7500, L/D=1, b/L=0.4 Topt=2, Re=7500, L/D=1, b/L=0.4
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Figure 5: Energy at terminal time= T (normalized by the energy at= 0) for various values of” at a
fixedm = 141.4 (left figure), and energy at terminal tinfté = 2 for various values of the cost (right
figure). The blue-green line is a plot of the enerdyj when no control is applied and the perturbed field
is left to evolve freely, the dark blue line is the normalized energy of the clbexdrflow att = 7" and the
yellow line represents the values of the cost functiohal

The graph on the left gives the final energy of the perturbatio the controlled and un-
controlled cases as a function of the terminal timet shows that for a fixed cost, the control
starts to be efficient for terminal times greater than 1.%enfkhe greater the terminal time, the
greater the reduction of the energy.

For terminal times smaller than 1.5, we can see that the grérhe controlled perturba-
tions att = T is the same as that of the freely evolving perturbationss Tdue to the fact
that the control on the upstream wall has not enough timeatchréhe downstream corner of the
cavity, where the eigen mode is strongest. Hence, the cawtydisplays a delay time of about
T = 1.5 for control to be efficient. This time is approximately egt@the convection time of
a vortical structure along the cavity, since its velocitalmut1 /2.

On the other hand for a terminal time fixed7at= 2, we can see that the control becomes
more and more effective as — 0. Also, for an expensive control, we observe that the reduc-
tion of the cost functional becomes small.

5 Conclusions

In this work we have first computed the base flows for variousigkls numbers ranging from
Re = 250 to Re = 7500 and we have shown the existance of globally unstable modes fo
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supercritical Reynolds numbers, whose free evolution irtieads to an exponential increase
of the energy of the perturbations. This phenomenon is resple for the unsteadying of the
flow and the buffeting of the structure, and needs thus to h&aited.

The control medium used is blowing and succion at the cavély governed by an unsteady
optimum control law and computed by an iterative method imcWla cost functional is mini-
mized. This control law is such that it reconstructs the @jpoof the pertubation flow field.
The resulting perturbation field is thus almost zeroed.

In order to have the most efficient control, we need to adjustcbstn and terminal time
T parameters accordingly. We have shown that the control tvasnost efficient for long
terminal times T > 1.5) and for values ofn small enough to let the control act sufficently on
the perturbation field.
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