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Abstract Systems that exhibit complex behaviours are often found in a particular dynamical con-

dition, poised between order and disorder. This observation is at the core of the so-called criticality

hypothesis, which states that systems in a dynamical regime between order and disorder attain the

highest level of computational capabilities and achieve an optimal trade-off between robustness and

flexibility. Recent results in cellular and evolutionary biology, neuroscience and computer science have

revitalised the interest in the criticality hypothesis, emphasising its role as a viable candidate general

law in adaptive complex systems. In this paper we provide an overview of the works on dynamical crit-

icality that are—to the best of our knowledge—particularly relevant for the criticality hypothesis. We

review the main contributions concerning dynamics and information processing at the edge of chaos,

and we illustrate the main achievements in the study of critical dynamics in biological systems. Finally,

we discuss open questions and propose an agenda for future work.
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1 Introduction

The peculiar properties of critical systems are at the roots of a conjecture stating that
systems in a dynamical regime between order and disorder optimally balance robustness and
adaptiveness, and reliably respond to inputs while being capable to react with a wide repertoire
of possible actions. This conjecture was proposed by Kauffman [40, 41] with main focus on living
systems and by Packard, Langton and Crutchfield [65, 49, 20] who introduced the expression
“computation at the edge of chaos”. In the last ten years, results have been presented providing
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evidence to support this conjecture in cellular biology and neuroscience. These results are not
only encouraging, but they also suggest that the criticality hypothesis may play the role of a
general law in adaptive complex systems dynamics. Nevertheless, recent works also enlighten
some issues that have to be tackled so as to provide a solid formulation of the conjecture and
fruitfully exploit it in both modelling biological systems and designing artificial ones.

In this work, we provide a literature overview of this conjecture, selecting those works
that are, to the best of our knowledge, particularly significant and we illustrate the main
scientific questions addressed, along with open perspectives. It is important to observe that
the term critical is used with slightly different meanings; in this review we will focus mainly on
dynamical criticality, sometimes called “the edge of chaos”. This paper is organized as follows.
In Section 2 we summarise preliminary notions on phase transitions and critical phenomena.
Section 3 illustrates the main works concerning dynamics and computation at the edge of chaos.
The criticality hypothesis is discussed in Section 4 and in Section 5 we discuss the state of the
art and open questions. Section 6 concludes the work and outlook future work.

2 Criticality and phase transitions

Critical states have been first introduced in the theory of phase transitions, that describes
phenomena in which a system undergoes a sharp change in some of its macroscopic properties
if a suitable control parameter is changed [12, 81]. The macroscopic properties of the system
are usually defined in terms of an order parameter. For example, let us consider the famil-
iar transition of H2O from water to gas: the point at which the transition occurs is said to
be the critical point [80]. The phase change requires some energy, called latent heat, which
characterizes all the phase transitions of this kind, which are sometimes called first-order phase
transitions because it is the first derivative of the thermodynamic free energy (i.e. the order
parameter) that is discontinuous at the transition point. There are also extremely relevant
cases, where the order parameter changes continuously but some of its first-order derivatives
change abruptly: these phase transitions are named second-order phase transitions because
the discontinuity affects the second derivatives of the free energy. However, it has been found
that this distinction, which dates back to Paul Ehrenfest, has some limitations and it is often
overlooked. A typical example of second-order phase transition is that of iron changing from
paramagnetic to ferromagnetic state. When the temperature T is greater than the so-called
Curie temperature Tc = 1043 K, iron is paramagnetic. If an external magnetic field is imposed,
then the overall magnetization M of the material is proportional to the intensity of the exter-
nal field. Conversely, for T < Tc the material is magnetized even in the absence of an external
field, to which it will tend to align if it is applied. In this case, heating iron from low to high
temperature the magnetization simply goes to zero, without any sharp change. However, what
changes discontinuously is the magnetization rate, which changes discontinuously at T = Tc.

The importance of phase transitions, especially the second-order ones, is due to some notable
properties of the critical point.

The first property is universality. It has been observed that order parameters can be de-
scribed with power laws at the critical point. For example, in the proximity of the critical
temperature Tc, the magnetization M can be expressed as M ∼ (T − Tc)−β , where β > 0 is
called the critical exponent. Surprisingly, the values of the critical exponents are indifferent to
the details of the system and they have the same value for wide classes of systems, characterized
by common topological and dimensional properties. Therefore, it is possible to classify systems
subject to phase transitions in terms of universality classes, defined on the basis of the values
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of the critical exponents.
A second important property is that the influence between distant portions of the system is

maximal at the critical point. More precisely, the average correlation length Γ, which measures
the statistical correlation between any pair of elements in the system, follows a power law:
Γ ∼ (T − Tc)−ξ, with ξ > 0. As a result, for finite systems the correlation between any pair of
elements is maximal at the critical point.

Power laws assume a prominent role because they characterize the relevant quantities of the
system at the critical point. For example, in a ferromagnetic model composed of atoms that
can assume one out of two spins (−1,+1), the distribution of clusters of homogeneous spins at
the phase transition is described by a power law. This property does not hold if the system is
away from the critical point. Moreover, it has been observed that the power spectrum of some
key quantities decays as a power of the frequency, instead of showing the familiar exponential
behaviour (the effect is sometimes called 1/f noise, although different powers of frequency may
be involved).

Finally, the response of a system to external perturbations scales as a power law at the
critical point; as a consequence, there is no characteristic scale of response to perturbations.
Conversely, when the system is far from the critical point, the effect of perturbations can be
expressed in terms of distributions with a characteristic scale. It is also worth to mention the
phenomenon of critical slowing down [91], which consists in an asymptotically long time for a
critical system to absorb the perturbation.

Phase transitions are usually studied by means of mean-field theory and renormalisation
group theory [12]. Recently, also techniques from information theory and information geometry
have been successfully applied, as well as approaches that use Fisher information [34, 93, 68, 67].

Phase transitions occur at precise values of the control parameters. Therefore, it is natural
to ask the question as to why so many natural systems seem to settle exactly around the critical
point, without a careful tuning of such parameters. One of the most successful attempts to
answer this question comes from the models of self-organized criticality, SOC [6, 4, 35]. SOC
systems tend spontaneously to “self-organized critical states”, like in the case of the well-known
sandpile model by Bak and co-workers. These states are called critical because they exhibit
some of the characteristics observed at critical points, the most important one being a power-law
behaviour of the fluctuations. The relations between SOC and the theory of phase transitions
and criticality has been also investigated [83, 24, 2, 56]. SOC is certainly relevant for the study of
complex systems, but in this review we are mainly concerned with the phenomenon of dynamical
criticality: in this case, there are qualitatively different dynamical behaviours corresponding to
different parameter values, and the critical points (or surfaces) separate regions in parameter
space that correspond to different behaviours. This notion of criticality thus represents a
straightforward generalization of the one that is used in describing phase transitions. The most
interesting case is the one where there are regions of chaotic behaviours and regions of ordered
(constant in time or regularly oscillating) behaviours. This case has also been called for quite
obvious regions “the edge of chaos” and it will be the subject of the following sections.

It is important here to recall here the notion of ordered and disordered dynamical regimes
of a system. A dynamical system in an ordered regime is characterized by stationary states
that do not change in time, or that oscillate regularly. Moreover, when a system in the ordered
regime is perturbed, the effect of such perturbation dies out. In a sense, systems in the ordered
regime are robust and resilient against perturbations. Conversely, in a system in a disordered
regime the effect of even a small perturbation spreads across the whole system. The steady
states of a disordered system have no regular patterns and may appear as completely random.
However, also deterministic systems can show disordered regimes, as in the case of chaotic
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dynamical systems, which have strange attractors [85]. The hallmark of chaotic dynamics is
an extreme sensitivity to initial conditions: slightly different initial conditions lead to expo-
nentially fast divergent trajectories (even if both belonging to the same strange attractor). In
the following, with a slight abuse of terminology, we will use the terms disordered and chaotic
interchangeably. Critical systems are intermediate between these two cases and their steady
states are characterized by a mixture of properties from ordered and disordered systems. In
addition, when subject to external stimuli, the size of the perturbation remains constant on av-
erage for long time. The change between order and chaos is also related to symmetry breaking
and self-organization [30, 61, 62, 66].

3 Computation at the edge of chaos

The peculiar properties of critical systems enlightened in thermodynamics and statistical
physics are at the roots of a conjecture stating that systems at the phase transition achieve
the highest level of computational capability. The rationale behind this hypothesis is that or-
dered regimes are too rigid to be able to compute complex tasks, as changes are rapidly erased
and the flow of information among the units of the system is rather low. Conversely, disor-
dered regimes are too erratic to provide a reliable response to inputs, as perturbations and
noise spread unboundedly, preventing effective information transmission and storage. Critical
regimes may indeed provide the optimal trade-off between reliability and flexibility, i.e. they
make the system able to react consistently with the inputs and, at the same time, capable to
provide a sufficiently large number of possible outcomes.

This conjecture has been first proposed by Packard [65], Langton [49] and Crutchfield [20]
who introduced the expression “computation at the edge of chaos”. Langton studied the dynam-
ical properties of cellular automata (CA). CA are systems composed of finite state automata,
a.k.a. cells, arranged in a D-dimensional lattice. Each cell takes as inputs the states of the
cells in a given neighbourhood. The transition function is supposed to be the same for all the
cells. The simplest case is that of deterministic binary 1-dimensional CA, with neighbourhood
composed of adjacent cells that update their state synchronously. Despite their apparent sim-
plicity, these CA were shown to exhibit nontrivial behaviours, classified by Wolfram [92] into
four classes: the first two classes are characterized by “ordered” CA, which evolve in time reach-
ing a homogeneous state (Class 1) or a set of stable or periodic structures (Class 2). Class 3
is composed of CA showing a chaotic behaviour, i.e. sensitive to perturbations in the initial
conditions. Finally, class 4 shows complex behaviours, exhibiting complex patterns in its time
evolution. Langton defined a parameter, λ, that quantifies the equidistribution of states in the
transition function: for λ = 0, all transitions lead to one given state, whilst for λ ≈ 1 all the
possible transitions are equally represented in the transition function. Langton showed that
λ can play the role of a control parameter for CA and that the behaviour of CA moves from
ordered to disordered as λ increases approaching 1. The transition from order to disorder takes
place for λ ≈ 0.5 and is associated to properties of a second-order phase transition: critical
slowing down, transients can be described with a power law and the average mutual informa-
tion between cells is maximal. Remarkably, the critical value of λ corresponds to transition
functions belonging to class 4 according to Wolfram. It has also been shown that some CA in
Wolfram class 4 are capable of universal computation, i.e. they are computationally equiva-
lent to universal Turing machines (see, e.g. [18]). As a consequence, Langton conjectured that
complex computational capabilities are attained at the phase transition.

Langton’s conjecture finds a first principled theoretical support in the work by Crutchfiled
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(see, e.g. [20]) in which the intrinsic computational properties of a system are estimated on the
basis of stochastic automata. Given the system under observation, a data stream of its time
evolution is used to build an ε-machine, which is a minimal stochastic automaton describing
the data stream. Therefore, no information on the system is required, except for the possibility
of measuring the values of its relevant variables for a sufficiently long time interval. Crutchfield
showed that the size of the ε-machine diverges for systems at the phase transition, such as
logistic maps at the onset of chaos [85].

The relation between evolution and criticality in CA has been first investigated by Packard [65]
and subsequently inside the EvCA Project [59, 33]. An interesting finding of those studies is
that the evolution of CA does not necessarily lead to the edge of chaos, as it might depend upon
the evolutionary algorithm and the fitness function. This subject will be extensively discussed
in Section 5.

The conjecture that critical systems achieve the highest level of information processing is
supported by observing that in systems that undergo a phase transition information measures
that are relevant for computation are maximized at the critical point. For example, Sol and
Miramontes show that in an agent-based model in which agents move over a grid there exists
a critical boundary in parameter space where maximum information transfer occurs [82]. The
study suggests that also natural systems composed of many interacting units—such as ant
colonies—which have to coordinate so as to attain nontrivial goals, may have evolved towards
critical dynamical regimes.

Information-theoretic measures [19] have been thoroughly applied with the aim of providing
evidence for this hypothesis. Some of these results concern Boolean networks (BNs), which will
be often mentioned in this contribution for their relevance in this context. BNs were introduced
by Kauffman [38, 40] as a genetic regulatory network model and they have been shown to re-
produce significant properties of complex systems. Some notable properties of BNs as models
of genetic regulation will be surveyed in the following sections. Here, we briefly introduce them
so as to summarise the basic notions for assessing the results on BNs computational proper-
ties that will be reviewed. BNs are networks of binary automata, ruled by Boolean transition
functions, which in general may be different for each automaton. Usually, an automaton in
the network is called node. For a BN with N nodes x1, x2, . . . , xN , the N -ple of node values
[x1(t), x2(t), . . . , xN (t)] at time t represents the state of the network at time t. Nodes are sup-
posed to update their state at discrete time steps. In the case of synchronous deterministic
dynamics, there is only one successor for each network state, therefore the network starts from
an initial state and evolves in time until it encounters a state already visited∗ and then it re-
peats the same sequence of states. This sequence is called cycle or attractor. A special case is
represented by cycles of length 1, usually called fixed points. The portion of the BN trajectory
before the cycle (which can be empty) is called transient. The set of initial states that lead to
a given attractor A is called the basin of attraction of A. The most prominent class of BNs
is that of Random BNs (RBNs), in which functions and connections are chosen according to
pre-defined distributions. A special case is the one in which nodes receive exactly K distinct
inputs chosen at random among the other nodes and each transition function is defined by
composing the truth table assigning a 1 to each of the 2K entries with probability p (called
bias). Nodes update their value in parallel and synchronously. RBNs show a phase transition
between order and chaos depending on the values of K and p [22, 78]. For 2p(1 − p)K < 1
RBNs have on average an ordered behaviour, whilst for 2p(1 − p)K > 1 the networks show
extreme sensitivity to initial conditions and very long cyclic attractors, which denote a chaotic

∗Under the hypothesis that N < ∞
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behaviour. For this BN model, the critical regime is achieved for 2p(1−p)K = 1, which describes
a curve in the (K, p)-plane, called the critical line. In addition, there exist also other ways to let
BNs attain a critical regime, such as the choice of boolean functions with specific characteristics.

The transition between order and chaos in RBNs has been extensively studied by means of
information-theoretic measures. Rämö et al. [70] propose to use the Shannon entropy of the
perturbation size distribution in RBNs as a measure for information propagation: this measure
is maximized at the phase transition. Intuitively, this results supports the hypothesis that
critical systems have the largest repertoire of information propagation actions, without incurring
in chaotic behaviours. Ribeiro et al. [72] compute the average pairwise mutual information
between nodes at subsequent time steps. The mutual information between two random variables
measures the amount of information that the knowledge on one variable carries about the
other. The mutual information between two nodes at subsequent time steps estimates the
information transfer between nodes. Ribeiro et al. show that this measure is maximized
along the critical line. Therefore, critical RBNs seem to attain a more efficient information
transfer mechanism than that of ordered and chaotic RBNs. Krawitz and Shmulevich [47]
study the distribution of basins of attraction size in RBNs and find that the Shannon entropy
of this distribution scales with system size only along the critical line, suggesting that the
informationally optimal partition of the state space is indeed attained when the system is
operating between order and chaos. As a consequence, only in critical RBNs size can scale
with the capability of performing increasingly diverse and coordinated behaviour. Further
evidence for the computational capabilities of critical RBNs is provided in [28, 58], where set-
based complexity is considered; this quantity measures the amount of significant information
embedded in a set of elements. For example, let us take binary sequences of length N. A set
of identical sequences carries negligible information (as redundancy is maximal) and the same
holds for a set of completely random sequences, which carry no structure whatsoever. Galas et
al. [28] compute the set-based complexity of trajectories of RBNs and show that this quantity
is maximized for critical RBNs.

A principled approach for studying the computational capabilities in dynamical systems
is provided by Lizier in his Ph.D. thesis [54]. The work by Lizier is particularly important
because it makes it possible to quantitatively address some conjectures on the computational
capabilities of complex systems. He studies information processing in terms of information
storage, modification and transfer by using information-theoretic measures. A notable result
concerns RBNs, for which information storage and transfer are studied across the dynamical
regimes. Lizier and collaborators find that the dynamics of ordered RBNs is dominated by
information storage, which increases moving towards the edge of chaos and then it decreases
after the critical line. Information transfer also increases from order to disorder and peaks
just inside the chaotic regime, thus disrupting the information storage capability. RBNs in
the critical regime attain the optimal balance between these two capabilities [55]. As genetic
regulatory mechanisms are often modelled by means of RBNs, these findings suggest that
biological cells indeed evolved towards criticality so as to maximize coherent yet expressive
computation.

To conclude this succinct survey on information processing in critical RBNs, we mention the
fact that critical RBNs maximize Fisher information, which is known to be maximal in order
parameters for systems at the phase transition [93].

The relation between critical regimes and computational capabilities has been studied also
in systems other than CA and BNs. Kinouchi and Copelli [46] propose a model of interacting
neurons with random topology. A neuron can be in one out of three states: active, inactive



DYNAMICAL CRITICALITY 7

and refractory. Each neuron can be activated either owing to an external stimulus or via the
action of a neighbouring neuron active at the previous step, with probability pij . Neurons are
connected randomly (forming an Erdös-Rény graph) and connection weights pij are random
variables with uniform distribution, with pij = pji.

† The overall activity of the system is
measured as density of active nodes, i.e. the fraction of active neurons. Kinouchi and Copelli
show that this model has a phase transition in the density of active nodes as a function of
the average branching, which averages the weights of the network. For low average branching
ratios, the extinction times of perturbations are low, whilst for high values of branching ratio
the network indefinitely self-sustains the perturbation. Notably, critical networks have the
largest variance in the distribution of extinction times and present a power law behaviour
in the distribution of avalanche sizes. Bertschinger and Natschläger [11] study networks of
randomly connected threshold gates and show that they exhibit a transition between ordered
and disordered dynamics depending on the connectivity of the network. The networks found
at the edge of chaos are those able to perform complex computations on time series. A similar
result is presented in [50], where networks of spiking neurons are studied.

The findings previously surveyed support the hypothesis that reliable and flexible computa-
tional capabilities are a general property of critical dynamical systems. Further evidence comes
from the field of optimization, where some results suggest that also the best problem solving
capabilities are attained at a phase transition, at the edge of chaos. In particular, it has been
shown that the performance of local search algorithms is maximized when a parameter con-
trolling the parallelism of local moves is properly tuned [57, 44, 73]. Macready et al. [57] have
shown that this value is indeed critical and corresponds to a phase transition in the entropy of
the system.

4 Critical living systems

It has been conjectured that systems in critical regime have advantages over systems totally
ordered or disordered and that this condition is achieved during evolution. Inspiring discussions
on this subject can be found in works by Kauffman [40, 41], where this tantalizing hypothesis is
proposed and discussed, along with preliminary yet significant results. According to Kauffman,
systems at the edge of chaos attain the best balance between robustness and adaptiveness; fur-
thermore, they are able to “coordinate past discriminations with reliable future actions” (quoted
from [42]), i.e. they reliably and robustly respond to inputs while being able to react with a
wide repertoire of possible actions. In the last ten years, compelling results have attracted
much interest and revitalized research on the subject. Some researchers have addressed the
question as to whether cells are critical, achieving notable results [69, 77, 76, 79, 71, 63, 7, 16]
by comparing statistical properties of ensembles of genetic regulatory network models with sta-
tistical properties of real cells. The rationale of these approaches relies in the comparison of
statistical properties of ensembles of biological genetic networks and RBNs or similar models:
the best fit is attained when the models are drawn from a distribution in which the parameters
assume the critical value, i.e. the one that separates the ordered from the disordered phase.
This is indeed the method used to identify dynamical criticality: a model of the system is
built and its dynamical regimes are studied as a function of one or more control parameters.
Data from ordered and disordered regimes are collected, as well as data at the border between
the two regimes. The data produced by the model are then compared: if the best match is
achieved when model parameters have the critical value, then evidence for the criticality of the
real system is found. In particular, the work by Serra and collaborators [69, 77] deals with

†The symmetric coupling is chosen with the purpose of modelling electric gap junctions.
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avalanches in the expression of genes produced by gene knock-out. They show that critical
RBNs are the ones achieving the best fit with real data from microarray experiments on the
S. Cerevisiae. A crucial role in that work is played by the so-called Derrida parameter ζ, which
is an index of the dynamical regime of discrete systems like BNs [41]. For ζ < 1 a single node
perturbation affects in one step less than one other node on average (ordered regime), whilst
for ζ > 1 the perturbation reaches more than one other node in one step (disordered regime);
the condition ζ = 1 identifies the critical regime. In [77, 23] it is shown that the distribution
of avalanches depends only on the Derrida parameter and that the best match between data
from S. Cerevisiae and RBNs is achieved for a value of ζ slightly less than 1; other values of
ζ would lead to quite different avalanches distributions. This result is in agreement with the
ones attained by Shmulevich et al. [79] who compare the Lempel-Ziv complexity [51] of data
stream generated by a genetic regulatory network model of the HeLa cells with that of RBNs
in different regimes. They find that critical or slightly sub-critical RBNs are those with the
best correspondence with biological data. A similar approach has been followed by Nykter et
al. [63], who compared time series of macrophages and of RBNs by means of the normalized
compression distance [52] and show that the best fit is attained with critical RBNs.

Balleza et al. [7] show that genetic regulatory network models of several organisms are
critical, to the extent that, when perturbed, their behaviour is the same of critical RBNs.
Chowdhury and collaborators [16] infer a BN model describing the S. Cerevisiae and find that
the resulting BN has some characteristics of critical networks. Analogous results are shown by
Darabos et al. [21], while Hanel et al. [31] show that even a simple genetic regulatory model
containing a minimal nonlinear contribution can be tuned at the edge of chaos, suggesting that
many models can indeed enjoy the same property. Finally, indications about the presence of
critical values in natural cells are also provided in [37].

These results are not conclusive, but they anyway support the hypothesis that biological
cells are in a dynamical regime between order and chaos.

Besides cells, also other biological systems have been studied and the results suggest that
they may enjoy the same property. A striking example is that of neural dynamics: notable
results and models have been proposed in neuroscience, such as the ones discussed in [8, 15,
27, 86]. These results bring evidence to the hypothesis that brain dynamics is critical, as
they show power law in the distribution of avalanches only when neurons are at the normal
activity condition, whilst they behave differently when they are kept over or under activated.
As stressed in [9], these findings suggest that the brain is indeed dynamically critical, i.e. it is
poised between an ordered and a disorder regime.

Critical dynamics has also been found in models of flocks of birds [60] and in morphogenetic
processes [48].

It is worth to mention that the notion of “extended critical situations” has been proposed to
describe the case of living systems [3]. The intuition of this proposal is that biological entities
permanently keep themselves in a region of criticality, rather than a point.

Experiments on real biological systems and results on models provide strong evidence to
support the “criticality hypothesis”. Yet, the reasons why biological systems seem to be poised
between order and disorder are still unclear and somehow elusive. Indeed, there are two main
noncontradictory views of this conjecture:

(i) Critical systems are more evolvable than systems in other dynamical conditions because
they optimally balance mutational robustness (i.e. mutations just slightly change the pheno-
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type, without introducing dramatic changes) and phenotypic innovation (i.e. mutations can
introduce significant novelty in the phenotypes).

(ii) Critical systems have fitness advantages over ordered or disordered ones, as they attain
the most effective balance among information storage, modification and transfer, and achieve
the best trade-off between the repertoire of their possible behaviours and the reliability of their
actions.

Several attempts have been made for providing support to the conjecture, in either version.
All these works share a similar approach, which consists in studying the artificial evolution of
some model, such as Boolean networks. We remark that in this survey we are interested in
those works directly addressing the criticality hypothesis, rather than the evolution of notable
properties such as robustness, adaptivity, modularity or specific topological features.

Aldana et al. [1] address the problem of the relation between robustness and evolvability
and provide evidence to support that critical BNs achieve an optimal balance between these two
properties. The work by Torres-Sosa et al. [87] strengthens this result by analysing the outcome
of an artificial evolutionary process. In their work, RBNs are subject to artificial Darwinian
evolution operating by means of mutation and gene duplication. Selection favours networks
that are able to both (a) maintain the current “phenotypes” (i.e. attractors) and (b) generate
new ones. The authors show that this evolutionary process drives RBNs towards the edge of
chaos. Further evidence to the evolvability of critical RBNs is provided in [64] where RBNs
at the edge of chaos are shown to be maximally diversified in their structure. Similar results
concerning the diversity among attractors in critical RBNs have been presented in [75].

A key factor in the relation between robustness and evolvability is the fitness landscape on
which the evolutionary process acts. In a seminal work, Kauffman and Smith [45] investigated
the relation between the parameters of RBNs (connectivity and bias) and the properties of the
evolution landscape. This link has been investigated explicitly w.r.t. the criticality hypothesis
in [10], where it has been shown that not all the tasks for which a BN is trained necessarily
lead to a critical regime. In fact, on the one hand the dynamics of a RBN influences its mu-
tational robustness and its phenotypic plasticity, but on the other hand it may happen that
the properties of the fitness landscape are dominated by the kind of task for which networks
are selected. This is indeed a crucial point in the criticality hypothesis, which has not yet
sufficiently investigated and that will be discussed in Section 5. The interplay between selective
pressure and dynamical regime of RBNs has also been investigated in a co-evolutionary settings
in [39]. In [43] an abstract model of species co-evolution is studied, in which the landscape of
one species changes the landscape of the other during the evolutionary process. In particular,
the NK-model is used [41]. Results suggest that evolution leads to an equilibrium in which
evolutionary avalanches appear to propagate on all length scales in a power law distribution.
Christensen et al. [17] study the evolution of random networks of interacting elements (a model
similar to the NK-model) under extremal dynamics [5] and find that the evolutionary process
lead to networks with critical connectivity. Analogous results are presented in [13] and [53] for
threshold networks and co-evolving RBNs, respectively.

The second stream of studies concerns the investigation of the evolutionary advantages of
critical systems owing to their enhanced computational capabilities. Goudarzi et al. [29] observe
that RBNs evolved to be able to solve combinatorial tasks of varying hardness (e.g. binary
addition and even-odd classification) converge to populations of critical networks. Indeed, such
BNs exhibit a damage spreading behaviour typical of critical RBNs. The discrepancy between
that work and [10] suggests that the choice of the fitness function may play a major role in
the outcome of the experiments and provides indications for further investigations. Hidalgo
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et al. [32] study the evolution of agents whose behaviour is modelled by means of probability
distributions over their possible actions. The fittest agents are those which best react to the
external stimuli. Agents have internal parameters controlling their actions distribution, which
should match the stimuli distribution of the environment. Three scenarios are studied: (1)
agents face a static environment; (2) agents face a variable environment, composed of many
different stimuli sources; (3) agents interacts among themselves, so the environment for an agent
is composed of the other agents. The evolutionary process acts on the parameters of the agent
action probability distribution. Results suggest that the critical regime is a stable evolutionary
solution when agents try to optimize their interaction with a changing environment or among
themselves, whilst for low complexity environments the systems tend to remain non-critical.
This result reinforces the hypothesis that criticality is an evolutionary advantage only under
some conditions, which may involve variability, dynamicity and complexity.

5 Discussion

Despite the promising results achieved so far on the criticality hypothesis, some important
issues and open questions have still to be addressed.

First of all, different definitions of critical system have been used in the literature. For
example, most definitions of criticality rely on the properties of the effect of perturbations on
the systems, but the condition of the systems when perturbed and how to measure the effects of
perturbations are often implicit [14, 88]. This makes the ground of the discussions slippery and
might induce unsound conclusions. In order to test the criticality hypothesis, it is necessary to
state it in more precise terms. As discussed in Section 2, in general criticality is related to the
average behaviour of a small perturbation of a system state. Critical systems are intermediate
between ordered and disordered ones, so the size of the perturbation remains initially constant
on average. Note however that when we consider the “average” behaviour of a perturbation we
may actually refer to different types of ensembles over which the averages are taken. Failing
to appreciate these differences may lead to misunderstandings and erroneous conclusions, as it
has been demonstrated [14, 88]. Averages can be taken for example on a particular instance of
the system under examination (i.e. keeping fixed the form of equations and the values of the
parameters); in this case the average can be taken either over all the possible initial conditions
or over the different initial conditions that lead to the same attractor (i.e. a state or a set of
states that are reached from some initial condition after the transients have died out). However,
it has been shown that averages taken over completely arbitrary initial states can be misleading,
as some of these states might be impossible to reach under any conditions. It is therefore inter-
esting also to consider a restricted set of initial conditions, for example limiting to those that
can be the successor of another (arbitrary) state. Moreover, it is also interesting to consider
averages taken only over the states that belong to a specific attractor, or over the states that
belong to an attractor (whichever it is). Last but not least, it is important to consider also
ensembles of systems with different parameter values. We will refer to this kind of averages as
to the structure ensemble averages, that can be taken according to the same different alterna-
tives that have been described above for the case of a single instance of the system. As it has
been observed, criticality is related to the average behaviour of a small perturbation, and the
different ensembles induce different (but related) definitions of criticality. This notion has been
quantified in that of sensitivity for discrete dynamical systems and BNs in particular [78]. The
sensitivity of a Boolean function measures how sensitive the output is with respect to changes
in the inputs. Sensitivities can be computed on the various ensembles mentioned above, and the
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size of the ensembles over which averages are taken naturally leads to a hierarchy of sensitivities.

The identification of the conditions under which evolutionary dynamics favours critical sys-
tems is still a fundamental open question. As previously mentioned, recent works have addressed
this point [10, 32], but this issue still requires a thorough and principled investigation. In par-
ticular, this requires the definition of a function that measures the effectiveness with which a
system accomplishes a given task, i.e. a fitness function. Generally speaking, in the case where
dynamics is dominated by attractors, the different attractors will define, for a given system and
set of parameter values, its dynamic repertoire, i.e. the different states that it can reach starting
from various conditions. Therefore the fitness function will often be related to the attractor
landscape. We expect, on the basis of reasonable guesses and of previous studies, that critical
systems will not always be preferred, since the outcome depends upon tasks features (see [10]).
Therefore the goal is indeed quite complicated, as it amounts to finding out for which kind of
tasks critical systems are better. Our guess is that this is more likely to happen in time-varying
complicated tasks. The different types of tasks should therefore be categorized in a proper
way, in particular by the value of some parameters that describe the main characteristics of the
fitness landscape (e.g. correlation lengths) and of its own dynamics (e.g. the rate of change
and its amount).

The last observation is tightly related to the connection that the system has with its envi-
ronment and the way by which it interacts with it. Indeed, the importance of the environment
on system criticality and of the openness of the systems are often overlooked. In addition, the
relation among evolution, adaptation and learning is often just informally addressed. All these
issues are in fact relevant for the identification of the conditions under which systems evolve
towards critical regimes and to understand the reasons of this phenomenon.

A further issue that has not yet been discussed above concerns artificial systems: if critical
dynamical systems have evolutionary advantages in nature, then this property may also hold
for artificial systems, such as learning ones. Therefore, enforcing dynamical criticality or corre-
lated properties may provide a general criterion for the automatic design of such systems. This
would complement the usual approach consisting in defining ad-hoc and task dependent fitness
functions in evolutionary techniques. Some preliminary work has been done aimed at investi-
gating the relation between fitness and some information-theoretic measures [84, 25, 36, 74],
but without explicitly considering dynamical criticality. On the one hand, the exploration of
this idea may pave the way for devising advanced methods both for learning techniques and
system design, pushing the envelope on the design of autonomous open systems. On the other
hand, it would contribute to deepen our knowledge on the criticality hypothesis itself.

Last but not least, it is important to observe that the question as to whether critical systems
share some common properties in their internal organization has not yet been addressed. It has
been shown that information-theoretic measures make it possible to detect dynamical structures
in complex systems [90, 26, 89]. The method is based on a measure called the dynamical
cluster index and can detect subsets of variables that are tightly integrated among themselves
and loosely interacting with the rest of the systems. Therefore, this method may provide an
effective tool for identifying common characteristics in the organization of critical dynamical
systems, in which the structure and hierarchy of relevant subsets are expected to be different
from those in ordered and disordered regimes.
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6 Conclusion

In this paper we have provided an overview of dynamical criticality, as it is discussed in the
natural sciences and computer science. Evidence of a dynamics between order and disorder has
been found for systems such as biological cells and the brain; moreover, notable results support
the conjecture also computational systems across the critical regime are capable of attaining
an optimal trade-off between reliability and flexibility. We have also briefly outlined some
open questions on dynamical criticality that have still to be addresses, concerning foundational
aspects and possible applications in artificial systems design.
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[58] T. Mäki-Marttunen, J. Kesseli, S.A. Kauffman, O. Yli-Harja, and M. Nykter. Of the
complexity of boolean network state trajectories. In In Proc. of WCSB 2011. 2011.

[59] M. Mitchell, J.P. Crutchfield, and P.T. Hraber. Dynamics, computation, and the “edge of
chaos”: A re-examination. In Complexity: Metaphors, Models, and Reality, pages 497–513.
1994.

[60] T. Mora and W. Bialek. Are biological systems poised at criticality? J. Stat. Phys.,
144:268–302, 2011.

[61] G. Nicolis and I. Prigogine. Self-Organization in Nonequilibrium Systems. Wiley, 1977.

[62] G. Nicolis and I. Prigogine. Exploring complexity. Freeman and company, New York, 1989.

[63] M. Nykter, N.D. Price, M. Aldana, S.A. Ramsey, S.A. Kauffman, L.E. Hood, O. Yli-Harja,
and I. Shmulevich. Gene expression dynamics in the macrophage exhibit criticality. PNAS,
105:1897–1900, 2008a.

[64] M. Nykter, N.D. Price, A. Larjo, T. Aho, S.A. Kauffman, O. Yli-Harja, and I. Shmulevich.
Critical networks exhibit maximal information diversity in structure-dynamics relation-
ships. Phys. Rev. Lett., 100:058702–1:4, 2008b.

[65] N.H. Packard. Adaptation toward the edge of chaos. In Dynamic Patterns in Complex
Systems, pages 293–301. 1988.

[66] D. Polani. Foundations and formalizations of self-organization. In Advances in Applied
Self-organizing Systems, pages 19–37. Springer, 2007.



16 A. ROLI · M. VILLANI · A. FILISETTI · R. SERRA

[67] M. Prokopenko. Information dynamics at the edge of chaos: Measures, examples, and
principles. In Proceedings of IEEE Symposium of Artificial Life - ALIFE 2013. 2013.

[68] M. Prokopenko, J.T. Lizier, O. Obst, and R.X. Wang. Relating Fisher information to order
parameters. Phys. Rev. E, 84:041116:1–11, 2011.

[69] Serra R., Villani M., and Semeria A. Genetic network models and statistical properties of
gene expression data in knock-out experiments. J. Theor. Biol., 227:149–157, 2004.
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