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Abstract :

For high Reynolds numbersRe = U∞L/ν, with an order of magnitude of a few thousands, a flow over a square
cavity becomes unsteady with the growth of two-dimensionalinstabilities. This phenomenon is studied by com-
puting : 1/ the branch of steady solutions with respects to the Reynolds number, using a branch tracking method ;
2/ the eigenvalues and eigenvectors of the global linearized operator with respects toRe. We thus show that the
cavity is subject to a Hopf bifurcation at a critical Reynolds number denoted byRec. After setting the computations
in a supercritical case for whichRe > Rec, we use an optimum control algorithm to minimize the energy of the
perturbations at various terminal timesT . The control will consist in unsteady blowing and succion onthe cavity
wall. We will analyze the phenomenology of the control law with a description of the influence of the target timeT
and the cost of the control which will be denoted bym.

Résumé :

Lorsque le nombre de ReynoldsRe = UL/ν est suffisamment élevé, de l’ordre de quelques milliers, l’écoulement
affleurant une cavité de rapport d’aspectL/D = 1 devient instationnaire bidimensionnel. Ce phénomène est
étudié en recherchant : 1/ la branche de solutions stationnaires en fonction du nombre de Reynolds à l’aide d’une
méthode de suivi de branche ; 2/ les valeurs et modes propres de l’opérateur linéarisé global en fonction deRe. On
montre ainsi que la cavité subit une bifurcation de Hopf à un certain nombre de Reynolds critiqueRec. Puis, en se
plaçant dans un cas supercritiqueRe > Rec, on met en œuvre le formalisme du contrôle optimal pour minimiser
l’énergie des perturbations instables à un temps horizonT variable. Le moyen de contrôle choisi est constitué de
soufflages / aspirations instationnaires le long de la paroide la cavité. On finira par une analyse physique de la
loi de contrôle obtenue en décrivant l’importance du paramètre m du coût du contrôle.
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1 Introduction

The interaction of a fluid with a mechanical structure can be fatal, under certain flow regimes,
to the integrity of the latter. In order to keep a structure from buffeting, it is thus essential to
control the interacting flow.

In the case of a driven cavity flow, the buffeting was first explained by Rossiter (1964) as the
effect of a feedback loop where self-sustained oscillations are due to the emission of acoustic
waves from the leading edge of the cavity. A better understanding of the phenomena had been
brought later on by Bilaninet al. (1973), when a greater importance was given to the role
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played by the mixing layer in the excitation of the leading edge. It has been shown by Tamet
al. (1978) that Rossiter’s model predicted the correct tones only in the range of Mach numbers
going from 0.4 to 1.2.

The computation of the base flows’ eigenvalues and eigenvectors, at various Reynolds num-
bers, have brought up the existence of a globally unstable mode, above a critical Reynolds
numberRec. This global instability has its origin in the shear layer (or Kelvin-Helmholtz)
instability and its growth is responsible for the unsteadyness of the flow.

The aim of this article is to present the adjoint based optimum control algorithm (as de-
scribed by Bewley (2001)) used to minimize the energy of the perturbations of a supercritical
mode (Re = 7500) at a terminal timeT for a costm. This is done by applying an unsteady
blowing and suction control law at the cavity wall.

2 Presentation of the geometry and computation of the base flows

We consider an open square cavity in a uniform stream of velocity U∞. In the following, all
quantities are made non-dimensional with these two reference length and velocity scales. The
two-dimensional homogeneous incompressible Navier-Stokes equations then read :

∂tu + ∇u · u + ∇p − Re−1
∇

2u = 0 and ∇ · u = 0 (1)

whereu = (u, v) denote longitudinal and transverse velocity components and p the pressure of
the flow field.Re is the Reynolds number based on the length scaleL and the velocityU∞.

Figure 1: Geometry of the computational domainΩ. ∂Ωinp, ∂Ωout and∂Ωsupp are the input, output and
upper boundaries. The cavity surface is presented by the solid boundaries ∂Ωslip and∂Ωc, where the
former is a slipping boundary and the latter a non-slipping boundary. The use of a slipping boundary is
to move away the origin of the boundary layer from the input and output boundaries so that it has the
least possible interaction with these. A longitudinal unitary velocity is applied onthe input boundary
∂Ωinp (u = 1; v = 0) and a symetry condition (v = 0) is applied on the upper boundary∂Ωsupp. The
condition on the output boundary∂Ωout is relaxed.

Figure 1 presents the computational domain in which the following steady base flow equa-
tions (2) are solved using a mixed finite element method (P1 elements for the pressure field and
P2 elements for the velocity components) :

(U · ∇) U + ∇P − Re−1
∇

2U = 0 and ∇ · U = 0, (2)

which gives
F (Q) = 0, (3)

whereQ = (U, P ) = (U, V, P ).
Equation (3) is solved using Newton’s method in order to havean accurate solution for the

base flow. To initiate the computation, a converged direct simulation solution at a lowRe is
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required as the initial “guess value ”. The branch of the Reynolds numbers is then followed and
base flow solutions for variousRe are obtained as shown on Figure 2.
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Figure 2: Streamtraces forRe = 250 (left) andRe = 7500 (right). We observe on these figures that the
cavity flow is composed of two regions : an outer flow and a recirculation bubble inside de cavity. For
Re = 250 we can see that the bubble is driven by the outer flow because of the high viscosity, whereas
for Re = 7500 the axis of the bubble is centered inside the cavity. Furthermore, for highRe, three minor
recirculation bubbles appear in the lower and upper left corners of the cavity. It is the beating of this
mixing layer which will produce the vortices, which are convected downstream by the outer flow and
which, by hitting the cavity leading edge produce the feedback effect.

The use of the Newton’s method is essential in this case studied here since the unsteady
nature of the flow makes it impossible to obtain converged solutions by a direct numerical
simulation.

3 Global stability analysis

To investigate the two-dimensional linear global stability of the base flow to disturbances, we
decompose the velocity and pressure fieldsq = (u, p) = (u, v, p) into a steady base flowQ, to
which is superimposed a perturbationεq′ = ε(u′, p′) = ε(u′, v′, p′) of amplitudeε ≪ 1. We
thus obtain the linearized Navier-Stokes equations :A ·q′ = ∂tB ·q′, which solutions at leading
orderε are sought in the form of normal modes :q′(x, y, t) = q̂(x, y) exp(σrt) exp(iσit), with
the trivectorq̂ = (û, p̂) = (û, v̂, p̂), the eigenvector or global mode, associated to the complex
eigenvalueσ = σr + iσi, the global growth rate. By replacing in the linearized Navier-Stokes
equations, we obtain the systemA · q̂ = σB · q̂, which is solved using the shift-invert Arnoldi’s
method. We thus compute the solutions(σr, σi) and Figure 3 presents one of the unstable mode
corresponding toσr = 0.89 andσi = 10.9.
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Figure 3: Vorticity of the unstable mode atRe = 7500. We can see here unstable structures correspond-
ingto Kelvin-Helholtz type instabilites.
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4 Optimum Control

4.1 Fundamentals

The computation of the optimum control law is achieved by minimizing the cost functional :

J(f, g) =
∫ ∫

Ω

[u(f, g, T )2 + v(f, g, T )2] dx dy +
m2

T

∫ T

0

∫
∂Ωc

[f(s, t)2 + g(s, t)2]ds dt, (4)

where the first term accounts for the energy of the perturbations at the terminal timeT and the
second for the cost of the control. We denote byc(s, t) = (f(s, t), g(s, t)) the longitudinal and
transverse velocities of the blowing and suction at the cavity wall ands is the coordinate along
the cavity wall. The cost of the controlm is a cost per unit of time and is given arbitrarily. The
higherm the more expensive is the control.

J is then minimized using its gradient∇J , which gives the direction of the descent, and an
optimal stepα, which is the “distance” to go along this direction.

The computation of∇J requires the computation of the adjoint state variables, which are
computed backward in time fromt = T to t = 0. After setting an arbitrary initial control law
(c0 = 0 for instance), we then compute at each iteration a new control law cn+1 = cn +αn∇Jn.

4.2 Analysis of the control mechanism

The following computations were made with a terminal timeT = 4 and costm = 141.

Figure 4: Evolution of the transversal component of the perturbed velocity v in the center of the shear
layer (left figure) and of the energy of the perturbations (right figure) in a time interval fromti = 0 to
tf = T = 4. The solid pink line corresponds to the case without control, the dashed black line to the
controlled configuration. The dashed blue line is the flow induced by the wallcontrol. The solid black
line on the right figure is a plot of the norm of the control on the cavity wall.

The initial condition for the computation of the linearizedequations is the unstable mode
whose vorticity is shown in Figure 3. We can clearly observe on Figure 4 that the perturbations
grow freely when no control is applied on the cavity wall.

To understand the control mechanism, a homogeneous problemis also solved (zero initial
condition) where only the unsteady optimum control is applied on the cavity wall. The trans-
verse velocity of the flow induced by the control grows with its phase being opposite to that
of the solution of the linearized problem. The sum of these two solutions shows the effect
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of the optimal control on the evolution of an unstable mode and we can clearly see that the
perturbations are destroyed when the optimum control law isapplied on the cavity wall.

The unstable nature of this mode is also shown by the energy plot (Figure 4 on the right).
The energy of the flow field induced by the control in the homogeneous computation is low in
the first half of the simulation because of the zero initial condition, but as expected, it catches
up on the energy of the freely evolving perturbations, whichconfirms the fact that the induced
field reconstructs the opposite of the solution of the linearized Navier-Stokes equations.

The energy of the optimally controlled perturbation field, shown by the dashed black line
of the right figure, decreases drastically instead of growing like that of the freely evolving
perturbations.

4.3 Parametric study

Figure 5: Energy at terminal timet = T (normalized by the energy att = 0) for various values ofT at a
fixedm = 141.4 (left figure), and energy at terminal timeT = 2 for various values of the costm (right
figure). The blue-green line is a plot of the energy aT when no control is applied and the perturbed field
is left to evolve freely, the dark blue line is the normalized energy of the controlled flow att = T and the
yellow line represents the values of the cost functionalJ .

The graph on the left gives the final energy of the perturbations in the controlled and un-
controlled cases as a function of the terminal timeT . It shows that for a fixed cost, the control
starts to be efficient for terminal times greater than 1.5. Then, the greater the terminal time, the
greater the reduction of the energy.

For terminal times smaller than 1.5, we can see that the energy of the controlled perturba-
tions att = T is the same as that of the freely evolving perturbations. This is due to the fact
that the control on the upstream wall has not enough time to reach the downstream corner of the
cavity, where the eigen mode is strongest. Hence, the cavityflow displays a delay time of about
T = 1.5 for control to be efficient. This time is approximately equalto the convection time of
a vortical structure along the cavity, since its velocity isabout1/2.

On the other hand for a terminal time fixed atT = 2, we can see that the control becomes
more and more effective asm → 0. Also, for an expensive control, we observe that the reduc-
tion of the cost functional becomes small.

5 Conclusions

In this work we have first computed the base flows for various Reynolds numbers ranging from
Re = 250 to Re = 7500 and we have shown the existance of globally unstable modes for
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supercritical Reynolds numbers, whose free evolution in time leads to an exponential increase
of the energy of the perturbations. This phenomenon is responsible for the unsteadying of the
flow and the buffeting of the structure, and needs thus to be controlled.

The control medium used is blowing and succion at the cavity wall governed by an unsteady
optimum control law and computed by an iterative method in which a cost functional is mini-
mized. This control law is such that it reconstructs the opposite of the pertubation flow field.
The resulting perturbation field is thus almost zeroed.

In order to have the most efficient control, we need to adjust the costm and terminal time
T parameters accordingly. We have shown that the control was the most efficient for long
terminal times (T > 1.5) and for values ofm small enough to let the control act sufficently on
the perturbation field.

References

Bewley, T.R 2001 Flow Control : new challenges for a new Renaissance.Prog. Aero. Sci.37
21-58

Bilanin, A.J., Covert E.E. 1973 Estimation of possible excitation frequencies for shallow rect-
angular cavitiesAIAA Journal11347-351

Rossiter, J.E 1964 Wind tunnel experiments of the flow over rectangular cavities at subsonic
and transonic speeds.Aeronautical Reserch Council.Report and Memorandum n˚3438

Tam, C., Block, P. 1978 On the tones and pressure oscillations induced by flow over rectangular
cavitiesJ. Fluid Mech.89373-399

6


