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Abtract  : 
 
 A laboratory study and direct numerical simulation (DNS) of far wake flow in a stratified fluid are 
performed. The laboratory study employs the PIV technique to measure the velocity field in a wake 
behind a towed sphere at high Reynolds and Froude numbers. The DNS parameters and initialization are 
prescribed in accordance with the experimental data, which allows a direct comparison between 
numerical and experimental results. The results of the DNS and the laboratory experiment are compared 
with predictions of a theoretical model, which considers the wake as a quasi-two dimensional turbulent 
jet flow with the main mechanism of evolution associated with transfer of momentum from the mean flow 
to quasi-two dimensional sinuous disturbances growing due to hydrodynamic instability. The time 
evolution of the wake axis velocity and its width obtained within the framework of the model is in good 
agreement with the experimental and numerical data.   
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1 Introduction 
 

Turbulent stratified wakes are studied extensively since late 60-th (cf. review papers by 
Lin J.–T., Pao Y.–H., 1979; D.L.Boyer, A.Srdic–Mitrovic, 2001 and references therein). 
Substantial progress in studies of such flows has been achieved in laboratory experiment with 
the use of the digital particle image velocimetry (DPIV) technique developed and applied by 
Spedding et al (1996) (see also Spedding (1997); Spedding (2001); Spedding (2002); Bonnier & 
Eiff (2002), Fincham, Spedding (1997) as well as other visualization methods developed and 
applied by Lin et al, (1992), Lin et al, (1993), Chomaz et al, (1993). Direct numerical simulation 
(DNS) of the turbulent stratified wake was performed by Gourlay,et al, (2001) and Druzhinin 
(2003) and the large eddy simulation was performed by Dommermuth et al (2002).  These 
studies show that there are three distinct stages of the wake evolution, which are defined with 
respect to the product Nt, where N is the characteristic value of the buoyancy frequency at the 
level of towing and t is the time elapsed from the moment of the body pass at a given point. The 
near wake occurs at Nt < 1, and its dynamics strongly depends on details of the flow around the 
obstacle. For the case of towed sphere it is determined by the Froude and Reynolds numbers, 
Fr= 2Ut/ND and Re=UtD/ν  (where D is the sphere diameter, Ut the towing speed, and ν the 
fluid molecular viscosity). This stage was studied in detail experimentally for example by 
Chomas et al (1993), Lin et al (1992). The results of these experiments show that the fluid 
motion in the wake remains three-dimensional at large Froude and Reynolds numbers until 
times Nt ~1, when the action of the buoyancy forces causes the collapse of the vertical velocity 
pulsations. At larger times there occur two distinct stages of the wake evolution, namely an 
intermediate stage at times 2<Nt<50 (defined also as non-equilibrium (NEQ) stage by Spedding, 
1997), and the late wake flow regime at times Nt>50 (or quasi-two-dimensional (Q2D) stage, cf. 
Spedding, 1997). It should be mentioned that, as it was demonstrated by Spedding (2001), at 
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theses two stages (NEQ and Q2D) the wake flow is quite anisotropic in that the horizontal flow 
scale strongly exceeds the vertical scale. 

Recent theoretical analysis of the stratified wake flow performed by Troitskaya (2002) and 
Balandina, et al (2004), Troitskaya, et al (2006), shows that the temporal development of the 
wake axis mean velocity, observed in the laboratory experiments by Spedding (1997) and 
Bonnier & Eiff (2002), can be related to the development of a quasi-2D hydrodynamic 
instability mode of the wake flow. The theoretical model employs the following assumptions. 
Firstly, it is assumed that the dynamics of the wake at the quasi 2D-stage is governed by the 
development of a quasi-2D hydrodynamic instability mode. As another assumption the effect of 
internal waves on the wake evolution is also neglected and the wake as a quasi-2D jet-like flow 
subject to quasi-2D disturbances is considered. Thus, the reduction of the wake mean axis 
velocity is caused by the momentum transfer from the mean flow to the sinuous quasi-2D 
disturbances. The third model assumption is related to neglecting the viscous dissipation 
associated with the vertical shear at the considered stage of the wake evolution. Thus, the model 
is not applicable in the late wake region, where the viscous dissipation is known to be 
significant (see, Spedding, 1997).   

     The theoretical model employs a quasi-linear approximation, where the non-linear 
contribution to the mean wake velocity is the only effect of non-linearity taken into account. 
The mean flow disturbances are considered under the linear approximation as a superposition of 
unstable modes and the mode interaction is neglected. Applicability of the quasi-linear 
approximation was investigated in Troitskaya, et al (2006), on the basis of comparison with the 
results of DNS. It is revealed that the quasi-linear approximation is valid beyond the conditions 
of its formal applicability.  

     In the present paper, we compared the results of a laboratory study and direct numerical 
simulation (DNS) of far wake flow in a stratified fluid with predictions of the quasi-linear quasi-
two-dimensional theoretical model. The laboratory study employs the PIV technique to measure 
the velocity field in a wake behind a sphere towed under a picnocline at high Reynolds and 
Froude numbers. The DNS and the theory parameters and initialization are prescribed in 
accordance with the experimental data, which allows a direct comparison between numerical 
and experimental results. 

 
2 Description of the laboratory experiment  
 

The experiments were performed in a tank with sizes 3×2×0.5 m. A salty stratification was 
created where the initial fluid density distribution was characterized by a pycnocline with the 
total density jump 0.0464 г/см3. A sphere with diameter 3.8 cm were towed along a string with 
the use of a tow-wire at a constant speed 70 cm/s and at the vertical level corresponding to the 
location of 10 cm below the pycnocline center. The buoyancy frequency at the level of the 
towing was equal to N = 0.5 rad/s.  

    The PIV (Particle Image Velosimetry) technique was employed to measure the fluid 
velocity where polystirol particles with diameter 0.8 mm were used as tracers. The density of 
the particles was 1.04 g/cm3 calibrated with the accuracy ±0.07 so that the deviation of the 
particles location from the axis of towing was 1.5 cm, i.e. smaller than the diameter of the towed 
body. The trajectories of the particles were digitally recorded with the use of a video camera 
Sony DCR-TRV17E positioned above the measurement area. The mean velocity profile at a 
given time moment t was evaluated by spatial averaging over the longitudinal coordinate x as 

( ) ( )∫=
xL

x

dxyxu
L

yU
0

,1 , where Lx=43.cm. These profiles were approximated by the Gaussian 
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function ( ) ( )( )22
0 0expU y a U y y δ= + − − .       Parameters of the flow δ =3.25 cm and 0U = 

1.3 cm/sec measured at  t=0.6 s  from the towing moment were used as initialization in DNS.  
 

3 Numerical simulation of a dynamics of a turbulent jet flow below the pycnocline  
 
In order to perform the numerical simulation of the flow in the far wake we introduce 
dimensionless variables by normalizing the spatial coordinates (x,y,z) and fluid velocity with 
the use of the length and velocity scales L0=2δ and U0. We consider a fluid jet flow with the 
initial (reference) profile of the dimensionless average horizontal component of the velocity in 
the form:  
                                   2 2exp( 4( ( 1.3) )),refU y z= − − + +                                   (1)       
where y  and z are the coordinates in the transverse and vertical directions (solid line in Fig.1).. 
The initial density profile is also obtained from the experimental data and is shown in    

                           
                                     (a)                                                                            (b) 

FIG. 1 – Reference profiles of the fluid velocity  (solid line) and density (dashed line) –(a).    
Power spectra of the fluid velocity in the laboratory experiment at time t=0.6 sec (symbols) and 

in the numerical simulation at the initialization time t=0 (solid line) – (b). 
 

The fluid velocity at the initial moment is prescribed as a sum of the random component 
and the reference horizontal velocity refU  (1). Velocity fluctuations at the initial moment are 
evaluated as a sum of independent Fourier harmonics with random phases. The power spectrum 
E(k) of the velocity fluctuations is isotropic and prescribed as E(k)=E0(k/kp)exp(-k/kp), where k 
is the modulus of the harmonics wave number. Parameters E0 and pk  are chosen to match the 
initial velocity spectrum in the numerical simulation to the corresponding velocity spectrum 
obtained in the experiment. Figure 2 shows a comparison between the numerical spectrum 
(solid line) and experimental data (symbols) obtained by the Fourier transform of the fluid 
velocity over the horizontal coordinate x at time t = 0.2 (in dimensionless units, corresponding 
to the dimensional time L0t/U0=0.6 sec). The initial distribution of velocity fluctuations in the 
transverse and vertical directions is made proportional to the mean flow profile (1), as it is also 
observed in the experiment. 

   The Navies-Stokes equations in the Boussinesq approximation, the incompressibility 
condition for the fluid velocity and the equation for the fluid density were solved by the 
numerical method described by Druzhinin (2003). In the numerical calculation the Reynolds 
number is assigned sufficiently large (Re=U0L0/ν = 400), so that the effects of molecular 
viscosity remain negligibly small during the simulation. This value is also quite close to Re=483 
observed in the experiment at time t =0.6 sec. The global Richardson number is set equal to 

( ) ( )2
0 0 0 0Ri L g Uρ ρ= ∆ =15. This value is less than the experimental value (Ri = O(100)). The 
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choice of parameter Ri in DNS is restricted by the constraints imposed by numerical resolution 
of the large density and velocity gradients of the flow field in our numerical simulation 
presented below. However, as it was observed in the previous numerical studies (see e.g. 
Gourlay etal, 2001), the choice of Ri does not affect significantly the dynamics of the jet flow. 
Since Ri is considered much larger than unity in the present study, we can assume that the 
current choice (Ri=15) does not degrade the comparison with the experimental results. 

 
4. A theoretical model of the evolution of a quasi-two dimensional wake in a stratified 
fluid. 
 

A theoretical model of the stratified wake flow describing the development of the quasi-2D 
instability of the wake flow and the dynamics of the wake integral parameters (mean axis 
velocity and horizontal width) is described in Troitskaya et al (2006). The system of quasi-2D 
equations was derived by Lilly (1983), Flór & van Heijst (1994) and Embid & Majda, (1998) in 
the limit of the large Richardson number for the case of a laminar flow. We employ these 
equations rewritten in terms of the flow stream function ψ and vorticity Ω and take into account 
the momentum transfer due to small-scale turbulent fluctuations present in the wake.  

Then the set of the equations for ψ and Ω is written as follows: 
2 2 2 2 2 2 2 2

2 2 2 2 2 2
2 2 T T T

T

K K K
K

t y x x y x y x y x y x y y x

ψ ψ ψ ψ ψ∂Ω ∂ ∂Ω ∂ ∂Ω ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ − = + Ω + − −

∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

   (2) 

2 2

2 2x y

∂ ψ ∂ ψ

∂ ∂
+ = Ω .              (3) 

Here TK  is the horizontal eddy viscosity coefficient. 
We seek solution to the set of equations (2,3) as a sum of a mean flow, which does not 

depend on x coordinate, and disturbances which are presented as a superposition of harmonics 
with random phases as: 
( ) ( ) ( )0 0 1 1, ( , , ) , ( , ) Re ( , ) , ( , , ) ( )k

k

x y t y t a k t y t k exp ik x iψ ψ ψ ϕΩ = Ω + Ω +∑    (4) 

Equations for the mean fields can be obtained by averaging of eqs.(2,3) over the x 
coordinate, which in our case is equivalent  to the statistical averaging under the approximation 
of the random phases. Under the random-phases approximation, the nonlinear terms in 
equations for disturbances are diminished after averaging over phases (Galeev & Sagdeev, 
1973. If we now assume that the disturbance characteristic time scale Tdis is much smaller than 
the characteristic time scale of the mean flow Tavr, so that factor µ= Tdis / Tavr<<1. , then the 
linear equation for ψ1(y,t,k) can be solved with the use of the WKB-approximation, i.e.: 

( )1 0 1

i

e µψ µ
Θ

−

= Φ + Φ +K .       (5) 

Denoting 
d
d

ω
τ
Θ

= , we have 
0

t

dtµ ωΘ = ∫ . In the 0-th order in µ we obtain the eigenvalue 

problem: 
2 2 2 2

2 2 2 20 0
0 0 0 02 2 2 2

2 0,T Tyy

U
ik U k k K k k K

k y y y y
ω ∂ ∂ ∂ ∂

∂ ∂ ∂ ∂
Φ Φ

− − Φ + Φ + − − Φ + Φ =
⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

 (6) 

00 =Φ
±∞→y .         

Solution to the problem (6) gives the dispersion relation ω=ω(k,t) and the eigenmodes. The 
solvability condition of the equation in the 1-st order in µ gives the equation for the amplitude a: 
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∫       (7) 

Here Ψ(y,t) is the solution of equation conjugated to the  eq. (6). Substitution (5) in the 
averaged over the x eqs.(2,3) gives the following equation for mean velocity U=Ψ0y: 

0

2 Im
2 0

0

1
( , ) Im ( , , )

2

t

dt

T
k

U U
k a k t e y t k K

t y y y y

ω∂ ∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

∫ Φ
− Φ =

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∑    (8) 

The theoretical model of the quasi-two-dimensional wake flow consists of: 1) equation (8) for 
the mean axis velocity U(y,t);  2) eigenvalue  problem (6); and 3) the equation (7) for the 
harmonics amplitude. 

 
FIG.2 Temporal development of the (a) mean velocity; (b) transverse length scale (thick 

line –theory, thin lines – DNS) . Symbols show the corresponding experimental data. Temporal 
asymptotics of the non-stratified jet flow are shown in dotted lines. 

 
These equations were solved numerically for the parameters of the experiment described in 

section 2. Since the theoretical model is applicable only to the case of the late wake we initialize 
the solution at Nt=1.8. The initial spectrum of the streamfunction disturbances was taken from 
the experiment. The initial mean velocity profile was taken in the gaussian form with the 
parameters measured at Nt=1.8. Figure 2 shows the temporal development of the normalized by 
the scales U0 and L0 average velocity maximum Um and the length scale Ly obtained in the 
numerical simulation, within the theoretical model and in the laboratory experiment (in dashed 
and solid lines and symbols, respectively). The figure shows that there is a qualitative and 
quantitative agreement between the theoretical and numerical results and experimental data in 
the decay of the velocity maximum and the transverse length of the stratified wake.   
  
5 Conclusions 
 

In this paper we present results of a laboratory study, direct numerical simulation (DNS) 
and theoretical prediction of far wake flow in a stratified fluid. We compared the results of all 
these approaches, where the wave field in the theory and DNS was taken from the experiment 
was employed as initial conditions. A qualitative and quantitative agreement between the 
theoretical results and numerical and experimental data in the decay of the velocity maximum 
and the transverse length of the stratified wake was demonstrated. It enables us to conclude that 
probably the principal physical process providing evolution of the mean flow in the wake after a 
towed body in the stratified fluid is associated with demodulation of disturbances growing due 
to hydrodynamic instability. 

This work was carried out under the support of RFBR (project codes 06-05-64473 and 06-
05-64890), by CRDF grant RGO-1362 and by the Russian Science Support Foundation. 
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