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Abstract :

The present paper deals with the identification of probabilistic models of input variables using response measure-
ments. The input random variables, whose probability density function has to be identified, are represented by
their polynomial chaos expansion (PCE). The proposed method allows to solve the probabilistic inverse problem
using an efficient maximum likelihood approach. An advanced optimization algorithm is used to maximize this
likelihood and get the optimal values of unknown PCE coefficients. The approach is illustrated by determining
the variability of the loading applied to a series of similar simply supported beams when a database of measured
maximum deflection is at hand.
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1 Introduction

In probabilistic engineering mechanics, the physical system under consideration is represented
by a numerical model whose input parameters are random variables. In practice, the accurate
description of these input (or basic) random variables can be done using classical statistical
tools when a sufficient amount of data is available. If not, the domain of Bayesian statistics may
help combine prior information on the variability of the parameters (e.g. expert judgment) and
few experimental values.

However, in many situations, the data that can be easily collected concerns response quan-
tities (e.g. displacements, strain, etc.) instead of input parameters (e.g. material properties,
loading, etc.). In these situations, so-called inverse probabilistic methods have to be devised
in order to properly identify the probabilistic model for the input random variables. Most of
the available literature in this domain adresses the problem in a Bayesian context (Yuen and
Katafygiotis, 2002; Tarantola, 2005). Recently, polynomial chaos expansion techniques (PCE),
originally used for uncertainty propagation in the context of stochastic finite element analysis
(Ghanem and Spanos, 1991) have been used. Desceliers et al. (2006) have proposed a method
based on the maximum likelihood concept to identify the coefficients of a PCE representa-
tion of the spatially varying Young’s modulus of a structure by solving deterministic inverse
three-dimensional elasticity problems and a statistical post-processing of the latter. Attempts
to applying this kind of approach within a Bayesian framework to stochastic models have also
been carried out by Ghanem and Doostan (2006).

In the present paper, the probabilistic model consists of both random variables with pre-
scribed distribution and random variables with unknown distribution. The aim of the paper is to
develop an indirect method for identifying the probability density function (PDF) of the latter.
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These variables of unknown PDF are represented by their polynomial chaos expansion (Sec-
tion 2). Then the likelihood of the observations (of response quantities possibly perturbed by
measurement or model error) is formulated conditionally to these expansion coefficients. An
advanced optimization algorithm is finally used to maximize this likelihood and get the PCE
coefficients of the unknown variables (Section 3).

To illustrate the approach, the problem of determining the variability of the loading applied
to a series of similar simply supported beams is solved, introducing the measurements of the
maximal deflection of each beam as the experimental data (Section 4).

2 Polynomial chaos expansion of random variables

Let (Ω,F , P ) be a probability space, where Ω is the sample space, F is the σ-algebra of sub-
sets of Ω and P is a probability measure. Let X(ω) be a real random variable (ω represents
randomness), whose probability density function (PDF) is denoted by fX(x). The space of real

random variables with finite variance equipped with the inner product 〈X, Y 〉 def
= E [XY ] is an

Hilbert space denoted by L2 (Ω,F , P ) (E [.] denotes the mathematical expectation. It can be
shown that any random variable in this space can be cast as a polynomial series expansion in a
standard normal variable ξ:

X(ω) =

∞∑
i=0

aiHi (ξ (ω)) (1)

In this expression, {Hi(x), i ∈ N} are the Hermite polynomials, which form an orthogonal
family with respect to the Gaussian probability measure ϕ(x) = exp(−x2/2)/

√
2π:

〈Hi, Hj〉 =

∫ +∞

−∞
Hi (x) Hj (x) ϕ (x) dx = δij i! (δij Kronecker symbol) (2)

In other words, the coefficients {ai, i ∈ N} in Eq.(1) are the “coordinates” of X in the Hermite
polynomial basis.

When the PDF of X is prescribed, the PCE coefficients can be computed by projection or
regression (Sudret et al., 2006). In practice, unimodal random variables can be accurately ap-
proximated using a truncated series expansion X =

∑p
i=0 aiHi (ξ (ω)) where p = 3 is usually

sufficient (Berveiller, 2005). When several random variables are to be simultaneously repre-
sented by PCE expansions, a one-to-one correspondance with as many components of a stan-
dard normal Gaussian vector is used.

3 Inverse probabilistic identification

3.1 Formulation

Let ỹ be the true value of the response quantity y of a mechanical system. Suppose that this
quantity can be predicted by a mathematical model M, which depends on a vector x of input
parameters.

If the mechanical model M was “perfect” and if the true value x̃ of the input parameters
was known for the system under consideration, one could write:

ỹ = M (x̃) (3)

In practice, none of these assumptions hold. Indeed, the input parameters are usually not well
known, leading to the introduction of a random vector X(ω) for their modeling. In some cases,
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the random response Y (ω) can be measured by an analyst through experimental investigations.
The measurement value ymes may differ from the true value ỹ:

ymes = ỹ + e = M (x̃) + e (4)

where e is a realization of ε, which takes into account the deviation between predicted and
measured values of y, i.e. it encompasses both measurement and model errors. ε is supposed to
be a zero-mean Gaussian random variable with known variance σ2

e .
Provided x̃ is known, Eq.(4) can be interpreted as the fact that ymes is a realization of a

Gaussian random variable whose mean value is M (x̃) and whose standard deviation is σe.
Thus, the corresponding likelihood of ymes is:

fY |X (ymes|x̃) =
1

σe
ϕ

(
ymes −M (x̃)

σe

)
(5)

where ϕ is the standard normal probability density function (PDF).
In the sequel, it is supposed that a single random variable, say X u, has an unknown PDF to

be identified. This random variable will be approximated using a truncated Hermite polynomial
chaos expansion in a standrad normal variable ξu:

Xu ≈
p∑

i=0

au
i Hi (ξ

u) (6)

The remaining input variables of the problem are gathered into a random vector X−u =(
X1, . . . , Xu−1, Xu+1, . . . , XM

)
, which can be represented through an isoprobabilistic trans-

form T as a function of a standard normal vector ξ−u =
(
ξ1, . . . , ξu−1, ξu+1, . . . , ξM

)
:

X−u (ω) = T
(
ξ−u
)

(7)

where ξ−u =
(
ξ1, . . . , ξu−1, ξu+1, . . . , ξM

)
. In the case when the components of X−u are

independent, this transform reduces to a one-to-one mapping X i = F−1
Xi ◦ Φ (ξi), where FXi is

the CDF of X i and Φ is the standard normal CDF. In case of correlated components, the Nataf
transform may be used. The above assumptions allow to approximate Eq.(5) using an explicit
mapping from x to ξ:

fY |ξ (ymes|ξ, au) =
1

σe
ϕ

⎛
⎜⎜⎜⎜⎝

ymes −M
(

p∑
i=0

au
i Hi (ξ

u), F−1
Xi

(
ξ−u
))

σe

⎞
⎟⎟⎟⎟⎠ (8)

where ξ =
{
ξ−u, ξu

}
and au = {au

i }p
i=0 and the approximation is due to the truncated expan-

sion of Xu.

3.2 Maximum likelihood estimation

The PDF of variable Y can be cast as follows:

fY (ymes) =

∫
fY |X (ymes|x) fX (x) dx (9)
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where fY |X is the conditional PDF given in Eq.(5) and fX refers to the known joint PDF of
input parameters, in the case when all the random variables have been identified. Nevertheless,
in the present case the joint PDF fX is not known since a random variable has to be identified.
Thus, by replacing the likelihood function fY |X by Eq.(8), Eq.(9) becomes:

fY (ymes|au) =

∫
RM

fY |ξ (ymes|ξ, au) ϕ (ξ) dξ

=

∫
RM

1

σe
ϕ

⎛
⎜⎜⎜⎜⎝

ymes −M
(

p∑
i=0

au
i Hi (ξ

u), F−1
Xi

(
ξ−u
))

σe

⎞
⎟⎟⎟⎟⎠ ϕM(ξ)dξ

(10)

Let y1, . . . , yQ be an experimental set of independent observations of Y . The likelihood
function of the samples {yq}Q

q=1 can be approximated as:

LY

(
y1, . . . , yQ|au

0 , . . . , a
u
p

)
=

Q∏
q=1

fY (yq|au) (11)

In order to estimate the coefficients
{
au

0 , . . . , a
u
p

}
, one has to solve the following maximum

likelihood optimization problem:

au∗
= arg min

au∈Rp+1
(− ln fY (y1, . . . , yq|au)) = arg min

au∈Rp+1

(
−

Q∑
q=1

ln fY (yq|au)

)
(12)

3.3 Computational aspects

The above relation refers to an unconstrained optimization problem which has to be solved with
a well-suited algorithm. Classical quasi-Newton methods need explicit gradient information,
usually obtained by the use of finite differences. In the present case, choosing an appropriate
step size for approximating the gradient function by finite differences is quite delicate. Indeed,
the function to be minimized in this study (related to Eq.(12)) may be very sensitive to the step
size chosen for the polynomial chaos coefficients au that have to estimated.

Practically speaking,the usual gradient-based algorithm fail to converge due to the fact that
the function to optimize present flat regions. The CONDOR (COnstrained, Non-linear, Direct,
parallel Optimization using trust Region method for high-computing load function), developed
by Vanden Berghen and Bersini (2004), appears to be useful in the present case. This optimiza-
tion technique refers to a special class of optimization algorithms, named Trust-Region meth-
ods. These methods construct local models (linear or quadratical approximations in CONDOR
built using multivariate Lagrange interpolation) in a ball of predefined radius. A local model
approximates the function of interest, using the least number of function evaluations. The solu-
tion is obtained by reducing the trust region radius of the sampled space in each iteration of the
algorithm.

Another computational challenge leads in the evaluation of the integral defined in Eq.(10).
One can use Monte-Carlo simulation but it is not attractive since it requires a large number
of samples of the mechanical model M, which may be a problem when using high-time-
computing model (e.g. finite element codes). As an alternative, Gaussian quadrature schemes
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(Abramowitz and Stegun, 1970) may be used to evaluate the integral. Thus, Eq.(10) may be
computed by:

fY (ymes|au) ≈
K∑

k1=1

. . .

K∑
kN=1

wk1 . . . wkN
fY |ξ (ymes|ξk1, . . . , ξkN

, au) (13)

Both Monte-Carlo simulation (MCS) method and the Gauss-Hermite are applied and compared
in the following application example.

4 Application example: simply supported beam submitted to midspan load

4.1 Mechanical problem statement

This example application deals with the probabilistic identification of the midspan load F ap-
plied to a series of identical simply supported bending beams (Fig.1).

Figure 1: Bending beam submitted to midspan load

In the case of a simply supported beam, the maximal deflection is given by:

zmax = M (F, L, E, I) =
FL3

48EI
(14)

where L is the beam length, E is the Young’s modulus and I = bh3/12 is the moment of inertia
which, in case of rectangular cross-section, depends on the width b and height h of the beam.

4.2 Probabilistic model

It is assumed that the only random parameter of known PDF is the Young’s modulus E. Pa-
rameters related to the geometry of the beam are supposed to be deterministic (L =1 m,
b = h =0.1 m). The point of this application example is to identify the PDF of random
variable F , i.e. to compute its PC coefficients. The proposed maximum likelihood estimation
method is applied using an experimental database made of Q samples and associated measured
deflections.

In the real world, such a database would be obtained by a comprehensive experimental
program, e.g. inspection of a series of identical beams in a complex structure (bridges, packing
of cooling tower, etc.). For the sake of illustration, the database is built here by Monte-Carlo
simulation of the beam model M and by adding a measurement noise sampled from a zero-
mean Gaussian random variable with standard deviation σe = 0.005 m. In these simulations, it
is assumed that the load follows a Weibull distribution with mean mF = 10, 000 N and standard
deviation σF = 1, 200 N. The aim of the application example is to compute the optimal PC
coefficients of F and show that the associated PDF is closed to the one used to set up the
database.
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4.3 Results

The proposed maximum likelihood method has been applied to two databases of measured
deflections, comprising 100 and 1,000 samples respectively. In each case, the integral defined
in Eq.(10) has been computed using 10,000 Monte-Carlo samplings and the Gauss-Hermite
quadrature approximation using 5 (resp. 10) integration points.
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Figure 2: Identified probability density functions for the two databases

Plots of the three identified PDFs (approximated by a kernel PDF representation (Wand and
Jones, 1995)) are shown in Figure 2, where the kernel PDF of the database is also plotted. It
appears that identified PDFs of the load F are close to the histogram of the deflection database
in each case.

As expected, the identified PDFs are improved when using a larger experimental database
(Q = 1, 000), as seen from Figure 2(b). The quadrature method (with 10 integration points) re-
quires 102 = 100 model calls and is rather accurate on this example at a cost which is 100 times
less expensive than MCS.

Table 1: Estimates of four first statistical moments

Identification (Q = 100)
Moments Samples

MC (K = 10, 000) Quad (K = 5) Quad (K = 10)
Mean m̂ 9785.8 9761.7 9713.7 9774.8

Standard deviation σ̂ 1202.5 1205.7 1168.1 1151.7
Skewness δ̂ -0.486 -0.492 -0.317 -0.615
Kurtosis κ̂ 2.832 3.137 2.664 3.453

The four first statistical moments of the load F are further computed from the identified PDF.
Estimates obtained from the PCE coefficients computed by one of the three integration methods
(MCS with 10,000 samples, quadrature method with K = 5 (resp. K = 10) integration points)
are reported in Table 1. The empirical moments of the database of F (which is in a real problem
unknown, and represents in this application example the target to recover) are also given in
Table 1, column #1 for the sake of comparison.

As far as the approximated mean is concerned, the MCS approach yields a relative error
εm̂ = 0.4 % with respect to the database mean value whereas relative errors of 0.7 % and 0.1 %
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are associated to the 5-point and 10-point quadrature schemes respectively. The MCS estimate
of the standard deviation is much closer (εσ̂ = 0.3 %) to that of the database than those provided
by both quadrature schemes (εσ̂ = 3.0 % and 4.5 % respectively). A similar trend is observed
for the higher order moments.

5 Conclusion

A method for solving a probabilistic inverse problem using polynomial chaos decomposition
of unknown input parameters is proposed. The method is based on the use of the maximum
likelihood estimation to identify unknown polynomial chaos coefficients. The optimization
problem is solved using appropriate computational methods: the maximization of the likelihood
is performed using a trust-region optimization algorithm called CONDOR. The evaluation of
the conditional PDF of an observation is carried out using the Monte Carlo simulation method
or a Gauss-Hermite quadrature scheme.

The proposed method is applied in order to determine the variability of the loading applied
to a series of similar simply supported beams. Both Monte Carlo simulation and quadrature
methods give accurate results on estimating the PDF of the applied loading. Consequently, this
method seems to be an efficient alternative to a Bayesian framework when identifying unknown
input random model parameter from response measurements, in the case when the database at
hand is sufficiently large.
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