
Connected Components Labeling on DRAGs
Federico Bolelli, Lorenzo Baraldi, Michele Cancilla, Costantino Grana

Dipartimento di Ingegneria “Enzo Ferrari”
Università degli Studi di Modena e Reggio Emilia

41125 Modena, Italy
Email: {name.surname}@unimore.it

Abstract—In this paper we introduce a new Connected Compo-
nents Labeling (CCL) algorithm which exploits a novel approach
to model decision problems as Directed Acyclic Graphs with
a root, which will be called Directed Rooted Acyclic Graphs
(DRAGs). This structure supports the use of sets of equivalent
actions, as required by CCL, and optimally leverages these
equivalences to reduce the number of nodes (decision points). The
advantage of this representation is that a DRAG, differently from
decision trees usually exploited by the state-of-the-art algorithms,
will contain only the minimum number of nodes required to reach
the leaf corresponding to a set of condition values. This combines
the benefits of using binary decision trees with a reduction of the
machine code size. Experiments show a consistent improvement
of the execution time when the model is applied to CCL.

I. INTRODUCTION

Connected Components Labeling (CCL) is a fundamental
image processing algorithm which assigns to each pixel of
a connected component (object) in the input binary image a
unique label, typically an integer number. Most of the research
fields in computer vision, ranging from medical imaging to text
analysis, exploit CCL as a preliminary operation whenever
an object or its statistics need to be recognized. Differently
from other tasks, CCL has an exact solution, which every
algorithm should provide as output. Given the assumption that
all algorithms produce the same result, the main difference
among them is the execution time.

The core element of most state-of-the-art CCL algorithms
is the construction of a Decision Tree (DTree) to reduce the
number of pixels which need to be checked. Nevertheless,
there are different data structures which could be adopted to
describe the order with which the variables are checked.

In Very Large Scale Integration (VLSI) design, Binary
Decision Diagrams (BDDs) have been used to model bi-
nary functions [1]. In order to have integer valued leaves,
f : {0, 1}n → I , Multi-Terminal BDDs (MTBDDs) have been
introduced, where n is the number of decision variables (pixels
in the mask) and I is the set of possible actions. In our case
a further addition is needed, since the leaves need to have
multiple alternative actions instead of just one.

In this paper we introduce a novel approach to model
decision problems as Directed Acyclic Graphs with a root,
which we will call Directed Rooted Acyclic Graphs (DRAGs).
In this structure we can model the decision outcome as a
set of equivalent actions, as it was done for the DTree of
another CCL algorithm called Block Based with Decision Tree
(BBDT) [2]. The advantage of this different representation

o

s

0

n

1

p

0

p

1

t

0

j

1

1

0

2

1

k

0

4

1

i

0 i

1

0 1

5

0d

1

1

10

0

r

0

n

1

n

0

6

1

01

r

0

j

1

0

j

1

k

0

m

1

i

0 d

1

0

m

1

11

0

h

1

g

0

3

1

0

b

1

7

01

i

0 1

12

0

m

1

16

0

h

1

g

0

8

1

0 b

1

0 1

0

h

1

g

0

i

1

0 b

1

0

1

1 c

0

01

k

0

i

1

0

d

1

0

1

1

c

0

0

1

r

0

j

1

j

0

j

1

p

0

i

1

i

0 k

1

1h

0

0

1

0

i

1

1

h

0

0

d

1

0 1

1 h

0

0

1

p

0

m

1

h

0 k

1

i

0

m

1

0

m

1

0

1

1 9

0

0

m

1

i

0 h

1

h

0

d

1

0

d

1

15

0

c

1

1

14

0

1

0

d

0

d

11

i

0

01

0

1

1

i

0

1 h

0

0 1

1

p

0

0

1

Fig. 1. Example of optimal DRAG for the BBDT algorithm. Rectangles
identify leaves (i.e. actions) and ellipses identify nodes (i.e. conditions to
check). Continuous lines represent links belonging to the original DTree while
dotted lines represent links generated during the transformation process which
converts the DTree into a DRAG. The full size image is reported in Fig. 7.

is that a DRAG will contain only the minimum number of
nodes required to reach the leaf corresponding to a set of
condition values. In a DTree the same set of conditions may
be checked in multiple subtrees, while in a DRAG, being it
a graph, these could be merged together. It is clear that this
does not save any condition check, but the code generated from
the DRAG will include the same checks only once, sensibly
reducing the number of machine instructions, thus the impact
on instruction cache. In Section V we experimentally show
the obtained improvement.

The rest of this paper is organized as follows: Section II
sums up the latest contributions on CCL, Section III resumes
the core of BBDT algorithm [2], [3] on which the method
proposed in this paper is based, and Section IV deeply
describes the new model. Finally, in Section VI conclusions
are drawn.

II. RELATED WORK

As for most modern computer science applications, parallel
and sequential CCL algorithms have been proposed [4], but in
this paper we focus our analysis on sequential algorithms only.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Università di Modena e Reggio Emilia

https://core.ac.uk/display/154966233?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


p q r
s x

(a)

a b c d e f
g h i j k l
m n o p
q r s t

(b)

Fig. 2. (a) Rosenfeld mask for computing the label of pixel x. (b) Grana
mask for computing the label of pixels o, p, s, and t.

Two classes of parallel algorithms exist for CCL: intrinsically
parallel approaches and divide and conquer ones [5]. The latter
class can also benefit of our analysis, since it uses sequential
algorithms as its basic building block.

Sequential algorithms can be divided into three main cat-
egories: contour tracing (CT), multiple scan (MS) and two
scans (TS) algorithms. CT algorithms [6] raster scan the input
image and label the objects with the following approach: when
an unlabeled boundary is found all pixels in both the contour
and the adjacent background will be clockwise tagged. The
object is then filled in a raster order with the same label
of the contour. During the filling process, if an unlabeled
boundary is found, a clockwise contour tracing is performed
for internal contours. This technique proved to have linear
complexity with respect to the number of labels, also because
the filling of the connected components (label propagation
after contour following) is cache-friendly for images stored
in a raster scan order. Unfortunately, the following of contour
tracing may cause a lot of cache misses, especially when
connected components are big, and this limits the performance
of these algorithms.

MS algorithms [7], [8] scan the input image multiple times
alternatively in a forward and backward direction resolving
equivalences between adjacent labels. The process ends when
the last scan does not produce any change on the output image.
This allows to limit the memory usage, but the number of scans
and then the number of memory accesses of these algorithms
can be large and negatively affect the execution time.

Usually, the TS algorithms [9] produce the best performance
because they are able to generate the output labeled image with
a smaller number of cache friendly memory accesses. Most of
the two scan algorithms operate in three steps called first scan,
flatten and second scan. The first scan goes through the input
image once and assigns provisional labels to all object pixels.
During this phase any possible equivalence between different
labels is recorder by the labels solver. The flatten analyzes the
equivalence information obtained during the previous step and
determine the final labels associated to the provisional ones.
Finally, the second scan generates the output image replacing
provisional with final labels. For some tasks, the statistics on
connected components are sufficient and the output labeled
image is not required. In these cases the second scan can be
avoided, further reducing the total execution time.

Solving equivalence between labels is a Union-Find prob-
lem [10] which can be resolved with different strategies such
as classical Union-Find (UF), Union-Find with Path Compres-
sion (UFPC) [11], Three Table Array (TTA) proposed in [12]
or Interleaved Rem’s algorithm with splicing (RemSP) [13].

0 - - - - 1

1 0 0 0 0 1

1 1 0 0 0 1

1 0 1 0 0 1

1 0 0 1 0 1

1 0 0 0 1 1

1 1 1 0 0 1 1

1 1 0 1 0 1

1 1 0 0 1 1 1

1 0 1 1 0 1 1

1 0 1 0 1 1 1

1 0 0 1 1 1

1 1 1 1 0 1 1 1

1 1 1 0 1 1 1 1

1 1 0 1 1 1 1

1 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1

x 
= 

r 
+ 

s

assign merge

x 
= 

p

x 
= 

q

x 
= 

r

x 
= 

s

x 
= 

p
 +

 r

n
o

 a
ct

io
n

n
e

w
 la

b
e

l

x p q r s

Fig. 3. OR-decision table associated to the Rosenfeld mask (Fig. 2a).

An exhaustive description and performance evaluation of the
Union-Find strategies is reported in [14].

CCL has been studied since the dawn of Computer Vision,
so what are the elements which allowed the recent efficiency
improvements? Wu et al. noticed that only some pixels in
the scanning mask (Fig. 2a) have to be checked in order
to select the correct provisional label for the current pixel
x [11], [15]. He et al. [16] modeled the problem as a Boolean
algebra one and solved it with Karnaugh maps. In [2], Grana et
al. extended the Rosenfeld mask in order to scan the input
image by 2 × 2 blocks and reducing the number memory
accesses. The problem was modeled with Decision Tables
(DTab), automatically producing the associated DTree. In
2014, He et al. [17] introduced the Configuration Transition
Based (CTB) algorithm in which they observed that during
the first scan some checks can be avoided if they have
been already performed in the previous step. Following this
approach, Grana et al. in [18] proved a general paradigm to
exploit already seen pixels during the scan phase, in order to
minimize the number of times a pixel is accessed. In fact,
the same decision tree is usually traversed for each pixel of
the input image, without exploiting values seen in the previous
iteration. To go beyond this limitation they compute a reduced
decision tree for each possible set of known pixels: these
reduced decision trees are then connected into a single graph,
which rules the execution of the CCL algorithm.

III. MODELLING CCL WITH DECISION TREES

In [2] the procedure of collecting labels and solving equiv-
alences is described by a command execution metaphor: the
current and neighboring pixels provide a binary command
word (foreground is 1 and background is 0) which leads to
the execution of a corresponding action. The possible actions
are: “no action” if the current pixel is background, “new label”
if it has no foreground neighbors, “assign” or “merge” based
on the label of neighboring foreground pixels. The relation
between the commands and the corresponding actions may
be conveniently described by means of a decision table [19].
Additionally, in [2] an extension to classical decision tables is



o

s

0

n

1

p

0

p

1

t

0

j

1

1

0

2

1

k

0

4

1

i

0

i

1

2

0

4

1

5

0

d

1

10

0

4,5

1

r

0

n

1

n

0

6

1

2

0

6

1

r

0

j

1

j

0

j

1

k

0

4

1

i

0

i

1

2

0

4

1

5

0

d

1

10

0

4,5

1

k

0

m

1

i

0

d

1

6

0

m

1

11

0

h

1

g

0

3,4,6

1

11

0

b

1

7,11

0

3,4,6

1

i

0

m

1

12

0

m

1

16

0

h

1

g

0

8,10,12

1

16

0

b

1

13,16

0

8,10,12

1

11,12

0

h

1

g

0

i

1

11,12

0

b

1

7,8,11,12

0

i

1

c

0

3,4,5,6

1

7,8,11,12

0

3,4,5,6

1

c

0

3,4,5,6

1

7,8,11,12

0

3,4,5,6

1

11

0

h

1

g

0

i

1

11

0

b

1

7,11

0

i

1

c

0

3,4,6

1

7,11

0

3,4,6

1

c

0

3,4,6

1

7,11

0

3,4,6

1

k

0

i

1

6

0

d

1

12

0

i

1

c

0

4,5,6

1

11,12

0

h

1

g

0

3,4,5,6

1

11,12

0

b

1

7,8,11,12

0

3,4,5,6

1

c

0

4,6

1

11

0

h

1

g

0

3,4,6

1

11

0

b

1

7,11

0

3,4,6

1

r

0

j

1

j

0

j

1

p

0

i

1

i

0

k

1

h

0

4

1

2

0

3

1

i

0

i

1

h

0

4

1

2

0

3

1

h

0

d

1

5

0

d

1

8

0

c

1

7,8

0

3,4,5

1

10

0

4,5

1

h

0

4

1

4

0

c

1

7

0

3,4

1

p

0

m

1

h

0

k

1

i

0

m

1

6

0

m

1

11

0

g

1

11

0

b

1

7,11

0

3,4,6

1

9

0

3,6

1

h

0

m

1

i

0

m

1

6

0

m

1

11

0

g

1

11

0

b

1

7,11

0

3,4,6

1

9

0

3,6

1

i

0

h

1

h

0

d

1

12

0

d

1

15

0

c

1

14,15

0

9,11,12

1

16

0

11,12

1

d

0

d

1

i

0

g

1

12

0

g

1

16

0

b

1

13,16

0

8,10,12

1

11,12

0

b

1

7,8,11,12

0

i

1

c

0

3,4,5,6

1

7,8,11,12

0

3,4,5,6

1

8,12

0

i

1

c

0

3,4,5,6

1

7,8,11,12

0

3,4,5,6

1

i

0

h

1

h

0

11

1

11

0

c

1

14

0

9,11

1

g

0

i

1

11

0

b

1

7,11

0

i

1

c

0

3,4,6

1

7,11

0

3,4,6

1

c

0

3,4,6

1

7,11

0

3,4,6

1

p

0

i

1

6

0

k

1

6

0

d

1

12

0

i

1

c

0

4,5,6

1

11,12

0

h

1

g

0

3,4,5,6

1

11,12

0

b

1

7,8,11,12

0

3,4,5,6

1

c

0

4,6

1

11

0

h

1

g

0

3,4,6

1

11

0

b

1

7,11

0

3,4,6

1

Fig. 4. Optimal decision tree obtained with the mask of Fig. 2b.

provided, i.e. every rule (binary word) is associated to a set of
alternative actions. This is a peculiar characteristic of the CCL
problem when multiple foreground neighbors share equivalent
labels because these have already been merged in previous
steps. This extension is called OR-decision table, opposed to
the previous ones which required all actions to be performed
(e.g. do action 1 and action 7 and . . .). An example of OR-
decision table, associated to the Ronsenfeld mask for the CCL
task (Fig. 2a), is reported in Fig. 3.

An AND-decision table can be transformed into an optimal
DTree by the use of the dynamic programming approach
described in [20] by Schumacher et al. This process guarantees
to obtain a DTree with the minimum average number of
conditions to check in order to choose the correct action
to be performed. Moreover, in [3] Grana et al. proved an
optimal strategy to extend the Schumacher algorithm to OR-
decision tables, thus allowing to convert them into DTrees and
from them into running code. If any leaf still had equivalent
actions, a random one could have been picked. This automatic
procedure empowers the possibility to extend the algorithm to
more complex masks, such as the one reported in Fig. 2b [2].
This mask has the advantage to allow the labeling of four
pixels (o, p, s and t) at the same time, roughly reducing
the cost of the first scan by a factor of four, and to reduce
the number of merge operations since labels equivalence is
implicitly solved within 2× 2 blocks.

Fig. 4 reports the Optimal Decision Tree (ODT) obtained
with the aforementioned procedure. The total number of nodes
(ellipses) is 134 and leaves (rectangles) are 137. Differently
from what previously presented in the literature [3], this tree
still shows all the equivalent actions in its leaves. As already
said, these could be chosen in any way when generating code,
but we will exploit equivalences for further optimizations.

IV. FROM DECISION TREES TO DRAGS

When looking at the assembly generated by the compiler
from the C source code obtained from the ODT, we observed

jumps which did not correspond to gotos in the source
code. These were generated by the compiler optimizer in
order to avoid repeating pieces of code which would have
been identical. In fact, by looking at the tree, it is easy to
spot identical subtrees which do not require repetitions: the
compiler is practically converting a tree into a Directed Rooted
Acyclic Graph (DRAG).

The question is whether we can do something better than
such a well designed tool. The answer is yes, because in
order to convert the ODT into source code we removed the
equivalences in the leaves, arbitrarily selecting one of the
actions. Although, this substitutions may not be limited to
identical subtrees: we can also compress equivalent subtrees.

Let us give a formal statement of the problem. We will call
DT (C,A) the set of decision trees for the set of conditions
C and actions A. These are full binary trees, i.e. rooted trees
in which a vertex will either be a node with two children or a
leaf without children. N is the set of nodes and L is the set
of leaves. The condition of a node is denoted with c(n) ∈ C,
with n ∈ N , and the set of equivalent actions of a leaf is
denoted with a(l) ∈ P(A) \ {∅}, with l ∈ L. Each node n
has a left subtree l r (n) and a right subtreel r (n), each rooted
in the corresponding child of n.

Definition (Equal decision trees). Two decision trees t1, t2 ∈
DT , having corresponding roots r1 and r2, are equal if either:

1) r1, r2 ∈ L and a(r1) = a(r2), or
2) r1, r2 ∈ N , c(r1) = c(r2) and l r (r1) is equal to l r (r2)

andl r (r1) is equal tol r (r2).

Definition (Equivalent decision trees). Two decision trees
t1, t2 ∈ DT , having corresponding roots r1 and r2, are
equivalent if either:

1) r1, r2 ∈ L and a(r1) ∩ a(r2) 6= ∅, or
2) r1, r2 ∈ N , c(r1) = c(r2) and l r (r1) is equivalent to

l r (r2) andl r (r1) is equivalent tol r (r2).

A first transformation from a DTree to a DRAG can be



o

s

0

n

1

p

0

p

1

t

0

j

1

1

0

2

1

k

0

4

1

i

0

i

1

0 1

5

0

d

1

10

0

4,5

1

r

0

n

1

n

0

6

1

01

r

0

j

1 0

j

1

k

0

m

1

i

0

d

1

0

m

1

11

0

h

1

g

0

3,4,6

1 0

b

1

7,11

0 1

i

0

m

1

12

0

m

1

16

0

h

1

g

0

8,10,12

1 0

b

1

13,16

01

11,12

0

h

1

g

0

i

1

0

b

1

7,8,11,12

0

1

c

0

3,4,5,6

1

0 1

0

h

1

g

0

i

1

0

b

1

0

1

1c

0

0 1

k

0

i

1

0

d

1

0

i

1

c

0

4,5,6

1

0

h

1

1

g

0

0

b

1

0 1

c

0

4,6

1

0

1

r

0

j

1 j

0

j

1

p

0

i

1

i

0 k

1

1h

0

0

3

1

0

i

1

1 h

0

0

d

1

8

0

c

1

7,8

0

3,4,5

1

1 h

0

0

c

1

7

0

3,4

1

p

0

m

1

h

0 k

1

i

0

m

1

0

m

1

0

1

9

0

3,6

1

0

m

1

i

0h

1

h

0

d

1

0

d

1

15

0

c

1

14,15

0

9,11,12

1

0

1

d

0

d

1

1

i

0

01 1

8,12

0

1

i

0

1 h

0

0

c

1

14

0

9,11

1

1 p

0

0

1

Fig. 5. DRAG obtained using the equal subtrees transformation.

performed by substituting all equal subtrees with a single
instance, making every parent node point to that unique
exemplar. Since DT equality is a transitive relation, we can
traverse the tree and for every subtree search an equal one
and immediately perform the substitution. The nice property
of this transformation is that it does not depend on the order in
which the original tree is traversed. The result of applying this
equal subtrees transformation to the ODT of Fig. 4 is shown
in Fig. 5. This DRAG has 86 nodes and can be automatically
converted to code by generating the subtree code only for
“continuous” arcs and using gotos for “dotted” ones.

An even better transformation (i.e. with less nodes) is ob-
tained by performing the same procedure, substituting equality
with equivalence, and taking the intersection of actions in
the corresponding leaves. Since all equal subtrees are also
equivalent, all previous substitutions will be performed, plus,
possibly, some more. Unfortunately, DT equivalence is not
transitive, and it therefore depends on the order of traversal.
Taking an intersection earlier may hinder the possibility of
doing a better choice later, thus of minimizing the number
of nodes. Of course, trying all possible traversal orders is
unfeasible.

We already noticed that equal subtrees need to be substituted
also when using the equivalence transformation, so instead of

starting from the original tree, it is reasonable to start from the
DRAG obtained by applying the equal subtrees transformation.
From this DRAG we can obtain many variations by selecting
a single action from leaves with more than one, in all possible
ways. In our particular case (Fig. 5), 11 leaves have two
choices, 5 have three and only 2 have four. This gives a total of
7 962 624 different DRAGs. Since the number is not absurd,
it is possible to reduce all the DRAGs with the equal subtrees
transformation, and keep the one with the minimum number of
nodes. This is also an optimal solution of the original problem.
The result of applying such a reduction to the DRAG of Fig. 5
is shown in Fig. 7. The final DRAG has 72 nodes and 15 leaves
with no intersection.

As already said, getting to a leaf still requires all the original
checks, so the benefit of implementing decisions with DRAGs
is that of reducing the code footprint. The original tree required
2634B while the optimal DRAG version only 1919B. The
effects of such saving are reported in the following section.

V. EXPERIMENTAL RESULTS

In order to evaluate the benefit of the proposed strategy
we tested the DRAG algorithm using YACCLAB, an open
source C++ benchmarking framework for CCL algorithms.
The original version of the benchmark has been presented
in [21], and it allows to test state-of-the-art algorithms on a



 0

 1

 2

 3

 4

 5

SAUF_UFPC

BBDT_UFPC

DRAG_UFPC

CTB_UFPC

PRED_UFPC

CT labeling_NULL

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

2.13 1.92 1.83
2.13 2.20

5.30

0.87

(a) Medical

 0

 0.2

 0.4

 0.6

 0.8

 1

SAUF_UFPC

BBDT_UFPC

DRAG_UFPC

CTB_UFPC

PRED_UFPC

CT labeling_NULL

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

0.35 0.33 0.32 0.33 0.36

1.04

0.10

(b) Fingerprints

 0

 10

 20

 30

 40

 50

 60

 70

SAUF_UFPC

BBDT_UFPC

DRAG_UFPC

CTB_UFPC

PRED_UFPC

CT labeling_NULL

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

26.67 24.78 23.92 25.20 25.92

66.34

9.68

(c) XDOCS

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

SAUF_UFPC

BBDT_UFPC

DRAG_UFPC

CTB_UFPC

PRED_UFPC

CT labeling_NULL

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

0.74
0.68 0.67 0.70 0.69

1.43

0.39

(d) 3DPeS

 0

 2

 4

 6

 8

 10

 12

 14

 16

SAUF_UFPC

BBDT_UFPC

DRAG_UFPC

CTB_UFPC

PRED_UFPC

CT labeling_NULL

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

6.99 6.57 6.40 6.54 6.60

15.80

2.90

(e) Tobacco800

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

SAUF_UFPC

BBDT_UFPC

DRAG_UFPC

CTB_UFPC

PRED_UFPC

CT labeling_NULL

Ex
ec

ut
io

n 
Ti

m
e 

[m
s]

0.44
0.39 0.38

0.47 0.48

1.09

0.16

(f) MirFlickr

Fig. 6. Experimental results obtained on an Intel Core i7-4770 CPU @ 3.40GHz, running Linux with GCC 7.2.0 with the YACCLAB benchmark. For each
dataset and algorithm the average execution time in ms is reported (lower is better).

wide range of datasets covering most of the fields in which
CCL could be exploited. The fairness of the comparison
is guaranteed by compiling the algorithms with the same
optimizations and by running them on the same data and over
the same machine. The current version of the benchmark1

provides a template implementation of the algorithms over
the labels solving strategy, but those for which the labels
solver is built-in. Tests revealed that the impact of the labels
solver on the overall performance is strictly limited for fastest
algorithms, for this reason we will only report results obtained
with the UFPC solver [11].

In the following, we will use acronyms to refer to the
compared algorithms: CT is the Contour Tracing approach by
Fu Chang et al. [6], SAUF is the Scan Array Union Find
algorithm by Wu et al. [15], BBDT is the Block Based with
Decision Trees algorithm by Grana et al. [2], CTB is the
Configuration-Transition-Based algorithm by He et al. [17],
and PRED is the Optimized Pixel Prediction by Grana et
al. [18]. Moreover, labeling NULL is a lower bound limit for
all CCL algorithms, obtained by reading once the input image
and writing it on the output again [22].

Fig. 6 compares the average execution time of the aforemen-
tioned algorithms on six different datasets [22]: a collection
of histological images with an average amount of 1.21 million
pixels to analyze and 484 components to label (Medical),
fingerprint images collected by using low-cost optical sensors
or synthetically generated with an average of 809 components
to label (Fingerprints), high resolution historical document
images with more than 15000 components and a low fore-
ground density (XDOCS), a dataset for people detection,
tracking, action analysis and trajectory analysis with very low
foreground density and few components to identify (3DPeS),

1https://github.com/prittt/YACCLAB

a selection of documents collected and scanned using a wide
variety of equipment over time with a resolution varying from
150 to 300 DPI (Tobacco800), and a large set of standard
resolution natural images taken from Flickr (MirFlickr). The
test was run on an Intel Core i7-4770 CPU @ 3.40GHz (4×32
KB L1 cache, 4×256 KB L2 cache, and 8 MB of L3 cache)
with Linux OS and GCC 7.2.0 compiler enabling O3 flag.
The behavior is practically equal on all datasets, with DRAG
being always the winner. The second best is nearly always the
version using BBDT, with the ODT previously shown. The
lower impact on the instruction cache is beneficial, even in
this case, in which the amount of available memory is much
larger than required.

VI. CONCLUSION

We have shown a strategy to model the processing of binary
image patterns as a Directed Rooted Acyclic Graph. This has
all the benefits of using Decision Trees, while reducing the
machine code size more than a compiler could ever do, since
it would miss part of the information.

The missing step for this work is the ability of including the
prediction stage introduced in [17] within a unique framework,
and being able of solving the complete problem in feasible
time. Another extension is the application of DRAGs to other
binary image problems such as thinning or mathematical
morphology [23].

REFERENCES

[1] S. Minato, Binary Decision Diagrams and Applications for VLSI CAD.
Springer Science & Business Media, 1996.

[2] C. Grana, D. Borghesani, and R. Cucchiara, “Optimized Block-based
Connected Components Labeling with Decision Trees,” IEEE Transac-
tions on Image Processing, vol. 19, no. 6, pp. 1596–1609, 2010.

[3] C. Grana, M. Montangero, and D. Borghesani, “Optimal decision trees
for local image processing algorithms,” Pattern Recognition Letters,
vol. 33, no. 16, pp. 2302–2310, 2012.



o

s

0

n

1

p

0

p

1

t

0

j

1

1

0

2

1

k

0

4

1

i

0 i

1

0 1

5

0d

1

1

10

0

r

0

n

1

n

0

6

1

01

r

0

j

1

0

j

1

k

0

m

1

i

0 d

1

0

m

1

11

0

h

1

g

0

3

1

0

b

1

7

01

i

0 1

12

0

m

1

16

0

h

1

g

0

8

1

0 b

1

0 1

0

h

1

g

0

i

1

0 b

1

0

1

1 c

0

01

k

0

i

1

0

d

1

0

1

1

c

0

0

1

r

0

j

1

j

0

j

1

p

0

i

1

i

0 k

1

1h

0

0

1

0

i

1

1

h

0

0

d

1

0 1

1 h

0

0

1

p

0

m

1

h

0 k

1

i

0

m

1

0

m

1

0

1

1 9

0

0

m

1

i

0 h

1

h

0

d

1

0

d

1

15

0

c

1

1

14

0

1

0

d

0

d

11

i

0

01

0

1

1

i

0

1 h

0

0 1

1

p

0

0

1

Fig. 7. Example of optimal DRAG for the BBDT algorithm.

[4] H. M. Alnuweiri and V. K. Prasanna, “Parallel Architectures and
Algorithms for Image Component Labeling,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 14, no. 10, pp. 1014–1034, Oct. 1992.

[5] F. Bolelli, M. Cancilla, and C. Grana, “Two More Strategies to Speed
Up Connected Components Labeling Algorithms,” in International Con-
ference on Image Analysis and Processing. Springer, 2017, pp. 48–58.

[6] F. Chang, C.-J. Chen, and C.-J. Lu, “A linear-time component-labeling
algorithm using contour tracing technique,” Computer Vision and Image
Understanding, vol. 93, no. 2, pp. 206–220, 2004.

[7] R. Haralick, “Some neighborhood operators,” in Real-Time Parallel
Computing. Springer, 1981, pp. 11–35.

[8] K. Suzuki, I. Horiba, and N. Sugie, “Linear-time connected-component
labeling based on sequential local operations,” Computer Vision and
Image Understanding, vol. 89, no. 1, pp. 1–23, 2003.

[9] A. Rosenfeld and A. Kak, Digital picture processing, ser. Computer
science and applied mathematics. Academic Press, 1982, no. v. 1.

[10] M. B. Dillencourt, H. Samet, and M. Tamminen, “A general approach
to connected-component labeling for arbitrary image representations,”
Journal of the ACM (JACM), vol. 39, no. 2, pp. 253–280, 1992.

[11] K. Wu, E. Otoo, and K. Suzuki, “Two Strategies to Speed up Con-
nected Component Labeling Algorithms,” Lawrence Berkeley National
Laboratory, Tech. Rep. LBNL-59102, 2005.

[12] L. He, Y. Chao, and K. Suzuki, “A Linear-Time Two-Scan Labeling
Algorithm,” in International Conference on Image Processing, vol. 5,
2007, pp. 241–244.

[13] E. W. Dijkstra, A discipline of programming / Edsger W. Dijkstra.
Prentice-Hall Englewood Cliffs, N.J, 1976.

[14] M. Patwary, J. Blair, and F. Manne, “Experiments on union-find algo-
rithms for the disjoint-set data structure,” Experimental Algorithms, pp.
411–423, 2010.

[15] K. Wu, E. Otoo, and K. Suzuki, “Optimizing two-pass connected-
component labeling algorithms,” Pattern Analysis and Applications,
vol. 12, no. 2, pp. 117–135, 2009.

[16] L. He, Y. Chao, K. Suzuki, and K. Wu, “Fast connected-component
labeling,” Pattern Recognition, vol. 42, no. 9, pp. 1977–1987, 2009.

[17] L. He, X. Zhao, Y. Chao, and K. Suzuki, “Configuration-Transition-
Based Connected-Component Labeling,” IEEE Transactions on Image
Processing, vol. 23, no. 2, pp. 943–951, 2014.

[18] C. Grana, L. Baraldi, and F. Bolelli, “Optimized Connected Components
Labeling with Pixel Prediction,” in Advanced Concepts for Intelligent
Vision Systems, 2016.

[19] L. J. Schutte, “Survey of decision tables as a problem statement
technique,” Computer Science Department, Purdue University, CSD-
TR 80, 1973.

[20] H. Schumacher and K. C. Sevcik, “The synthetic approach to decision
table conversion,” Commun. ACM, vol. 19, no. 6, pp. 343–351, Jun.
1976.

[21] C. Grana, F. Bolelli, L. Baraldi, and R. Vezzani, “YACCLAB - Yet
Another Connected Components Labeling Benchmark,” in 23rd Inter-
national Conference on Pattern Recognition. ICPR, 2016.

[22] F. Bolelli, M. Cancilla, L. Baraldi, and C. Grana, “Toward reliable
experiments on the performance of Connected Components Labeling
algorithms,” Journal of Real-Time Image Processing, pp. 1–16, 2018.

[23] C. Grana, D. Borghesani, and R. Cucchiara, “Decision Trees for Fast
Thinning Algorithms,” in 20th International Conference on Pattern
Recognition, Aug. 2010, pp. 2836–2839.


