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Abstract: 

Presented are results of the pioneering research on the over-reflection instability of an annular 

‘supersonic’ shear in experiments on free-surface shallow water covering a differentially rotating and 

properly shaped bottom (characteristic waves on shallow water play the role of sound, all alternative 

shear instabilities are suppressed due to specificity of the rotation profile and experimental procedure). 

The consideration focuses upon distinctive features of the structures generated by the instability as 

perturbations of shallow-water thickness. The features of the structures observed are compared with 

those predicted by an original theory. The structures are also readily interpreted as a superposition of 

Huygens-Mach fronts that are multiply over-reflected from the shear, having been induced by a 

supersonic disturbance moving along it. Owing to the annular geometry, the instability in the experiments 

develops even in absence of external boundaries that are universally included in traditional theoretical 

schemes for feedback necessary for the wave generation. 
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1 Introduction 

Theoretical studies on wave over-reflection (reflection with amplification) from a 

supersonic flow date back half a century to Ribner (1957) and Miles (1957). The whole bulk of 

analytical and computational data accumulated by now predicts the effect to play an essential 

role in significant applications and natural processes. The contributions of the over-reflection to 

destabilisation and turbulisation of flows and jets in aerodynamics and of accretion discs in 

astrophysics (see, e.g. Fridman et al. (2003)) are of principal importance. The theoretical 

predictions, however, have not yet been gained by direct experimental verification. Neither the 

instability based on the over-reflection (Kolykhalov (1984)), nor the over-reflection on its own 

has ever been observed in reality. 

Recently Fridman et al. (2006, 2006) put forward a detailed concept of laboratory 

experiments aimed at closing the gap. It was suggested to consider the phenomena in their 

association with an annular (rather than straight) sheared flow, simulating it in fast rotating 

shallow water by the experimental method developed by Nezlin & Snezhkin (1993). According 

to the concept, a liquid layer is to be placed on a differentially rotating bottom, with its 

upper surface left free so that shallow-water waves can spread in the layer like sound in 

2D gas. With the bottom shaped properly, the layer can be made thin enough for the 

velocity of these surrogate ‘sonic waves’, (gH)
1/2

, to be lower than the local velocity of 

the rotation (g - acceleration of gravity, H - thickness of the shallow-water layer). Angular 

velocity of the rotation is to increase with radius since the forced flow will be otherwise 

destroyed by the strong centrifugal instability (Fridman et al. (1985)). The other instability able 

to hamper the experiment is Kelvin-Helmholtz instability (KHI). It does not develop in 
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excessively ‘supersonic’ regimes (Antipov et al. (1983)) including the wanted in which the 

over-reflection phenomena are expected to take place. However, at any attempt to bring the 

system into these regimes directly ‘from below’, KHI will inevitably break the flow as early as 

at a ‘subsonic’ stage. The concept left room for solving this particular problem (Sec. 2). 

The following is a description of the first translation of the concept into reality. 

 
2 Experiments and their results 

In our experimental set-up (Fig. 1), a thin layer of liquid (ordinary water dyed with NiSO4) 

covered the bottom of a round pan-like vessel on a turntable. The outer part of the bottom, rotating 

with the turntable at angular velocity Ω, was conic. The inner part, remaining still due to firm 

fastening to a bedplate, was flat. The two were separated by a 0.4-mm-wide annular gap of radius 

R0. Mechanical interaction of the liquid with the bottom provided forcing of rotation with a sharp 

velocity jump in a zone between the corresponding parts of the layer, the outer ‘periphery’ and 

inner ‘core’. The set-up was equipped with a b/w CCIR camera and top side illumination. A 

technique of optical densitometry against the background of diffusely reflected bottom (Nezlin & 

Snezhkin (1993), Snezhkin & Sommeria (1998), Rylov et al. (2004)) was used for obtaining 

fields of layer thickness perturbations. 

   
FIG. 1 – Schematic of the set-up: 1 - bedplate, 2 - turntable rotating at velocity Ω, 3 - rotating vessel with 

conic bottom, 4 - unmoving flat bottom, 5 - fixating devices, 6 - free-surface layer of ‘short-pass’ green 

liquid, 7 - white halogen lamps, 8 - camera, 9 - long-pass red filter, 10 – matte-black screen; R0 = 12 cm - 

radius of the gap between the two parts of the matte-white bottom, D = 41 cm and H - external diameter 

and thickness of the layer. 

FIG. 2 – Typical structure generated by the mode m = 6 of the flow instability: perturbation of the liquid-

layer / shallow-water thickness in arbitrary units, dash-and-dot line - the gap between the outer and inner 

parts of the bottom / locus of the shear, solid and dash lines - troughs and crests of waves incident on the 

flow (thin lines) and over-reflected by it (thick lines), a - experiment (H ≈ 4 mm, Ω = 3.98 rad/s 

(M0 ≈ 2.4) and Ωp = 3.13 rad/s (Mp0 ≈ 1.9)), b - theory (H = 5.0 mm, Ω = 4.83 rad/s (M0 = 2.62), 

Ωp = 4.25 rad/s (Mp0 = 2.30)). 

The experiment runs started with a stationary regime in which the liquid covered the entire 

bottom with a layer as thin as possible. The core was still, the periphery rotated as a rigid body, 

therewith a narrow in-between shear was stable since the ‘supersonic’ jump in velocity and losses 

due to bottom friction were exceedingly high. Then the system was brought into the wanted 

regimes ‘from above’: we very slowly lowered the Mach number of the jump, M0 = ΩR0/(gH)
1/2

, 

by either decreasing the speed Ω, or adding liquid into the vessel, or both (H was measured near 

the centre). At a threshold value of M0, the layer thickness became perturbed in a zone of the core 

adjoining the periphery. The perturbations appeared as a variety of trains of almost radial ‘spokes’ 

which altering in length and width ran azimuthally at different velocities after the periphery. After 

a time, even if the current value of M0 remained unchanged, the mess turned to a stable single 

structure (pattern) rotating in the same direction at constant angular velocity Ωp. Having rotational 

symmetry of order m, the structure was obviously a manifestation of a hydrodynamic instability 

developing as a mode with azimuthal wave number m (Fig. 2a shows a typical structure with 

m = 6, structures with other m appeared correspondingly). On further decreasing M0, the system 
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rearranged itself again and again with successive formation of kindred structures with higher and 

higher m. Reverse changes in M0 caused rearward transitions to the structures with progressively 

lower m, all these processes therewith exhibiting a pronounced hysteresis. Transition stages lasted 

up to several tens of the periphery rotation periods. The wave numbers of the modes accessible 

ranged from three to ten. Appearing more tolerant of small variations in experimental conditions, 

the modes with m = 5, 6 tended to spontaneous transitions less than the others did. 

    
FIG. 3 – Velocity of the structures (patterns) generated by different modes of the instability as a function 

of the flow velocity in terms of Mach numbers at radius R0: stars - experimental data (number of points 

of the star gives the mode number m), solid lines - linear fits of the data and existence ranges of the 

modes, dot lines - theoretical values of Mp0 from the model of the resonant self-organisation of the fronts 

multiply (n times) over-reflected by the flow. 

FIG. 4 – Mean azimuthal velocity on the liquid-layer surface versus distance from the centre in conditions 

much like those in Fig. 2a. 

Kinematic characteristics of the structures and ranges of existence of some modes are 

shown in Fig. 3 where Mach numbers characterising rotation velocity of the structures, Mp0 = 

ΩpR0/(gH)
1/2

, are plotted against M0. Some notion of velocity fields in the structures can be 

gained from the data in Fig. 4 obtained by velocimetry of floating tracers. 

When M0 reached sufficiently low values, the system came under the action of KHI 

developing here as a mode with the azimuthal wave number one or two. 

 

3 Discussion 

To identify the instability that took place in the experiment, the structure generated by it 

(Figs 2a) is to be compared with the eigenfunction of the over-reflection instability (ORI) 

calculated in line with the theory by Fridman et al. (2006, 2006) for conditions physically close to 

the experimental (Fig. 2b). The eigenfunction appears as a superposition of two coherent systems: 

of twelve wave crests and twelve wave troughs. In its turn, each of the systems consists of six 

(leading) spiral waves travelling inwards, i.e. from the shear, and six (trailing) spiral waves 

travelling outwards, i.e. towards the shear. On the same distance from the shear, the inward waves 

are more intensive than the outward waves. It is precisely what should be expected: the shear 

over-reflects the incident outward waves, i.e. reflects them inwards with amplification. In the case 

that the reflection coefficient is complex, the over-reflected waves can be shifted in phase with 

respect to the incidents. That is very likely the reason why the waves of the same signs do not 

meet each other on the shear. Conversely, they join in pairs, connecting with their opposite ends 

facing the centre. Each of the pairs forms a tick-shaped pattern, with overall maximal magnitude 

of the joined crest or trough in the connection point, in the tip of the tick. It is easy to see that the 

real structure in Figs. 2a features all the above too. The resemblance between Fig. 2a and Fig. 2b 

is quite remarkable, taking into account that the compared are results of an a-priori non-linear 

viscous experiment and de-facto linear inviscid theory. As for the alternative (‘neighboring’) 

instability, there was clear-cut visual distinction between the structures generated by ORI and 

KHI. The ORI perturbations were maximal in the core away from the shear zone. The zone itself 
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was perturbed relatively weakly and the banana-like vortices expected to exist there were so 

narrow that they could be hardly distinguished in the experiments (see also Fig. 4). By contrast, 

the KHI perturbations were maximal in the shear zone and the fluid-trapping vortices were wide 

and very well pronounced. 

    
   

 
FIG. 5 – Involute as a locus of the Huygens-Mach shock front (shaded solid line) from a point disturbance 

A moving in shallow water on the circle of radius R0 (dash-and-dot line) at ‘supersonic’ velocity Vp0; dash 

line - evolute of the front as a circle of radius Re, unlabeled straight arrows – local velocity vectors of the 

‘sonic’ motion of the fronts, dot lines - elementary circular fronts, r and ϕϕϕϕ – polar coordinates, double-head 

arrow shows the angle θp, arcs show angles equal to the Mach angle θp0; Mp0 = 2.25. 

FIG. 6 – Waves from a small irregularly shaped disturbance dipped into a still free-surface liquid layer 

and moving in it on a circle near an annular rigid wall under conditions physically comparable to those in 

Fig. 5, with no flow in the layer (visualisation with aluminium powder). 

FIG. 7 – Magnitude of the thickness gradient in the structure in Fig. 2a overlaid with a theoretical pattern 

(‘rosette’) of six tick-shaped fronts (black-and-white short-dot lines) resonantly self-organised in their 

over-reflections from the flow: dash-and-dot line - gap between the outer and inner parts of the bottom 

and the trajectory of the initial disturbance in the theoretical model, black-and-white long-dash line – 

common evolute of the fronts as a circle of radius Re. 

Some features of the structure and the very origin of it can be clarified by considering 

shock fronts from point disturbances. Let such a disturbance (A in Fig. 5) to move in shallow 

water on the circular trajectory of radius R0 at ‘supersonic’ velocity Vp0 = ΩpR0. Not counting 

effects of the rotating periphery for now, the front the disturbance produces in the core can be 

build on Huygens' Principle as an envelope of elementary circular ‘sonic’ fronts which, having 

been sequentially emitted by the disturbance on its way along the trajectory, expand laterally at 

the speed (gH)
1/2

. Clearly, two features of the envelope are as they would be if the disturbance 

moved rectilinearly. First, the angle made by the envelope with the trajectory at the point A is 

the Mach angle θp0 defined by the Mach number of the disturbance motion, Mp0 = Vp0/(gH)
1/2

, 

via the relation sinθp0 = 1/Mp0. Second, all straight lines normal to the envelope cross the 

trajectory at the same angle π/2 – θp0. All such perpendiculars are tangential to the circle of 

radius Re = R0sinθp0 = Ωp/(gH)
1/2

 co-centred with the trajectory. The existence of these dual-

feature straight lines indicates that the desired envelope and the circle inside the trajectory are 

respectively an involute and evolute of each other. Based on the handbook equations of a circle 

involute, it is possible to represent the envelope segment ADE in the suitable parametric form: 

r = R0sinθp0/sinθp, φ = θp0 + ctgθp0 - θp - ctgθp,  θp0 ≤ θp ≤ π – θp0, 

where r - distance from the centre, φ - polar (azimuthal) angle counted from the current location 

of the disturbance, θp - angle between the direction to the centre and the local direction of the 

envelope (front) motion. The parts AD and DE of the tick-shaped segment make up two fronts 

that move respectively from and to the trajectory. The parts are axisymmetric about the radius 

passing through the point D, at which θp = π/2, so that the angle of incidence of the part DE at 

the trajectory is equal to the angle of obliqueness of the part AD from the trajectory, i.e. equal to 

the Mach angle θp0. In our supplementary experiment, shock fronts in a real liquid layer behaved 
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exactly in the above way: having passed some distance to the centre, they suffered a sharp kink 

and thence went from the centre (Fig. 6). [Noticed for the first time in practical aeronautics, 

such reverses of shock fronts from supersonic jet planes were similarly interpreted by Meyer 

(1973). Noteworthy also are similar effects encountered in studies of radiation at superluminal 

motion of charges, e.g. by Ardavan (1989), Bolotovskii & Bykov (1990)).] 

As for the effects of the rotation of the periphery, the velocity jump at r = R0 is to reflect 

the incident front with the same θp0 as the angle of reflection. By applying Huygens' Principle 

again, it is easy to verify that the reflected front will be a copy of the initial front ADE produced 

directly by the disturbance. This primary copy will also be reflected by the shear, giving rise to 

a secondary copy, then a tertiary copy will be produced in the same way, and so on. Thus, in the 

presence of the shear, the disturbance will produce in the core a chain of tick-shaped segments 

equiform to ADE. If the circumference of the chain is a whole number of the links, resonant 

phenomena are clearly possible: at proper rotation of the periphery, when the shear over-reflects 

(rather than just reflects) with amplification high enough to compensate losses, the disturbance 

can trigger generation of a stationary rotating azimuthally symmetric structure. The shallow-

water system in such regimes is similar to a peculiar kind of acoustic resonator with permanent 

pumping all along its annular boundary. For simplicity not counting the mentioned phase shift at 

the over-reflection, the number of the links in a closed chain, n, is unambiguously related to a 

‘resonant’ value of θp0 by the equation ∠∠∠∠AOE = 2π/n, where ∠∠∠∠AOE = 2(θp0 + ctgθp0) – π. 

Corresponding resonant values of Mp0 are in reasonably good agreement with the experimental 

kinematic data in Fig. 3. The chain in the form of a rosette expected to be resonantly pumped up 

with n = 6 is shown in Fig. 7. The rosette evidently fits well with the experimental data on the 

mode m = 6 underlaid it as a scalar field of the perturbed thickness gradient. 

It is clear that the wave perturbations singled out by the azimuthal quantisation and 

resonant amplification at the shear are not to penetrate the central area of radius Re but only to 

touch the bounding evolute, sliding over it at the speed (gH)
1/2

. The zone between the shear and 

evolute resembles a waveguide with the evolute acting as a kind of virtual self-produced wall 

that oddly reflects the waves impinging onto it tangentially. This correlates well with the fact 

that the thickness in the experimental and theoretical structures was not perturbed within the 

corresponding central area (see Figs 2 and 7). In the experiments, any obstacle put in the liquid 

within this ‘stagnant’ area had no effect on the generation and features of the structures. 

The situation reversed if the obstacles (thin walls) were placed closer to the shear. Oriented 

radially, the walls there deformed the structures, quenching them even to the point of 

disappearance. Oriented azimuthally, they did not change drastically the appearance of the 

generated structures, altering, nevertheless, the essence of the generating instability. In its pure 

state, the latter case took place with a wall shaped as a coaxial ring larger in diameter than the 

stagnant area. Being a real reflector of waves, the ring provided the feedback necessary for 

developing ORI of the ‘traditional’ type (Kolykhalov (1984)). The structures generated in this 

case resembled much those above, therewith the closer in diameter the ring was to the stagnant 

area, the stronger the resemblance was. All other factors being equal, the shear with the ring lost 

its stability at higher values of M0, which could be expected due to lower losses suffered by the 

waves traversing the narrower waveguide. In some regimes, we also observed large-scale wave 

structures generated by the same type of the instability in the periphery where over-reflection of 

the waves from the shear was accomplished by reflection of them from the wall of the vessel 

(generation of such structures was pre-studied theoretically by Fridman et al. (2006, 2006)). 

 

4 Conclusions 

The notion of an involute was first introduced by Huygens in application to pendulums and 

clock movements with no relation to wave dynamics. Though now involutes have been realised 

to be directly associated with wave fronts and other objects of Huygens' Principle, yet they are 
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primarily known through the involute gear that is by far the most common system for gearing 

not only in fine mechanics, but about everywhere in machinery. Curious is the fact that the 

profile of the gear (see any handbook on mechanical engineering) coincides geometrically with 

the rosettes that we offer above for describing the structures generated by the ORI in our 

laboratory hydrodynamic simulations. 
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‘Kurchatov Institute’ (Initiative Project no. 21). 

 

References 

Antipov, S.V., Nezlin, M.V., Rodionov, V.K., Snezhkin, E.N. & Trubnikov A.S. 1983 

Stabilization of tangential shear instability in shallow water with supersonic fluid flow. JETP 

Lett. 37, no. 7, 378-381. 

Ardavan, H. 1989 The speed-of-light catastrophe. Proc. R. Soc. London, Ser. A 424, no. 1866, 

113-141. 

Bolotovskii, B.M. & Bykov V.P. 1990 A radiation at superlight movement of charges. Usp. Fiz. 

Nauk 160, no. 6, 141-161. 

Fridman, A.M., Boyarchuk, A.A., Bisikalo D.V., Kuznetsov O.A., Khoruzhii, O.V., Torgashin, 

Yu.M. & Kilpio, A.A. 2003 The collective mode and turbulent viscosity in accretion discs. 

Phys. Lett. A 317, 181-198. 

Fridman, A.M., Morozov, A.G., Nezlin, M.V. & Snezhkin, E.N. 1985 Centrifugal instability in 

rotating shallow water and the problem of the spiral structure in galaxies. Phys. Lett. A 109, 

228-231. 

Fridman, A.M., Polyachenko, E.V., Torgashin, Yu.M., Yanchenko, S.G. & Snezhkin, E.N. 2006 

The Over-Reflection Instability: Myth or Reality? In Astrophysical Disks. Collective and 

Stochastic Phenomena, pp. 3-22. ASSL, vol. 337, Springer, Dordrecht. 

Fridman, A.M., Polyachenko, E.V., Torgashin, Yu.M., Yanchenko, S.G. & Snezhkin, E.N. 2006 

On the possibility of experimental detection of the over-reflection instability. Phys. Lett. A 

349, 198-211. 

Kolykhalov, P.I. 1984 Instability of a shear discontinuity in a gas moving near a wall. Fluid 

Dynamics (Historical Archive) 19, no. 3, 465-469. 

Meyer, F. 1973 Locus of a one-dimensional shock front caused by a disturbance moving on a 

circle. AIAA J. 11, no. 3, 408-409. 

Miles, J.W. 1957 On the reflection of sound at an interface of relative motion. J. Acoust. Soc. 

Am. 29, 226-228. 

Nezlin, M.V. & Snezhkin, E.N. 1993 Rossby Vortices, Spiral Structures, Solitons. Astrophysics 

and Plasma Physics in Shallow Water Experiments. Springer Verlag, Berlin, Heidelberg, etc. 

Ribner, H.S. 1957 Reflection, transmission, and amplification of sound by a moving medium. 

J. Acoust. Soc. Am. 29, 435-441. 

Rylov, A.Yu., Snezhkin, E.N. & Titishov, K.B. 2004 Velocity field in the spiral-wave pattern 

observed in rotating shallow-water experiments. Astron. Rep. 48, no. 4, 275-287. 

Snezhkin, E.N. & Sommeria J. 1998 Generation of vortex patterns and spiral waves in a 

shallow-water annular shear. Ann. Geoph. 16, 1136. 


