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Abtract  : 
 
Swirling flows with jet-like axial velocities are studied by means of direct numerical simulations for 
various control parameters. The numerical code solves the low-Mach number approximation of the 
Navier-Stokes equations in cylindrical coordinates which allows the incorporation of compressible and 
variable-density effects without the adverse effect of acoustic waves on the numerical time-step. The 
governing parameters, such as swirl and coflow, are varied, and their effect on the breakdown type and 
breakdown location is studied. The nonlinear direct numerical simulation traces the steady states of the 
swirling flow, and the structure of the bifurcation is described as a function of the swirl parameter, the 
Reynolds number and the coflow parameter. In particular, unstable branches are computed and their 
physical relevance is discussed. The analysis gives new insight into the prevalence of coherent states and 
their controllability.  
 
 
Résumé : 
 
Les écoulements tournants avec une vitesse axiale, semblable à un jet sont étudiés par simulation 
numerique directe pour différents ensembles de paramètres de contrôle. La simulation résout 
numériquement l’approximation à faible nombre de Mach des équations de Navier-Stokes en 
coordonnées cylindriques. Ceci permet l’incorporation des effets de compressibilité et de  densité  
variable  sans devoir prendre en compte les ondes acoustiques qui requiéreraient l’utilisation de pas de 
temps trop petit. La variation  des paramètres de contrôle, tels que le paramètre de la rotation et de 
coflow, permet l’étude de l’éclatement et sa localisation. La simulation numérique directe non linéaire 
conduit à l’observation des états stables de l’écoulement tournant. La structure de la bifurcation est 
décrite en fonction du paramètre de rotation, du nombre de Reynolds et du paramètre de coflow. Nous 
nous attacherons plus particulièrement à calculer et discuter la physique des branches instables. 
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1 Introduction 
 

Vortex breakdown is a feature of rotating flows involving a concentrated core of vorticity 
embedded in a largely irrotational flow that is moving in a direction approximately parallel to 
the vortex. It arises in a number of natural settings, such as tornadoes, dust devils, or water 
spouts. In reactive flows, swirl is frequently used to achieve a larger spreading angle of the jet 
which in turn stabilizes the flame (Beer and Chigier, 1972). The prediction and control of vortex 
breakdown in swirling jets is also of interest in aeronautical applications, such as the vortex core 
over delta wings at high angles of attack, trailing vortices shedding off the wing tips, etc. 
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As reported by Lopez (1994) changes in the topology of the stream surfaces due to the 
swirl parameter yielded a classification criterion which states that a swirling flow has undergone 
vortex breakdown when specific critical points appear in the velocity field. These critical points 
are only well defined if the flow is steady and axisymmetric. In this case, they appear as 
stagnation points on the axis of symmetry and the separatrix, connecting them, forms the 
boundary of what is commonly referred to as a vortex breakdown bubble.   

As emphasized by Faler & Leibovich (1977), the term axisymmetric breakdown is a 
misnomer as the breakdown form is not truly axisymmetric. Nevertheless, numerical 
simulations of internal, axisymmetric swirling flow have been rather successful in reproducing 
the breakdown structure with high accuracy (Beran & Culick, 1992). 

The direct numerical simulation of nominally axisymmetric, swirling flows revealing 
vortex breakdown can be achieved solving the full Navier-Stokes equations in cylindrical 
coordinates for unsteady flow. Special care has to be taken in treating the singular behaviour of 
certain expressions near the axis. As far as the conditions at the open boundaries are concerned,  
swirling flows pose a great challenge due to their ability to support upstream travelling waves, 
which render the flow particularly sensitive to small disturbances near the outflow boundary. 
Furthermore, it has been found that prescribing an axial pressure gradient far away from the 
vortex can greatly influence the onset of vortex breakdown and govern its mode selection; see 
the review by Spall & Snyder (1999) for details. 
  
 
2 Governing equations  
 

The numerical simulations are based on the low Mach-number approximation of the time-
dependent axisymmetric Navier-Stokes equations in cylindrical coordinates ( , ,r xθ ). To render 
the governing equations dimensionless, a characteristic length ( L ) and velocity (U ) are 
introduced. The convective time scale is /T L U= , and the characteristic pressure is 

2P Uρ= , where ρ denotes the constant density. The Reynolds number is thus defined as 

Re UL
ν

= . 

The computational domain has the dimensions  10dR =  and 20dZ = , it is numerically 
resolved by  and grid points in the radial and axial directions. 127rn = 257xn =

A Grabowski profile (see Grabowski & Berger, 1976) is used for the radial velocity and 
the axial and azimuthal velocity components are defined piecewise for the region inside and 
outside a characteristic radius R . The axial velocity component can exhibit a jet-like or wake-
like character inside R  and approaches a constant free-stream velocity  outside,xv ∞% R . The 
non-dimensional form of the velocity profile is obtained by scaling the radius with the 
characteristic core radius L R= . The velocity profile at the inflow boundary is forced to be 
axisymmetric and constant over time; moreover, no perturbations are imposed  
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 Here the swirl parameter  represents the ratio of azimuthal velocity at the edge of the 
core and the axial free-stream velocity, i.e., 

S
,( ) / xS v R vθ ∞= % % . The coflow parameter  α  denotes 

the ratio of the axial velocity at the axis and the axial free-stream velocity, i.e.,  
, ( 0) /x c xv R v ,α ∞= =% % . Setting α  greater or less than one yields a jet-like or wake-like 

behavior, respectively. 
The outflow boundary condition takes on the form 

0,i iu uC
t x

∂ ∂
+ =

∂ ∂
 

where the exact value of C is not critical to the solutions, since we only consider steady-state 
solutions. In order to reach the steady state the simulations were run for a physical time of up to 

. 1000t =
 
 

3 Reference case  
 

As a representative reference case, a swirling jet is selected with the governing 
dimensionless parameters of  Re 200,= 1,α =  and 1.095.S =  This choice is identical to the 
reference cases obtained by Grabowski & Berger (1976) and by Ruith, Chen, Meiburg & 
Maxworthy (2003).  

 
FIG. 1 – Reference case: projected streamlines in the meridional plane 

 
In FIG. 1 the projected streamlines in the meridional plane are shown. These results match 

closely the streamlines patterns presented in figures 3 frame a and frame b of Ruith, Chen, 
Meiburg & Maxworthy (2003).  

In the above case, a steady state is defined when the velocity components change by less 
then over a time interval of . 710− 10t∆ =
 
4 Bifurcation diagram  
 

In order to demonstrate the bifurcation structure of the flow, some quantitative measure of 
the flow has to be introduced and monitored as the governing parameters are varied. An 
appropriate diagnostic quantity is  

,min min(min( ))x xu u= , 
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that is, the minimum of the axial velocity at any point in the computational domain. Here, as in 
Beran & Culick (1992) and Lopez (1994), only two of the governing parameters will be varied. 
These are the swirl parameter , which represents the ratio of the azimuthal velocity at the 
edge of the core to the axial free-stream velocity, and the Reynolds number . For each 
choice of these parameters we compute the steady-state branch of the solutions, where each new 
steady-state computation uses the previously calculated steady state as an initial condition. In 
the case of two governing parameters we obtain a surface parameterized by ( , which 
shows a characteristic fold representing the existence of multiple solutions as well as hysteresis 
and limit point behavior. 

S
Re

),ReS

 The main results of the present investigation are summarized in FIG. 2, where the steady-
state solution branch is shown as a function of the swirl parameter . As described by the 
theoretical study of  Wang & Rusak (1997), we confirm that the minimum streamwise velocity 
(the chosen bifurcation parameter) increases as the Reynolds number increases. The green curve 
corresponds to , the blue one to Re

S

Re 200= 500= , and the red one to . At some 
critical point an intersection of the lines occurs; this critical point signifies the point on the 

 surface where multiple solutions start to exist.  

Re 1000=

( ,ReS )

 
 

FIG. 2 – Bifurcation steady state diagram:  against at ,minxu S Re 200=  (green line), 

 (blue line), and Re 500= Re 1000=  (red line). 
 
 Using the Recursive Projection Method (RPM), introduced by Shroff & Keller (1993), we 
are able to determine the unstable solution branches yielding the s-shape bifurcation curve for 
higher Reynolds numbers. In particular, we apply the extended technique described in Janovsky 
& Liberda (2003) to stabilize the unstable eigenvalues of the linearized right-hand side of the 
Navier-Stokes equations; furthermore, a Cayley transform (see Garratt, Moore & Spence 1993) 
is employed to determine unstable solutions. 
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4 Conclusions 
 

We study the dynamics of axisymmetric swirling flows in a finite domain with a special 
emphasis of vortex breakdown; benchmark numerical simulations agree well with both 
theoretical efforts and numerical simulations in the literature. Long-time simulations to obtain 
steady-state solutions have determined the bifurcation diagram based on the minimum axial 
velocity as the swirl parameter and the Reynolds number are varied. The diagram identifies the 
onset of multiple steady-state solutions, the occurrence of hysteresis effects and the existence of 
unstable steady branches. The exact structure of the bifurcation diagram, including stable as 
well as unstable steady branches, is determined by embedding the direct numerical simulations 
into a Recursive Projection Method (RPM) algorithm. In this manner, the abrupt nature of 
vortex breakdown and the prevalence of observed states over multiple theoretical solutions can 
be assessed by numerical means.     
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