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Abstract:

An ensemble of convective thermals is consideréueitayer of penetitive turbulent convection over a
homogeneous heated horizontal surface. A modal ahateady spontaneous jet is proposed to describe
the dynamics of an isolated convective elementndael has an exact sdalimilar solution, which is

used to derive a dynamic invariant that relates\tbiocity, tempeature, and radius of the jet. The size
distribution of spontaneous convective jets is\atj which agrees with the description of the fine
structure of the atmospheric surface layer. Théistaal size distribution of thermals islmtantiated

using the FokkePlanck kinetic equation.
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1 Introduction

Complex studies of the atmospheric boundary layer over a horizontallygemeous land
surface in the daytime, see Kaimal and Al (1976), have revéiadedxistence of a stochastic
ensemble of isolated eddies whose temperatur&aisner than the surroundings and the
horizontal dimension is zero to threelers of magnitude less than the height of the convective
boundary layerConvective eddies with a horizontal size within this range alfedthermals.
The surface of rotation on which the temperature of a conveeliayaent equals the ambient
temperature is the natural boundary of a thermiaermals of roughly equal vertical and
horizontal sizes are called bubbles, and thermals whose vertical sezedads their horizontal
size are called jets. More detailed information on the structureeohtls can be found in Hunt
(1998). The role of thermals in the formation of the convective boundawyuas discussed in
detail in studies of Scorer & Ludlam (195%rish & Businger (1973); Manton (1977);
Lenschow & Stepens (1980). Vertical movements of thermals areichaatharacter. An
empirical description of a system of convective thermals statestical ensemble through the
size distribution function was first performeg N.I. Vul'fson (1961), see also Lord & Willis
(1955).

In this study, we theoretically derive the size distribution fmctor convective thermals.
In the framework of the proposed approach, classical Boltzmanrtistaitissupplemented with
a hydrodynamic invariant characterizing the motion of isolated thermals. Thengam
distribution thus obtained is consistent with earlier extensive @abidata on the size
distribution of convective thermals.

2 Dynamics of an isolated spontaneous thermal in an unstably stratified layer

It is assumed that an unstable layer forms over a homogeneoud hearental surface,
which is hereafter interpreted as a plane source of buoyancy oebsesiengthgQ,, where

[0Q]= nf/s’. Lett denote timey, ¢, z be cylindrical coordinates with theaxis drected
oppositely to the acceleration of gravity® be the local potential teperature; and® = ©(z)
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be the background potential temperature. Assume that the backgrouifidatican of potential
temperature in the unstable layer &edmined by the Moni®©bukhov similarity relation

g d@ _ _ 213 -4/3

o9 (9=-c(9Q)" 2 ()
where c., is a constant coefficient. According to atmospheric field measants, see Deacon
(1959), ¢, =0.9-1.0.

A description of the dynamics of a convective isolated elemepéerormed within the
framework of the model of an unsteady convective jet under the Besgsassumption in the
form of Ogura& Phillips (1962) and the vertical bounddayer approximation, see
Schlichting (1968)
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where u andw are the velocity components along thend z axes, respectivelyp is a
dimensionless fluctuation of potential temperatwrg; v, are the eddy exchange coefficients

for vertical velocity and dimensionless potential temperature.
The system of equations(2) is considered in the unbounded domain

\Y :{Os r<o, 0s¢< 21, 0<z< h(t)}, which represents the convective surface layer. The

initial conditions att =t, correspond to the state of a static environment.

The momentum and heat fluxes are assumed to vanish at the side dodedhdlat
boundaries of the domain:

Iing[wDN(r,z,t)]zo, Iing[vv[(B( r,zt)]=0 (3)
Equations(1) — (3) form a closed system describing an unsteady convective spontaneous
jet and are a natural generalization of the stationargtieqs in Batchelor (1954).
Let R be the radius of the jet anf],, f, be the horizontal profiles of the vertical velocity
and potential temperature specified from the experimental data of Rouse and Al (1952)

R=0,z f,&)=exp(-B.£°), fE€)=ex{-B,E) ., E=r R (4)
wheref, /0% =96, B,/0a% =71, anda, =0.1 are constant coefficients.

An approximate solution tl) — (3) should be sought within the framework of the integral
von KarmarPohlhausen method, for more details, see Schlichting (1968)

U oW Gl_r
rzt)=—-_ (»zt rif, (r/ R)Odr
E”( ) az( )r! L, (r'R) )
Fu(rz)= Wz 90F,(/ R, 8(rz9=8(zI0f( 7 B
Here, the functionsi(z t) and 8(z,t) correspond to the vertical velocity and temperature
on the axis of the jet and satisfy the system

0o . 10 .. ~
WR +=— WwR =qa R R, z
ETRARPPE o § R
Ug 1 0 - 1 ©)
O9BR +——— — AR +—T () WR=0
@at 1+0(gaz o,

wherea, =B, /B, =1.35 is a constant coefficient.
Equationg6) must be supplemented with boundary conditions at the underlying surface:
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lim FWR( z YE=0, lim 5@ R( 2)E0 (7)
A self-similar solution to syster(6), (7) can be sought in the universal form proposed by
Vul'fson & Borodin (2003):

O . -
iz y=Tvi(2), 8(z)= lD‘J”“ﬁe(z) R2E B.R.)
[l

R(2)=az. 2= 26} bk=pn( 09" %

Here, z is a dimensionless parametav;, 8, and R are dimensionless functiorts;= h(t) is

the height of the rise of the convective jet, which depends on thkeff source of constant
strengthQ, ; A, is a constant coefficient.

Substituting(S) into (6) gives the sefSimilar equations

©)

R?—z—(WR)+—d— wwR=a6 R .Ro, z

D dz Z (9)
Eﬁ ‘o, 9 (g 1 DZ ﬁ/ Cro 4i3( ¢
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9
The boundary conditions for syst€8) foIIow from (7) and have the form

Im@tvwl?(z)a:Q IZ'[TZEWG R(*z)a=0 (20
The solution to systerf®) that satisfies boundary conditiofig) is given by
w=a,z2% 6=0,7"%, R=0a,.z
|j/.’s ﬁ/Z DZ DZ/31+G (11)
= )\2 1+a =25 £
=ENE Blredeg - wsERg e
Using integration over the jet area, we can calculate thegeesquared velocity and

the average fluctuation of dimensionless potential temperﬁufﬁwen, according t4), we
can write

o 2° 1 _ 27 1z
vvzzg‘!)'vvz(r,z,t)rdr:zwvvz(zt), 9=?!9(r,z,ﬁrdr=8—99(z) (12

Combining(12) with (8) and(11) yields the following dynamic invariants, which hold in
any cross section of the unsteady spontaneous jet:

LW _3 1% _ 3., 19
296z 160 2R 16
The first relation i13) represents a constant ratio of the kinetic to potential energy of the
thermal. The second relation (b3) relates the thermal'sydamic parameters to its geometric

size, see also Vul'fson (2001).
3. Ensemble of convective elements

Studies concerning the fine structure of penetrative convection aoverated surface
suggest that an ensemble of convective elements represénthastic system of jets rising in
an unstable stationary surrounding and having positive vertical velogite.

In the description of an ensemble of convective thermals, the falljpassumptions will
be used.

« All the convective jets (which originate near the ground) have |lepgasitive

temperature excess at each lewal the same timg i.e.,

3
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=6, (z1)>0 (14)
where 8, (z,t) is a known function.

Assumption(14) is confirmed by empirical data (Fig. 1) and rules out the randoraciea
of the temperature of convective thermals.

Lvt.j"‘w;“a..frﬂ‘\ fikut ; "\J[\
| |

Fig. 1. Temperature fluctuations over Ky#{im sands at a height of 100 m.

g

« At each level, the convective jets have a random squared vexaatity W’ and a
random diameteDb. The motion of a thermal according (b3), (14) is governed by the
dynamic invariant

> _ 3

W =1—60(ngeTD (15)
wherea, =0.1 is a constant coefficient.

The ensemble of rising convective thermals is a gMasiwell system, sedovenda
(1991). Thus,

N, a 1 BO0W H 8 0w @

N_O_F(a)<\7\F>éaE]<\7\F>% expg—a%% (16)
where N, d#* is the number of convective elements per unit area whose squared velocity varie
from W to W’ +d#’; N, is the total number of elements per unit ared; > is the effective

squared velocity of the elemen®s> 0 is a constant parameter; am'c(a) is the constant value
of the gamma function at the pour.

4  Size distribution of thermals in the convective atmospheric layer

Using dynamic invarian{15), we can turn from the velocity distributiogfi6) to the
diameter distribution. For this purpose, we introduce the effectiveetéa< D > of a thermal
assuming that

< W >:1§60(;ngT <D> )

Let N,dD be the number of convective jets per unit area with diametesedeD and
D +dD and N, be the total number of elements per unit area. Substit(itB)gand(17) into
(16) yields
N, _a 1 0obD M 0.0D [
N, r(a)<bD>gkp>HH S “HKp>tH 9
A typical profile of distribution(18) for the atmospheric convective surface layer is shown
in Fig. 2.

[T 1t can be shown that quasiaxwell distribution(16) is a particular stationary solution of the Fokker
Planck kinetic equation.
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Fig. 2. Gamma distributio(lL8) with parametea-1=5/3.

A systematic experimental study of the statistical sizeildigion of thermals on the basis
of 39895 aircraft measurements was first conducted by N.I. Vul'fson (196&)values of the
parameters obtained from this observations are listed in Table 1.

Table 1. Empirical values of gamrdsstribution parameters and their dependence on height
over the underlying surface.

Flying height, Number of Average diameter Number of jets Distribution
m measurements <D>m N, , 1/km? parametera—1
30 2480 49 217 1.67
50 7611 55 138 1.67
100 8728 61 87 1.67
300 4748 68 52 2.13

An analysis of the data given in Table 1 shows thatpliameters of the statistical
distribution change sharply upon the transition from the surface layer to the mixed laye

According to the model of a convective ensemble of thermals inathmspheric
convective surface layer, we set

N,<D>*=0.42, <D>= 21,2 (19

The first relation in(19) follows from the fact that the convective heat flux in the
atmospheric surface layer is independent of height. This relatiomesagwithin some
approximation) with the data listed in Table 1. The second relatid®)rollows directly from
approximations of the model of an isolated spontaneous jet. Experimdnts faveal this
relation because of the nonlinear interaction between the thernhmad, significantly deforms
the dependence of the diameter on height.

In later field measurements Lenschow & Stepens (1980) it was found that

N,<D>z=01, <D>/z=01€2/2"
where z is a height of the convective boundary layer.

The first relation in(19), the second relation if20), and the parameter1 =5/3 entirely
determine the statistical size distributid®) of thermals in the atmospheric convective surface
layer.

For small diameter®/ < D ><<1, the gamma functio(l8) becomes a power function:

Ny_ a 1 00D
a)< D> >
N, T D> < D>
Essentially, the exponeratl = 1.67 for the spectrum of spontaneous jets is nearly equal to

the Obukhov exponent 5/3 for squared temperature #tiotis. It should be especially stressed
that the experiments by N.I. Vul'fson (1961) were conducted nearly sinmdtisly with

(20

(21)
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publishing the —5/3 power law, see Obukhov (1960), which entirely rules opb#saility of
artificial agreement created between the theory and the observations.

5 Conclusions

The seltsimilar solution obtained for a spontaneous jet and the dynamic inviaased on
it were used to theoretically estimate the role of thernmathe formation of the convective
boundary layer and its fine structure. Combining the dynamic invawihtthe stationary
solution of the FokkePlanckkinetic equation, we constructed a size distribution of thermals in
the convective boundary layer that agrees with available expetatndata. In the light of these
results, the model describing an ensemble of thermals becomes constructivadtechar
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