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Abtract  : 

 
In the framework of background currents, we examine a dynamically consistent model of a periodic flow 

over an isolated submerged obstacle of Gaussian shape. Chaotic advection of passive scalars in the 

ocean is studied from the viewpoint of the dynamic system theory. Much attention is given to the 

nonlinear resonance role. The relationship between the rotation frequency of an unperturbed fluid 

particle and the appearance and disappearance of a nonlinear resonance is established. So, the 

frequency gives us the opportunity to explain the trajectories’ chaotization via the Chirikov criteria. This 

simple estimation is verified by numerical calculations. A simplified model is used for more exact 

reasoning. The distance between nonlinear resonance and its width was established for large action, and 

accurate estimation of chaotic region boundary was calculated. Also, numerically and analytically, there 

are studied chaotization dependencies from some other flow parameters. 
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1 Introduction 

In this paper, in the framework of the conception of background currents on the f -plane 

(Kozlov 1995), we examine a dynamically consistent model of a periodic flow over an isolated 

submerged obstacle of Gaussian shape. The conception gives us opportunity to obtain models in 

which we have no problem with conservation of potential vorticity (Brown and Samelson 1994, 

Izrailsky et al 2004, Koshel and Prants 2006). The most popular way for studying the effects of 

dynamical chaos is the Melnikov method (Wiggins 2005) for the case of a small perturbation 

and numerical modelling. But we see that the nonlinear resonance analysis (Zaslavsky 1998, 

Koshel and Stepanov 2006) can give a good result in some aspects of dynamical chaos. 

 
2 Formulation of the problem 

The stream function may be written in the following form (Sokolovskiy et al 1998, Davies 

et al 2006):  
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azimuthal velocity. For an obstacle of Gaussian form, the velocity profile is 
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where ~ (1)O  is a topographic parameter, and 1.256   has been chosen due to the 

condition 1( ) 0rdV r dr    . 
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Setting the average values for the ocean depth and current velocity equal to 4 km and 

10 cm/s, respectively, we obtain 3.511  , what corresponds to the obstacle height of 

1.021 km. In the general case the velocity vector of such model periodical current circumscribes 

an ellipse displaced from the obstacle center. Below we will show that any external disturbance 

will cause chaotization of trajectories of fluid particles. It is suitable to analyze the motion of a 

fluid particle in a coordinate system ),( yx   which rotates with the current. The corresponding 

change of variables implies the following expression for the stream function 

 
r

dVtyxyA
0

)(),,(  ,              ( ) ( )V r V r r    . 

The non-stationary part of the stream function, which we assume to be a disturbance, has the 

form: 
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When the disturbances are absent, the stream function is stationary, and, correspondingly, the 

fluid-particle trajectories are regular. In the rotating system of coordinates, the equations for a 

fluid particle can be written as: 
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3 Stationary case 

Due to the numerical simulation we can examine some different scenarios of chaotization 

of fluid-particle trajectories. It is possible to understand all the effects by analyzing the 

rotational frequency as a function of the initial particle position.  

 

 

Figure 1. Azimuthal velocity, rotational frequency, and nonlinear resonance overlap 

criterion (only for nonrotational case). For 0.14  (left) and 0   (right). 
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On Figure 1 we can see the azimuthal velocity distribution in the rotating coordinate 

system for BA  , ( )t t   (left), and without rotation for 00 0  vBA , ( ) 0t   

(right). The rotation frequency distribution   also presented here. 

The analysis of these curves gives us important information about possible chaotic regime. 

The behavior in the inner region of the left figure was well studied in (Koshel and Stepanov 

2006). The most interesting is the outer region. We can see that the rotation frequency   has a 

maximum near ' 10y   . The other important feature is a very small frequency range. In the 

case of 0 14   , when 0 16699max   , it’s easy to estimate the frequency range: 
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and the appropriate nonlinear resonance multiplicity. Here m  is the multiplicity and n  is the 

resonance order. 

As it will be shown below, the nonlinear resonances with high multiplicity have very small 

width, and we can conclude that a chaotic region will appear near the maximum of rotational 

frequency, and we can expect reconnection with the inner and the outer resonances of the same 

multiplicity. We observe such effects at the Poincaré sections, which were calculated for the 

appropriated perturbation frequencies.  

4. Asymptotic estimation of the Chirikov 

criterion 

In the case of a non-rotational 

background current (right Figure 1) it’s 

possible to obtain an asymptotic estimation 

which demonstrates the role of nonlinear 

resonances in the chaotic effects. In the 

case ( ) 0t   we will consider only one 

perturbation 0 0A B v   , and a small 

velocity 0 0u  . 

As a zero approximation with respect 

to 0u , the stream function depends only on 

r , and it is easy to obtain an action-angle 

variable ( )I  , where   is a polar angle, 

and 
2 2I r  . In this approximation the 

frequency of a fluid particle rotation is 

( )
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2

V I
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I
  . 

The last relationship is also shown in 

Figure 1 (right), as a dotted line. 

So we can use a “pendulum 

approximation” (Zaslavsky 1998) to 

estimate each of the main series nonlinear 

resonance width and position. The n-th 

resonance width is 
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        Figure 2. Poincaré sections at 0 0.092u    and 0 0.5  . 
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and the distances between the centers of the neighboring resonance areas are 
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where the first order action was used. The n-th resonance angle width can be written as 
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and the angle distance is  
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Now we will introduce a modified Chirikov criterion (Zaslavsky 1998), which is 

constructed as a ratio between n-th resonance width and n-th to (n+2)-th distance 
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Figure 3. Poincaré sections at 0 0.092u   and 0 0.4  - a); 0 0.35  - b). 
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The criterion ( ( ))cK r n  is shown in Figure 1 (right) for few values of the perturbation 

frequency. Now we can examine the vortex area chaotization by analyzing these curves. For 

example, there are represented in Figure 2 the Poincaré sections at 0 0.092u   and 0 0.5  . 

In Figure 1 we can see that the value of cK  is very small from 5y    to 10y   , and a 

regular region appears in this area at the Poincaré sections. The perturbation frequency value 0.4 

corresponds to 0.5cK   in the point of a minimum, and it gives us a partial overlapping of the 

nonlinear resonances. At the appropriate Poincaré (Figure 3, left) section we can see a small 

regular area near 8y   . This area is a barrier for marker transport from the central to the outer 

region. 

The next cK  curve ( 0 0.35  ) has a minimum value 0.8cK  , which is close to the 

critical value 1. In this case all nonlinear resonances were partially destroyed, and we have 

particle transport from the inner to the outer region.  

 

4 Conclusions 

We note that the evolution of nonlinear odd-multiplicity resonances seems to be a 

characteristic property of this dynamical system. Even resonances, which arise at some values 

of parameters, disintegrate much quickly. In the examples discussed above we demonstrated 

only some characteristic properties of the chaos initialisation and nonlinear resonances in a 

barotropic non-stationary flow over a submerged hill with non-zero parameters , 0u . The 

effect of influence on the system of other external parameter both separately and under their 

common action will be given in a more detailed study. 

The area of the topographic vortex, as a well mixed spot, may be much bigger than the 

non-perturbed region. Also it may have a satellite vortex (nonlinear resonances), or a complex 

structure, which is defined by main series of the nonlinear resonances. 

The main features of the vortex area chaotization are well defined by nonlinear resonance 

widths and distributions. So, the particle mixing and the property transport were established by 

the main series of the nonlinear resonances. 

The mentioned above main futures of the phase space chaotization are defined by the 

frequency of the particle rotation. The same qualitative effects occur in many vortex systems 

with analogous rotation frequency dependencies. 
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