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Abstract :

We consider interactions between the two most important components of the atmosphere and ocean
dynamics: slowly evolving vortical motion and inertia-gravity waves in rotating stratified axisymmetric
flows. Any steady axisymmetric solution for a finite volume anticyclonic vortex with outcropping
isopycnals is known to correspond to a set of sdf-similar analytical time-periodic pulson solutions
assuming flows in surrounding fluid is negligible. Here we analyze the flow patterns generated in
homogeneous fluid bel ow stratified pul sating lens-like vortex and its feedback on the upper layer vortex.

Résumé :

Nous considérons les interactions entre les deux composantes de la dynamique océanique et/ou
atmosphérique les plus importantes: les mouvements tourbillonnaires lentes et les ondes d'inertia-gravité
rapides dans les écoulements dratifiés en rotation. 1l est connu que chaque solution stationnaire
axi symétrique pour un vortex anti-cyclonique aux surface isopycnes en intersection avec la surface libre
engendre une série de solutions auto-similaires, périodiques en temps (“ pulsons’), s e mouvement du
reste du fluide, supposé homogene, est négligée. Nous analysons ci-dessous les écoulements générées
dans le fluide profond homogéene au-dessous d'un pulson, et sa réaction inverse sur le vortex dans les
couches supérieures.
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1 Introduction

Hydrostatic, stratified Boussinesque primitive equations (PE) are widely used for modeling
large- and meso-scale variability in planetary atmospheres and oceans. Solutions for the PE
ind ude the two most important components of the atmosphere and ocean dynamics: slowly
evolving vortical motion and inertia-gravity waves (IGW). At the synoptic scd e and larger, the
later arerelatively weak, giving rise to a nearly "balanced” vortical dynamics, usually related to
the potential vorticity inversion (e.g., see Sutyrin 2004 and references therein). The problem of
emitting IGW and adjustment to balanced state has been considered in a number of publications.
In particular, the nonlinear geostrophic adjustment of single-scale vortex-like disturbances in
rotating shalow water was andyzed in detail by Reznik et a. (2001) and in continuously
stratified fluid by Zdtlin et al. (2003) by means of the multi-time-scale perturbation theory in
the Rossby number. Although the classical scenario of adjustment was, generaly, confirmed, it
was also demonstrated that large-scale large-amplitude initial perturbations contain near-inertia
oscillations which stay coupled to the slow vortica component of the flow for along time.
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Exact andytic nonlinear solutions for finite-area lens-like vortices pulsating with inertid
frequency (pulsons) were recently described in a sdf-similar form (see Sutyrin 2006 and
references therein). Here we andyze the effect of deep lower layer on the evolution of the
upper-layer pulson using asymptotic expansions. The rest of the paper is organized as foll ows.
In section 2 we formulate primitive equations for axisymmetric flows in the stratified upper
layer overlying the homogeneous lower layer. In section 3 we discuss aspecid case of inertidly
pulsating vortices when the sol ution remains self-similar with the lower layer at rest. In section
4 we analyze the case with active lower layer. Section 5 provides a summary and conclusions.

2 Modd Formulation

We consider a stratified, Boussinesq fluid on the rotating plane. Assuming axisymmetry, we
write the governing equations for an inviscid flow with the vel ocity (U, V, W) in the cylindrica
coordinates (r, 0, 2),

2 2 2
a_U+Ua_U+Wa_U+M:V_+fV:M_3_u’ (l)
ot or 0z or r r 4
a—V+Ua—V+Wa—V+(!+f)U:a'\/I +Ua'\/I +Wa'\/I =0, 2
ot or 0z r ot or 0z
£+8_U+aﬂ:0, (3)
r or oz
(2+U3+Wija—P:0, 4
ot or 0z) 0z

where f is the Coriois parameter, M = Vr + fr/2 is the absolute angular momentum which is
conserved by fluid parcels as well as the buoyancy, g(p — p,)/ po = dP/0z reated to the
geopotential, P + p, by the hydrostatic approximation, g is the gravity accderaion, p is the
density, p,is its reference vaue, and p is the geopotential in the degp homogeneous |ayer
where the horizontal velocity (u, v) does not depend on the depth:
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In the rigid-lid approximation the deep radial veocity can be expressed by the velocity in
the upper stratified layer from the total mass balance by integrating (3)

h
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where h(r, t) is the depth of the upper stratified layer, and D is the total depth. Then the
geopotential gradient dp/dr in the axisymmetric flow can be expressed from (5) to include the

deep flow effectsin (1). In this way we consider the deep flow feedback on inertialy pulsating
vortex in the upper layer.
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3 TheStructure of Pulson Solutions

First we consider a flow between horizontal level z = 0 and an isopycnad (i.e., constant
buoyancy) surfacez= h assuming h<< D so that the pulson solution can be described in a self-
similar form following Sutyrin (2006)

M =M,(RZ), %—Fz)z—Bo(R,Z) : (R,Z)=(%,SZ) : )

whereS=1+ y sin(ft+1) — pulsates with inertial frequency, y is the amplitude of pul sations, and
Aisthe phase. Then theradial velocdity does not depend on the vertica coordinate
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while SP=®(R,Z), andSh=Z,(R) are defined by the spatia vortex structure. The relation

between M, and @, depends on the pulson amplitude y
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Such exact solutions of PE describe inertially pulsating combinations of a vortical flow and
IGW which do not adjust to balanced state. The spatial distribution of P=S"®(R,Z) in

coordinates (R, Z) is the same as for the stationary solution with y = 0, except its amplitude
pulsates inversely proportional to Sin order to provide the mass conservation described by Eq.
(3). Correspondingly, the azimuthal velocity calculated from Eq. (9) for y > O deviates from
stationary gradient balance to compensate impact of pulsating radial velocity. Such solution
describes anticyclonic (warm-core) lens-like vortex with all isopycnals outcropping at the level
z=0 at variableradia distances. The actua maximum vortex radius at this level pulsates with

timeas r, = R)y/S(t) , where R, isdefined by Z,(R,) =0.
In particular, for a parabolic radial profile of Z, = Z,(1- R*/R?) and constant B, from
Eq. (7) we obtain @, = B,(Z, — Z) so that from Eq. (9) the azimuthal velocity has the form
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where A, =8Z,B,/ f*R’ characterizes the nondimensional vortex amplitude and such

solution exists for any ¥ </1— A, . At the moment of maximum contraction S=1-7%, the
radia velocity becomes zero in (8), and the azimuthal velocity becomes zero for a particular
vaueof y=(1—-+1-2A,)/2. Inthis case the sol ution describes the evolution of the lens-like
perturbation without initial velocity.
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4  Deep Flow Feedback on the Upper Layer Vortex

Using asymptotic expansion inZ_,/ D, in the leading order the deep velocity is obtained
from (5), (6) and (8)
rsS z,
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To calculate the azimuthal velocity in (11), it is convenient to start & the moment of maximum
contraction setting A =—7x /2 sothat S=1—y cod( ft), then for a parabalic profile we obtain
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where F(r) = max(l—y,r*/R’) and H is the Heaviside function. Note, only periods when
expanding lens generates the radia velocity in deep layer are taken into account in this

expression for Ry4/1—y <1 < R)4/1+ 7 . Finally, the deep geopotentia gradient isfound from
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The correction to the upper layer motion is calculated by linearizing (1) — (4) reativeto the
pulson sol ution using the deep geopotentia gradient (13) as aforcing term.

5 Conclusions

Here we calculated the flow patterns generated in homogeneous fluid below stratified
pulsating lens-like vortex described by (11). The feedback on the upper layer vortex is provided
by the geopotential gradient according to (13).
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