
ne-Course for Learning Programming
José Figueiredo

Research Unit for Inland Development
Polytechnic of Guarda, Portugal

jfig@ipg.pt

Natália Gomes
Research Unit for Inland Development

Polytechnic of Guarda, Portugal

ngomes@ipg.pt

Francisco José García-Peñalvo
Computer Science Department

Research Institute for Educational
Sciences GRIAL research group

University of Salamanca
fgarcia@usal.es

ABSTRACT

Difficulties in learning programming are a constant concern in

engineering courses. In many research studies involving the

learning programming must of the solutions presented, from the

beginning of the first programming languages, was to apply

different type of problems analysis. Literature relating to the

understanding of nature of learning programming skills has been

focused explicitly on the teaching methodology and few of them

focus on abilities, characteristics and knowledge acquired over the

life cycle of learning programming in each student. Most of the

students enrolled in engineering courses, where programming is a

crucial competence, never had the opportunity to develop skills of

computational thinking. In this paper, we focus our work on the

learning programming developing and applying a set of exercises

where students with more difficulties can express and develop their

skills in computational thinking. In order to understand some

programming students difficulties we have create a set of exercises,

and apply it to a pre-programming course, that allows teachers to

understand how students analyse and comprehend aspects such as

visualization, spatial interpretation and physical manipulation. This

paper also reports on results obtained from a class experiment

where Memory Transfer Language was used by students to learn

programming. All the exercises must be resolved without any type

of technology, designed as a ne-course (no electronic course) for

learning programming.

CCS Concepts

• Social and professional topics ~ Computing education • Social

and professional topics ~ Computing education programs.

Keywords

programming education, introductory programming, cs0, cs1,

learning programming, teaching programming.

1. CONTEXT AND MOTIVATION
Learning to program, generally considered hard, is a concern in all

course of engineer. This phenomenon is universal and learning

problems are not course, school or country specific.

Since the appearance of the first programming languages this

problem is been studied. There are numerous studies with the main

reflection of the difficulties of solving programming problems. In

this sense, the analysis of several studies, such as those conducted

by the Natural Programming Project and Psychology of

Programming Interest Group, among others, in some way, can

contribute to demystify this problem. This studies can help teachers

to understand what are the students difficulties, the reasons or the

best tools, methods or technologies to improve learning

programming [1].

The need for research in education, according to [2], appears when

we want to better understand the operation of a particular

educational situation, and we intend to answer the many questions

we put on how to improve the way we act. Specifically, and

according to [2], research should be done in education to perform

the following actions:

 Responding to the need to meet and improve a particular

educational reality.

 Using new methods in teaching and analyse the

effectiveness of the application of these methods in order

to improve an educational reality.

 Assess the situation studied and analyse the causes that

led to a particular diagnosis.

 Generalizing conclusions that may affect others.

Our main motivation for the development of this work is to

understand what difficulties students have, which factors most

influence their learning programming process, which tools and/or

methods or technologies can be used to reduce problems in the

teaching / learning of the initial programming course. Develop a

new learning environment of programming to help students to

overcome their difficulties.

This paper is an attempt to demonstrate the importance to recognize

in the first beginning of learning programming the difficulties that

student may have and analyse the effectiveness of the methods we

propose to implement. Our aim is to provide a new contribution in

the learning programming area helping to discuss and demystify the

principles of learning programming and to carry out and analyse

the preliminary experiments with a set of exercises/methods.

2. BACKGROUND & RELATED WORK
The programming teaching is quite recent compared to other areas,

such as mathematics and physics. The programming teaching

requires a different methodology of other subjects. Theories as

active learning, learning by doing, peer assisted learning, or peer

instruction, with good results in several areas of education, also

have confirmed results in this area [3]–[6]. Many other

methodologies and techniques may be combined and should be

applied and articulated in different environments and situations

according to the needs and interests of each student. We must

remember that students chooses to solve a problem will be different

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. Copyrights for

components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from Permissions@acm.org.
TEEM'16, November 02 - 04, 2016, Salamanca, Spain

Copyright is held by the owner/author(s). Publication rights licensed to

ACM.
ACM 978-1-4503-4747-1/16/11…$15.00

DOI: http://dx.doi.org/10.1145/3012430.3012572

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Institucional do Instituto Politécnico da Guarda

https://core.ac.uk/display/154963654?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

from another student, and what one student takes away from an

experience may will be different from the others.

2.1 Best practices
A systematic review of approaches for teaching introductory

programming and their influence on success [7], have demonstrate

a positive effect on approval rates in introductory programming

courses. In 2014 some authors have presented a systematic review

of articles describing approaches for teaching introductory

programming and their influence on success [7]. The authors of this

paper have revealed relevant literature through the analysis of

several research publications available in ACM and IEEE database

from 1980 to 2014. The results of this important research have been

accepted in numerous refereed journals: Transactions on

Computing Education, SIGCSE, ITiCSE, ICER, SIGITE and

ICALT. According to the authors, this paper describes the best

practices for improving positive effect on approval success rates in

introductory programming courses compared to traditional

education programming. Some of the best practices to engage and

improving students in learning programing are:

 collaboration: activities that encourage student

collaboration either in classrooms or labs.

 contextualization: activities where course content and

activities were aligned towards a specific context such as

games or media.

 CS0: the creation of a preliminary course that was to be

taken before the introductory programming course.

 grading schema: a change in the grading schema; the

most common change was to increase the amount of

points rewarded from programming activities, while

reducing the weight of the course exam.

 group work: activities with increased group work

commitment such as team-based learning and

cooperative learning.

 peer support: support by peers in form of pairs, groups,

peer mentors or tutors.

 support: an umbrella term for all support activities, e.g.

increased teacher hours, additional support channels, etc.

Many other studies have been reported regarding the importance of

Computational Thinking (see [8], [9] and [10]) for improving

learning programming. The studies revealed that Computational

Thinking is a fundamental skill not just for computer students but

for everyone and should be used in all areas, a commonplace. In

other perspective some authors defends the use of game-based

learning [11] to improve students’ cognitive abilities and

expectations about learning programming.

Apart from the use of different practices it is important for teachers

to understand the differences and know in their students’ learning

styles. This knowledge is an important aspect to consider in order

to define and implement the best methodologies and practice

strategies into teaching and learning programming activities [12]–

[15].

3. Our proposal

3.1 Study group
In this research, a study was conducted to investigate and explore

the views of students and the difficulties they faced in learning

programming courses. The study involved a group of students of

Computer Engineering from the Polytechnic of Guarda, Portugal.

The Polytechnic of Guarda (IPG) is an institution of higher

education located in the interior of the country.

Our study group has very special characteristics which may affect,

in our opinion, the learning programming process:

 The course of computer engineering, IPG, is usually not

the first choice of students, which in some circumstances

affect students' motivation and engagement.

 Average grade, in recent years, is between 10 and 12

values.

 Students reveal some general difficulties in the area of

CS.

 From our years of experiences, we have found that most

of the students have very particular difficulties in terms

of computational thinking.

3.2 Pre-Programming course (CS0)
According to characteristics of the IPG computer engineering

students, we have created a free course of pre-programming for

improving positive effect on approval success rates in learning

programming. This course is designed to provide students with a

set of computational thinking exercises to substantially improve

their cognitive abilities. The course is not mandatory and will

function with teacher recommendation. The course session

planning activity is:

1. Follow and Give instruction.

2. Map Design.

3. Paper Folding and Origami.

4. Memory Transfer Language.

5. Parson Problems.

3.2.1 Follow and Give instruction
The use of this kind of exercises has as purpose to increase the

development of students’ cognitive reasoning abilities and spatial

visualization, strongly associated with the characteristics necessary

for programming [1], [16], [17].

Based on this methodology, which are also used to evaluate the

ability of students to programming, we have developed exercises to

work with students. Some examples:

Example number 1: Students should design on a paper what a

student or a teacher describes.

 On a sheet of paper draw a square measuring

approximately 5 cm. on its sides.

 Draw a small dot in the center of the square.

 Draw a line that starts at the top right corner to the bottom

left corner, passed by the point.

 Draw a line that starts in the upper left corner to the

bottom right corner, passing the point.

 Write your first name in the triangle below the center

point.

Example number 2: It is also possible to practice from an image,

see Figure 1, asking students to describe it through the design of

others images.

Figure 1 - Examples for follow and give instruction.

3.2.2 Map Design
With the use of this type of exercises we aim to develop students’

capacities in planning, designing and describe in terms of specific

characteristics in a concrete situation. Studies have demonstrated

the relationship between the style and the level of detail in the

description and construction of a map with the objectives of a

programming course [1]. These activities include exercises for the

student to move from point A to point B, within our school for

example. This type of activity also includes the design and / or the

representation of a path in a map. In this exercise we will evaluate

the level of detail and clarity in the resolution.

3.2.3 Paper Folding and Origami
Origami and / or paper folding [16]–[18], [19], [20] is a Japanese

secular art widespread throughout the world, known for the

development of features, such as: visual and spatial perception, fine

motor coordination, memory, relieving stress and tension, patience

and persistence; self-confidence, logical thinking and attention and

concentration. There are thousands of examples from the simplest

to the most complex, of various categories, which can be used

according to characteristics and likings of each.

Paper folding, in particular the Punched Holes, is frequently used

to investigate the spatial visualization skills. In our case we want to

use this activity for the development of student’s capacity by

solving various exercises. In this type of exercise students should

imagine that is folding and unfolding paper. In each of the left and

right drawing figures there are problems, see Figure 2. The figures

at the left represent a square piece of paper being folded, and the

last of these figures has one or two small circles drawn on it to show

where the paper has been punched. The right figure shows the

location of the holes when the paper is unfolded.

Figure 2 - Examples Punched Holes, adapted from [20].

3.2.4 Memory Transfer Language
The used of Memory Transfer Language (MTL) exercises; allow us

to overcome some problems detected in the construction of

knowledge in early learning programming, particularly in the

representation of variables and assignment statements. The

methodology used to implement this kind of exercises was based

on the representation of instructions in the computer memory. The

construction of MTL exercises have been designed according to our

experience in the teaching programming.

For the development of this set of exercises we also have analyse

the work of Leonard Mselle and Hashim Twaakyondo, [21], where

again, it is said that programming is a difficult concept to teach and

learn. Related research has showed that concepts can be confused

and abstract for all novices programmer’s and the most difficult

topic for students understanding is the abstract concepts involving

the role of variable position in computer memory.

To determine the impact of MTL in aiding novice programmers to

pursue their programming lessons without and with the intervention

of a teacher, a class experiment, was conducted where examination

results from two-phase experiment were statistically compared. To

realize the experiment three exercises, according from the work of

[22], have been design and applied, see Figure 3, 4 and 5.

Figures 3, 4 and 5, are examples of these exercises.

Figure 3 - Example 1 for MTL.

Figure 4 - Example 2 for MTL.

Figure 5 - Example 3 for MTL.

Once the student has completed the exercise, he or she must write,

in a diagram previously define (Figure 6), the instructions

executions.

Figure 6 - Output representation for MTL exercises.

3.2.4.1 MTL class experiment
The experiment was carried out to test the comprehension that

students may have between variable and computer memory thought

the used of MTL exercises. As already referred the class experiment

employs three exercises, questions exposed in Figure 3, 4 and 5.

To test the hypothesis that MTL can facilitate students pursue their

learning programming classes a sample of 35 first year students of

the IPG was used in the experiment. Students learning ‘introduction

to programming’ for the first time in the computer engineering,

academic year 2014/015, constituted the sample for this

experiment.

Before the beginning of the experiment, a two-phase experiment,

the teacher held a class with all students where they were briefed

about computer programs and programming concepts such as

variable, basic data types and computer memory representation.

3.2.4.2 First examination
Answer to the three exercises, of 35 students, to the first phase of

the experimental examination, are summarized in Table 1. Correct

answers have been assigned as 1 and incorrect answers as 0. As

demonstrated in Table 1, only 20.0% of the students have correct

answers and just only one student hit the three exercises.

Table 1 - Students answers - first analysis.

3.2.4.3 Second examination
On a second phase of the experiment and after showing the results

to students it was resolved and explained a set of similar exercises

to clear their doubts. After clarification of the doubts it was

proposed to the students to repeat the exercises. Table 2 shows the

results on this second phase of the experiment.

Table 2 - Students answers - second analysis.

As can easily be seen, in Table 2, the results were significantly

better. The results increased from 20.0% to 81.0% of correct

answers. Using final scores, between the first phase of the

experiment and the second, where the experimental was support by

the teacher, to learn programming results suggest a significant

difference statically. The totality of correct answers increases from

1 student to 23 students. The capacity of student’s mental

abstraction, after the use of this activity, was improved.

3.2.5 Parson Problems
The last activity course is based on Parson Problems. According to

[23]–[25] one way to learn and practice introduction to

programming is using Parson Problems. Parson’s problems are

assignments for learning programming where the student has to

select, order, and indent code fragments. The goal could be as

example to construct a program which fulfils the task of an

assignment. These assignments are great for an initial phase of the

learning programming because students do not make syntax errors.

In Figure 7, we can see an example of Parson Problem.

Figure 7 - Parson Problem example.

4. Discussion and Conclusion
With this work we intend to present our idea in open the discussion

on learning programming. The objective of this study was to test

the impact of different activities (Follow and Give instruction; Map

Design; Paper Folding and Origami; Memory Transfer Language

and Parson Problems) when used as a learning programming tool

without the intervention of any electronic component (technology).

Specifically, MTL has been proved and initial results are

encouraging though far from conclusive. There are, obviously,

some shortcomings in this study. The sample size is too small to

justify generalization.

The purpose of this ne-course is intentional, since it was our goal

that students handle and solve the exercises manually, like board

games, where students explore with pleasure, without fear of

making mistakes and where teacher-student relationship and

confidence can be improved and enhanced. As computer science

teacher we must mention that the use of technology is also very

important to understand and analyse some of the activities done by

students especially with a bigger sample.

Future work will focus on the development of an Intelligent

Tutoring Systems to help teachers to manage exercises and

students’ scores in initial programming learning.

Nowadays where technology dominates all fields of our activity

and interpersonal relationships are forgotten, we believe that it’s

still important to see the face and expressions of students in solve

programming problems. We want to feel the atmosphere and

excitement in problem solving.

Finally, we would like to highlight the speech Rita Pierson, in

“Every kid needs a champion”, TED Talks Education, May 2013:

"You know, kids don't learn from people they don't like."

5. REFERENCES
[1] S. Fincher, B. Baker, I. Box, Q. Cutts, M. De Raadt, P.

Haden, J. Hamer, R. Lister, M. Petre, A. Robins, K.

Sutton, D. Tolhurst, and J. Tutty, “Computer Science at

Kent programming courses,” no. 1, 2005.

[2] R.-A. M. González, La investigación en la práctica

educativa: Guía metodológica de investigación para el

diagnóstico y evaluación en los centros docentes.

Ministerio de Educación Cultura y Deporte, Centro de

Investigación y Documentación Educativa, 2007.

[3] E. Nuutila, S. Törmä, P. Kinnunen, and L. Malmi,

“Learning Programming with the PBL Method -

Experiences on PBL Cases and Tutoring.”

[4] J. O’Kelly, J. P. Gibson, J. O’Kelly, and J. P. Gibson,

“RoboCode & problem-based learning,” in

Proceedings of the 11th annual SIGCSE conference on

Innovation and technology in computer science education

- ITICSE ’06, 2006, vol. 38, no. 3, p. 217.

[5] L. Porter, D. Zingaro, and R. Lister, “Predicting student

success using fine grain clicker data,” in Proceedings of

the tenth annual conference on International computing

education research - ICER ’14, 2014, pp. 51–58.

[6] R. San-Segundo, J. M. Montero, J. Macías-Guarasa, R.

Córdoba, and J. Ferreiros, “Indianapolis, IN 35 th

ASEE/IEEE Frontiers in Education Conference S2D-17

Automatic Tools for Diagnosis and Feedback in a Project

Based Learning Course.”

[7] A. Vihavainen, J. Airaksinen, and C. Watson, “A

systematic review of approaches for teaching introductory

programming and their influence on success,” Proc. tenth

Annu. Conf. Int. Comput. Educ. Res. - ICER ’14, pp. 19–

26, 2014.

[8] J. M. Wing, “Computational Thinking: What and Why?,”

2010.

[9] J. M. Wing, “Computational Thinking,” 2012.

[10] F. J. Garcia-Peñalvo, “What Computational Thinking Is,”

J. Inf. Technol. Res., vol. 9(3), v–vi, no. October, 2016.

[11] J. Trybus, “Game-Based Learning: What it is, Why it

Works, and Where it’s Going,” New Media Institute White

Papers. [Online]. Available:

http://www.newmedia.org/game-based-learning--what-it-

is-why-it-works-and-where-its-going.html.

[12] A. Alharbi, D. Paul, F. Henskens, and M. Hannaford, “An

Investigation into the Learning Styles and Self- Regulated

Learning Strategies for Computer Science Students.”

[13] L. Cândida, S. Carmo, M. J. Marcelino, and A. J. Mendes,

“The Impact of Learning Styles in Introductory

Programming Learning.”

[14] L. Carmo, F. Pereira, A. Gomes, and A. Mendes,

“Learning styles and problem solving strategies.”

[15] A. Jimoyiannis, “Using SOLO taxonomy to explore

students’ mental models of the programming variable and

the assignment statement,” no. 4, pp. 53–74, 2011.

[16] N. E. Study, “An Overview of Tests of Cognitive Spatial

Ability,” 66th EDGD Mid-Year Conf. Proc., p. 6, 2012.

[17] Simon, S. Fincher, A. Robins, B. Baker, I. Box, Q. Cutts,

M. De Raadt, P. Haden, J. Hamer, M. Hamilton, R. Lister,

M. Petre, K. Sutton, D. Tolhurst, and J. Tutty, “Predictors

of success in a first programming course,” Proc. 8th

Austalian Conf. Comput. Educ. - Vol. 52, pp. 189–196,

2006.

[18] S. Cooper, K. Wang, M. Israni, and S. Sorby, “Spatial

Skills Training in Introductory Computing,” Proc. Elev.

Annu. Int. Conf. Int. Comput. Educ. Res., pp. 13–20, 2015.

[19] Z. Falomir, “Towards A Qualitative Descriptor for Paper

Folding Reasonin.”

[20] A. J. Jaeger, J. Wiley, J. Pellegrino, K. Zinsser, M. Stieff,

and T. Moher, “What Does the Punched Holes Task

Measure?”

[21] T. Mselle LM and H., “The impact of Memory Transfer

Language (MTL) on reducing misconceptions in teaching

programming to novices,” Int J Mach. Learn Appl, vol. 1,

no. Art. #3, p. 6, 2012.

[22] A. Jimoyiannis, “Using SOLO taxonomy to explore

students’ mental models of the programming variable and

the assignment statement,” Themes Sci. Technol. Educ.,

vol. 4, no. 2, pp. 53–74, 2011.

[23] B. B. Morrison, L. E. Margulieux, B. Ericson, and M.

Guzdial, “Subgoals Help Students Solve Parsons

Problems,” Proc. 47th ACM Tech. Symp. Comput. Sci.

Educ., pp. 42–47, 2016.

[24] B. J. Ericson, “Adaptive Parsons Problems with Discourse

Rules,” Icer ’14, pp. 145–146, 2014.

[25] P. Denny, A. Luxton-Reilly, and B. Simon, “Evaluating a

new exam question: Parsons problems,” Proc. fourth Int.

Work. Comput. Educ. Res., pp. 113–124, 2008.

