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Abstract :

We consider a boundary layer flow horizontally homogeneous in the presence of a vertical stratification and of
a sinusoidal topography. We present a simple model describing the interaction between the mean flow and the
packet of internal waves emitted at the bottom, assuming that it obeys to the laws of the refraction. We focus
on the configurations where no critical layers develop and where the waves propagate upward. We show that
an equilibrium state exists when the bottom boundary conditions are stationary. With numerical simulations and
considering the analytical expression of equilibra, we show that the presence of the waves amplifies the mean flow
evolutions.

Résumé :

Nous considérons un écoulement de couche limite horizontallement homogène en présence d’une stratification
verticale et d’une topographie sinusoïdale. Nous présentons un modèle simple de l’interaction entre l’écoulement
moyen et le paquet d’ondes émis au sol, en supposant qu’il obéit aux lois de la réfraction. Nous considérons des
configurations telles qu’aucune couche critique ne se formeet telles que les ondes se propagent toujours vers le
haut. Nous montrons l’existence d’états d’equilibre en présence des conditions aux limites stationnaires. A l’aide
de simulations numériques et en considérant l’expression analytique des équilibres, nous montrons que la présence
des ondes amplifie les évolutions du champ moyen.
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1 Introduction

Gravity waves can be emitted by a wind flowing on a topography in a stratified media. They are
often described by the Euler equations under the Boussinesq approximation (see for instance
Lighthill (1978)). The effect of the mean flow on the wave propagation has been taken into
account in the study of Bretherton (1966) through a ray theorydescribing the propagation of
internal gravity wave packets. Propagation of waves in the mean flow has been successfully
described by Bretherton & Garrett (1969) who introduced the action density variable and its
conservation. The feedback of the waves on the mean flow due toenergy transfer has been
considered formerly by Grimshaw (1975). For internal wavesgenerated by a topography, some
recent results are found in Lott & Teitelbaum (1993) who provide an atmospheric non periodic
picture of the phenomena discussed in this work. In the present paper, we focus on the feedback
of the waves on the mean flow under the horizontal homogeneityassumption, e.g., a boundary
layer on a sinusoidal topography.

If we denoteu(z, t) andρ(z, t) the components of, respectively, velocity and density mean
fields, the internal waves propagating along the flow can be described by the real part of
(w0, ρ0) exp{i[k1x + φ(z, t)]}, wherew0(z, t) andρ0(z, t) are the slowly varying complex am-
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plitudes. In the linear approximation, the equations governing the evolution of the wave com-
ponentsw′ andρ′ read:

∇.u′ = 0, (1a)

∂t∇2w′ − (∂zzu ∂xw
′ − u ∂x∇2w′) = −(g/ρr)∂xxρ

′, (1b)

∂tρ
′ + u ∂xρ

′ = (ρr/g)N
2
w − ∂tρ. (1c)

whereN
2
(z, t) = −g

ρr

∂ρ
∂z

is the Brunt-Väisälä frequency,g is the gravity andρr a reference
density. Starting from these equations, it is then possibleto use the WKB formalism to describe
the refraction of a wave packet. We denote byZ = ǫ z andT = ǫ t the slow variables of the
WKB method, whereǫ represents the relation between the vertical characteristic wavelength
scale and the vertical variation scale of the mean fields, andwe denote the slowly varying fields
as functions ofZ andT . At the first order (optical geometry approximation), we obtain the
Eikonal equation and the dispersion relation of internal waves in the presence of the mean field
becomes:Ω(k3, u,N) = N k1√

k2

1
+k2

3

+ k1 u. This leads to

∂k3

∂T
+ cg3

∂k3

∂Z
= −

[

∂u

∂Z

∂

∂u
+

∂N

∂Z

∂

∂N

]

Ω (k3, u,N), (2)

wherek3(Z, T ) = ∂φ
∂Z

is the local vertical wavenumber andcg3(Z, T ) = −Nk1k3(k
2
1 + k2

3)
(−3/2)

= ∂Ω
∂k3

is the vertical group velocity. We assume thatk1 > 0 so thatcg3 > 0 for k3 < 0. At the
second order, the action conservation relation (Bretherton& Garrett (1969)) reads:

∂A

∂T
+

∂

∂Z
(cg3A) = 0, (3)

whereA(Z, T ) = E/Ωr = ρr w2
0 (k2

1 + k2
3)

(3/2)/(2Nk3
1) is the action density, i.e. the ratio

between energy wave densityE and intrinsic frequencyΩr = Ω− k1 u. For such wave packets,
one can show that the flux terms of the mean fields equations

∂T u + ∂Zu′w′ = 0, (4)

∂T ρ + ∂Zρ′w′ = 0, (5)

areρ′w′ = 0, from the polarization relation (see Lighthill (1978)), and u′w′ = −k3 w0
2/(2 k1).

We thus have∂ρ
∂t

= 0 andN(Z) is time independent. A first analysis of this model has been
performed by Grimshaw (1975) who was interested in the behavior of waves near critical layers
and therefore to the energetic phenomena of dissipation. Heassumed that the momentum-flux
was strong enough to changeu at the zeroth order and thus change the refraction properties of
the medium. In the present paper, we focus on the response of the model to a change of the
mean velocityu.

2 The mean field feedback model

Equations (2), (3) and (4) define a coupled system representing the interactions between the
waves (k3, A) and the horizontal mean fieldu.
In order to obtain dimensionless equations, we choose the following dimensionless variables:
Z∗ = Z/Lr, T ∗ = T Nr, u∗ = u/(Nr Lr), w∗

0 = w0/(Nr Lr), N
∗

= N/Nr, k
∗ = k Lr,

whereLr andNr are the reference values of, respectively, a space length scale and the Brunt-
Väisälä frequency (the dimensionless equations yield expressions identical to that dimensional:
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in the following the asterisks will be dropped). With the definitions of the action densityA and
the vertical group velocitycg3 we can writeρr

k1

u′w′ = cg3 A and therefore, combining (3) and
(4),whenA(Z, 0) andu(Z, 0) are specified, a new simplified model can be written:

∂k3

∂T
(Z, T ) + cg3(Z, T )

∂k3(Z, T )

∂Z
= −

[

∂u

∂Z

∂

∂u
+

∂N

∂Z

∂

∂N

]

Ω (k3, u,N), (6a)

∂u

∂T
(Z, T ) +

k1

ρr

∂

∂Z
[cg3(Z, T ) A(Z, T )] = 0, (6b)

with A(Z, T ) = A(Z, 0) +
ρr

k1

u(Z, T ) − ρr

k1

u(Z, 0). (6c)

From the study of the characteristics of the system (see Masi, Moulin & Thual (2007)) it
is shown that the system is hyperbolic fork2

1

k2

3

< 2 and that the wave information propagates

upward for w2

0
(k2

1
+k2

3
)2

2N
2
k2

1

(

2 − k2

1

k2

3

)

< 1. In this paper, we only explore regimes for which the

model is everywhere hyperbolic with upward propagation of the waves.

3 Initial values: the equilibrium states

As stated in Section1, N(Z) is time independent and fixed arbitrarily. Given a mean field
profile ue(Z), assumed to be stationary, we look for a family of stationarywaves fieldk3e(Z)
andAe(Z) for the coupled model (6a-6b). For such equilibria, Equation (6a) can be integrated
into

Ω
[

k3e(Z), ue(Z), N(Z)
]

= Ω
[

k3e(0), ue(0), N(0)
]

= Ω0. (7)

Equation (7) admits the solution

k3e(Z) = sign [k3e(0)] k1

[

(

N(Z)

Ω0 − k1 ue(Z)

)2

− 1

](1/2)

, (8)

defined on the intervalZ ∈ [0, ZL] under the necessary and sufficient conditions:

0 < [Ω0 − k1 ue(Z)] < N(Z) .

The breaking of those conditions are respectively associated to the formation of critical layers
and the reflection of the waves.
The dimensionless valueZL, in the framework of the WKB theory, is assumed asZL = ǫ zL

wherezL is the long-length vertical scale andǫ is small. When these conditions are fulfilled,
cg3e(Z) is also defined on the intervalZ ∈ [0, ZL] and the integration of Equation (6b) lead to

Ae(Z) =
cg3e(0) Ae(0)

cg3e(Z)
. (9)

Sinceue(Z) is given, the choice ofk3e(0) will be restricted in order to obtain a stationary
solution of Equations (8) and (9).

4 Analytical expression of final equilibria

Since we restrict our study to regimes for which the model (6a-6b) is hyperbolic with upward
propagation, we can specify stationary bottom boundary conditionsu(0, T ) = ub, k3(0, T ) =
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k3b, A(0, T ) = Ab, and initial conditionsu(Z, 0) = ui(Z), k3(Z, 0) = k3i(Z), A(Z, 0) =
Ai(Z), that will presumably evolve and reach a final equilibriumuf , k3f , Af . If we further
assume that no critical layer develops and no reflection occurs during the evolution of the sys-
tem, a final equilibrium has to be reached in finite time. In that case, we can infer the final
configuration from an integration of the equations (6a-6b), yielding

k3f (Z) = −k1

[

(

N(Z)

Ωi − k1 uf (Z)

)2

− 1

](1/2)

, (10a)

Af (Z) =
cg3b Ab

cg3f (Z)
, (10b)

with uf (Z) =
k1

ρr

Af (Z) − k1

ρr

Ai(Z) + ui(Z) (10c)

wherecg3b = cg3(0, T ) andΩi = Ω
[

k3i(0), ui(0), N(0)
]

. From system (10a-10c) we derive an
analytical solution foruf (Z) as a solution of an eighth degree polynomia (see Masi, Moulin&
Thual (2007)) :

(u2
f+a2−2auf ) (c4+u4

f+4c2u2
f−4c3uf−4cu3

f+2u2
fc

2) (N
2−k2

1c
2−k2

1u
2
f+2ck2

1uf )−d2N
6

= 0 ,

with a = −0.5 w2
0i(Z) [k2

1 + k2
3i(Z)]

3

2

N(Z)k2
1

+ ui(Z), c = N(0)
1

√

k2
1 + k2

3b

+ ub, d =
0.5 k3b w2

0b

N(Z)k2
1

.

From the eight real or complex roots obtained at each altitudeZ, we can build a unique real and
continuous profileuf (Z) which satisfies the conditionuf (0) = ui(0).

5 Numerical Simulation - A boundary layer on a sinusoidal topography

We consider thatu(Z, T ) is flowing on a sinusoidal topographyh(x) = hmax

2
cos(k1, x) with

u(0, T ) = ub for all T . With this forcing, internal waves are emitted with the bottom wavenum-
ber componentsk1 andk3b solutions of the dispersion relationΩ

[

k3b, ub, N(0)
]

= 0, and they
are amplified such asw0b = hmax

2
(k1 ub). Imposingub andhmax is equivalent to a choice of

k3b andAb. On Figure 1 an example of a physical configuration is shown. The numerical inte-
gration of model (6a-6b) is done by a difference finite explicit scheme, with an upwind space
and an Euler temporal discretisation. In the simulation, wechoose as boundary conditions
u(0, T ) = ub =: ue(0) + up(0), k3(0, T ) = k3b =: k3e(0), A(0, T ) = Ab =: Ae(0) for all T,
and, as initial conditions,ui(Z) = ue(Z)+up(Z), k3i(Z) = k3e(Z), Ai(Z) = Ae(Z), whereup

is a perturbation term. Our intention is, in fact, to perturbate an equilibrium state by prescribing
an initial condition of the mean flow (ui) that corresponds to a modification of the balanced
mean flow profile (ue) by a perturbation termup. The frequency profile is set toN(Z) = 1. For
a constant valuek1 = 0.2 and a value ofAb such that the amplitude bottom value isw0b = 0.2,
we choose a vertical wavenumber boundary valuek3b = −0.45 to fulfill the conditions of hy-
perbolicity and upward propagation at timeT = 0. The initial conditionk3i(Z) = k3e(Z) is
given by Equation (8) and the initial conditionAi(Z) = Ae(Z) is inferred from Expression
(9). In order to give an estimation of the physical(z, t) variables, the ratioǫ = 0.2 between
characteristics lengths scales (2π/|k3b| andzL) is proposed. We initialize our system with a
wave field[k3e, Ae] in equilibrium with a mean flowue(Z) = ub + F (Z/ZL)1/2. Since we
deal with dimensionless equations,F is a mean flow Froude number based onLr andNr (in
the simulation its value is set toF = 1). Then we perturbate this wind profile, by choosing
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Figure 1: An example of a feedback on the mean flow above a sinusoidal topography.

an initial condition that corresponds at a 30% decrease of the maximum value of the variable
velocity field component, i.e.ui(Z) = ue(Z) + up(Z) = ub + 0.7 F (Z/ZL)1/2. The other
components of the system remain unchanged at timeT = 0. The evolution of the principal vari-
ables in the transient time are plotted in Figure 2, along with the final equilibrium state reached
by the system. As we can see, in the presence of a new profile of wind, the waves change their
ray paths and, therefore, their influence the mean field whichis modified. The final equilibrium
state is reached in a finite timeT ≃ 60 (corresponding to a physical timet ≃ 60

ǫ
N−1

r ). The
final profile of the mean flow represents a new equilibrium state where the velocity is lower than
the perturbated initial mean flow. For example, atZ whereu is maximum, an initial decrease
of 30% of the mean flow, corresponds at the final decrease of40%. This phenomenon can be
related to a transfer of energy from the mean flow toward the wave field during the transient.
In order to propose a realistic physical atmospheric configuration, we choose the dimensional
values of length scaleLr = 102m and time scaleNr = 10−2s−1. The other variables become:
the horizontal wavelengthl1 = 2π/k1 ≃ 3.1 km, the altitude of mean field variationzL ≃ 7 km,
the mean field velocity at the bottomub = 2 ms−1, the bottom value of vertical velocity fluctu-
ations (wave amplitude)w0b = 0.2 ms−1 and the bottom value of frequencyω0 = 0.0041 s−1.
Therefore, the sinusoidal topography presents a maximum height hmax = 2 w0b/ω0 ≃ 100 m.
The physical time of transient to reach the new equilibrium is t ≃ 8.3 h. The same numerical
simulation proposed for a real oceanic configuration could be such as the choice isLr = 10 m
andNr = 10−1 s−1, obtaining a sinusoidal topography with a maximum heighthmax ≃ 10 m
and an horizontal wavelengthl1 ≃ 310 m, with an altitude of mean flow variationzL ≃ 700 m
for the same mean field bottom velocityub = 2 ms−1, the same bottom value of vertical veloc-
ity fluctuationsw0b = 0.2 ms−1 and a bottom value of frequencyω0 = 0.041 s−1. In this case,
the new state of equilibrium after perturbation is reached to a physical timet ≃ 50 min.

6 Conclusion

In the present work we have studied a model for the interaction between internal gravity waves
and a horizontal mean field in a two-dimensional slowly variable medium. We have developed
an analytical solution which links the initial conditions to the resulting final equilibrium when
it exists. This analytical solution has been used as a validation for numerical simulations. The
present study has shown that the momentum-flux is strong enough to change the mean field
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Figure 2: Evolution of: a) vertical wavenumber, b) mean flow, c) verticalgroup velocity, d) action
density.

during a transient regime which duration can be predicted. Moreover, it has been shown that the
waves have an “amplifying” behavior on the mean field by emphasizing its trend. We think that
the present model could be used in a parametrization of momentum-flux transfer for the subgrid
models of the oceanic and atmospheric circulations, in order to take into account the feedback
phenomena between internal waves and the mean current.
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