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Abstract  : 
 
The ageostrophic normal modes of a spatially uniform, vertically sheared flow along a sloping bottom are 
considered in two layers underneath a deep motionless third layer (two-and-half layer model). The 
variations of the layer thickness are assumed to be small to derive the six-order dispersion relation with 
constant coefficients valid for finite Froude number typical for oceanic currents. The dispersion curves for 
the Rossby waves and inertia-gravity waves (IGW) are investigated to identify different types of 
instabilities occurs if there is a pair of wave components which have almost the same Doppler-shifted 
frequency related to crossover of the branches when the Froude number increases. Ageostrophic 
instabilities due to a resonance between the IGW modes and the Rossby wave in either lower, or middle 
layer, are described. In both cases the growth rate and the width of the unstable wavenumber window are 
shown to be proportional to the square root of the corresponding gradient of the layer thickness. These 
powerful types of ageostrophic instability can coexist together (and with Kelvin-Helmgoltz instability) and 
may play an important role in mixing processes in geophysical fluids.  
 
 
Résumé : 
 
On considère les modes normaux agéostrophiques d’un écoulement spatialement uniforme et cisaillé 
verticalement le long d’une pente, dans un modèle deux couche et demi. La relation de dispersion du 6ème 
ordre  à coefficients constants valide pour un nombre de Froude fini (représentatif des courants 
océaniques) est obtenue en considérant des faibles variations des épaisseurs de couche. Une étude des 
relations de dispersion des ondes d'inertie gravité et des ondes de Rossby permet d'identifier différent 
types d'instabilités. Celles-ci apparaissent s'il existe une paire de composantes ayant quasiment la même 
fréquence relativeincluant le déphasage doppler (elle est liée à un croisement des branches quand le 
nombre de Froude augmente). On décrit par ailleurs des instabilités agéostrophiques dues a une 
résonnance entre les modes des ondes d'inertie gravité et les ondes de Rossby dans la deux couches 
actives. Dans les deux cas le taux de croisance et la largeur de la fenêtre d'instabilité du nombre d'onde 
sont proportionnels à la racine carré du gradient d'épaisseur de couche. Ces diverses instabilités 
agéostrophiques peuvent coexister (ainsi qu'avec l'instabilité de Kelvin-Helmoltz) et elle sont susceptibles 
de jouer un rôle important dans les processus de mélange des fluides géophysiques. 
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1 Introduction 
 
Stratified rotating flows support various types of instabilities which can be interpreted in terms 
of resonances between different wave modes (Hayashi and Young 1987). Three major types of 
resonances between inertia-gravity waves (IGW) and the Rossby wave modes are known for 
horizontally uniform, vertically sheared flows (Sakai 1989). Kinetic energy of mean flow is the 
most important for Kelvin-Helmholtz instability due to high-frequency resonances between IGW 
modes at the order one Froude number. It provides mixing at small scales and has been studied 
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mainly in a non-rotating frame. Available part of potential energy is a source for baroclinic 
instability which can be interpreted as vertical coupling between Rossy waves related to 
gradients of the basic potential vorticity (e.g., Pichevin 1998). Because the Rossby waves have 
typically low frequencies, most of these studies were done in a framework of quasi-geostrophic 
dynamics at small Froude and Rossby numbers when IGW are excluded a priori. The 
mechanism of this instability is most simply illustrated by geostrophic two-layer Phillips’ model 
where the variations of layer thickness are small.  
 
An ageostrophic version of Phillips’ model (two-layer channel model on an f-plane with large 
variations of the layer thickness) was used to reveal a third type of instability (Orlanski 1968) 
which has been recognized as an instability caused by resonance between IGW and Rosby waves 
(Sakai 1989). It was found at finite Froude number and called the Rossby-Kelvin (R-K) 
instability to indicate the different types of waves that resonate in the lowest mode. The 
instability occurs if there is a pair of IGW and Rossby wave components which propagate in the 
opposite direction to the basic flow and these wave components have almost the same Doppler-
shifted frequency. In the R-K instability the Rossby waves are almost completely in geostrophic 
balance while the ageostrophic IGW is the same as in a one-layer system. Doppler shifting 
matches frequencies which would otherwise be very different. 
 
R-K-type instability is also found in a continuously stratified model (ageostrophic version of the 
Eady model). Stone (1966, 1970) found some unstable modes with phase speed different from 
that of the average basic flow (note that the conventional baroclinic instability has the same 
phase speed as the average basic flow). It is identified by Nakamura (1988) as an instability due 
to the inertial critical layer. He showed that this unstable mode is caused by an interaction 
between a vorticity mode trapped at the boundary and an IGW mode which has intrinsic 
frequency of order the Coriolis parameter and is trapped in the inertial critical layer. Recently 
Molemaker, McWillias and Yavneh (2005) have investigated R-K-type instability in the Eady 
model with an emphasis on how it relates to the breakdown of balance in the neighborhood of 
loss of balanced integrability and on how its properties compare with examples of ageostrophic 
anticyclonic instability of rotating, stratified, horizontally sheared currents. 
 
Here we consider a multi-layer ageostrophic version of Phillips' model with sloping topography 
in a configuration with small variations of layer thickness which allows to consider analytically 
all mentioned types of instability (Kelvin-Helmholtz, Rossby-Kelvin, baroclinic) together in the 
system of ODE with constant coefficients. Therefore, dispersion curves and wave resonances 
can be analyzed explicitly that helps to distinguish ageostrophic R-K instabilities related to a 
gradient of potential vorticity in each layer.  
 
2 Model Formulation 
 
We consider a three-layer, rotating fluid in the Boussinesq, hydrostatic approximation at the f-
plane. The layer densities are jρ , the depths are jH , the pressure field is jP , and the velocity 

vector is ),( jj VU , where j = 1,  2 and 3 represent variables in the lower, middle and upper 
layer, respectively. The right-hand coordinate system corresponds to the depth topography 

)(XH , with the X-axis directed onshore, and the Y-axis parallel to the isobath. Further we 
assume the upper layer to be infinitely deep and motionless ( 03 =P ).  The basic state has 

horizontally uniform flows in each layer:   0=jU , dXdPV jj /= , XSHH jjj += ; 
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where SVS −=1 , VVS −= 22 γ ,  )/()( 3221 ρρρργ −−= ,  S  is the topographic slope and 

21 VVV −=  characterizes the Froude number. 
 
The linear stability of this flow is addressed by adding infinitesimal disturbances of the form 

)exp())(),(),(( tiikYXpXvXiU jjj ω− and linearizing. Here k is the along-flow wavenumber 
and ω  is the disturbance frequency (a positive imaginary part implying instability). Assuming 
the changes in the layer thickness are small, we obtain the dispersion relation which has six roots 
corresponding to four branches of IGW and two branches of the Rossby waves depending on 
parameters jH , γ , jS , V  and the cross-flow wavenumber α . 
 
3         Transformation of dispersion curves 
 
Examples of dispersion curves calculated for increasing Froude number 10 ≤≤V  are shown in 
figure 1 for 5.021 == HH , 1=γ , 2.021 =−= SS ,  1=α . The phase speed is shown for the 
second IGW modes (downstream propagating, red curve, and upstream propagating, brown 
curve) as well as for upstream propagating Rossby wave, blue curve, related to 01 >S  in the 
lower layer, and downstream propagating Rossby wave, green curve, related to 02 <S  in the 
middle layer.   
 
When 0=V  (figure 1a), the phase speed of neutral topographic Rossby waves is much smaller 
than ones of IGW modes. When 1SV =  (figure 1b), the conventional baroclinic instability has 
the maximum growth rate at 1=k  due to resonance between Doppler-shifted Rossby waves 
within the unstable wavenumber window 8.10 ≤≤ k . When 4.0=V (figure 1c), the upstream 
propagating Rossby wave has larger Doppler shift, so that the baroclinic instability growth rate 
and the unstable wavenumber window are much smaller.  
 
When 5.0)1/(6.0 2 =+>= γHV (figure 1d), ageostrophic R-K instability becomes possible 
due to a resonance between the lower layer Rossby wave and downstream propagating IGW 
with the maximum growth rate proportional to 1S , while the Doppler shift becomes too large 

for a resonance between the Rossby waves. When 7.08.0 1 =>= HV (figure 1e), another R-
K instability becomes possible due to a resonance between the middle layer Rossby wave and 
Doppler-shifted upstream propagating IGW with the maximum growth rate proportional to 

2S− ; it coexists here with the first R-K instability in more narrow unstable wavenumber 
window. Finally, when 1=V (figure 1f), the Kelvin-Helmgoltz instability becomes possible for  
k > 6; it coexists here with both types of the R-K instabilities which unstable wavenumber 
windows become to overlap.    
 
4           Conclusions 
 
A multi-layer ageostrophic version of Phillips' model over sloping topography with small 
variations of the layer thickness allows to consider analytically different types of instability 
(Kelvin-Helmholtz, Rossby-Kelvin, baroclinic) in horizontally uniform flows. The dispersion 
curves for the Rossby waves and IGW are investigated for two-and-half layer configuration to 
identify different R-K instabilities related to crossover of the branches when the Froude number 
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increases. Simple criteria for these ageostrophic instabilities are derived: either 2
2)1( HV >+ γ  

due to a resonance between the IGW modes and the Rossby wave in lower layer, or 1
2 HV >  

due to a resonance with the Rossby wave in the middle layer. In both cases the growth rate (and 
the width of the unstable wavenumber window in the vicinity of the resonant wavenumber) are 
shown to be proportional to the square root of the corresponding gradient of the layer thickness.  
 
Examples of dispersion curves demonstrate that these types of ageostrophic instability can 
coexist together (and with Kelvin-Helmgoltz instability) and their growth rates may exceed the 
growth rates of conventional baroclinic instability (figure 1). Such instabilities may play an 
important role in submesoscale mixing processes in the ocean. Further investigations are planned 
to clarify their finite-amplitude forms and the relation to the breakdown of balance for finite 
Froude number in agradient velocity model (Sutyrin 2004) and to the loss of balanced 
integrability for finite Rossby number in anticyclonically sheared flows (Molemaker, 
McWilliams \& Yavneh 2005). 
 
This study was supported by the NSF Division of Ocean Sciences and by ONR, Ocean Science 
Division. 

 
 
 
Figure 1. The real part of the phase velocity for the second IGW modes (red and brown curves) 
and the Rossby wave modes (blue and green curves) depending on the wavenumber k for six 
values of V. The growth rates (multiplied by 10) corresponding to crossover of the branches are 
shown for the baroclinic instability (solid line at (b) and (c)); R-K instability (dashed and dotted 
lines at (d), (e), (f)) and Kelvin-Helmgoltz instability (dashed-dotted line at (f)). 
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