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Abtract  : 
 
The study of the off-road mobility for a vehicle consists in the study of its drawbar pull on a given sol and 

can be calculated by models such the Janosi-Hanamoto's model which depend on the soils mechanic 

parameters like the angle of friction and the cohesion. These parameters result generally from shear 

tests. The annular shear test is often used to estimate the soil shearing for mobility studies. Other shear 

test is the translation shear test which consists in the translation at a constant speed of a loaded plate 

with a smooth interface or with grousers. This article aims to present the validation of the translation 

shear test for the study of the shearing of the granular surface soils and the methodology to apply to link 

this operational test to the efforts measured during full-scale tests. An experimental device was developed 

to perform superficial translation shear tests of a loaded plate at slow speed or fast speed to obtain the 

shearing forces.  

 

Résumé : 
 
L'étude de la mobilité de surface d’un véhicule passe par l’étude de la traficabilité d’un sol donné. Cette 

traficabilité peut être calculée par des modèles, comme le modèle de Janosi-Hanamoto, qui dépendent 

des paramètres mécaniques des sols comme l'angle de frottement et la cohésion. Ces paramètres résultent 

généralement d’essais de cisaillement. L'essai annulaire de cisaillement est souvent employé pour 

caractériser le sol dans les études de mobilité. Un autre essai est  l'essai de cisaillement de traction qui 

consiste en une traction, à une vitesse constante, d'un plat chargé avec une interface douce ou rugueuse. 

Cet article vise à présenter la validation de l'essai de cisaillement de traction pour l'étude du cisaillement 

des sols granulaires et la méthodologie mise en œuvre pour relier les résultats de cet essai opérationnel 

aux efforts mesurés en vraie grandeur. Un dispositif expérimental a été développé pour réaliser les essais 

de traction de surface d’un plat chargé à vitesse lente ou rapide. Il permet de déterminer les forces de 

cisaillement à l’interface. 
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1 Introduction 
 

The movement of a vehicle on a soil induces two types of opposite forces. In off-road 

conditions, the running gear, composed of tracks or wheels, sinks into the surface soil and 

encounters obstacles which cause a resistance to the movement. At the same time, it provides a 

tractive effort making it possible for the vehicle to advance. This effort results from the 

transmission of the engine torque to the soil. The study of these resistant and driving forces is 

necessary to model the mobility of a vehicle. 

Within an investigation of a global mechanical device for mine clearance, full-scale tests 

were carried out on various soils to identify the mechanisms influencing the mobility of a 

vehicle and to validate the models developed. In order to reproduce and to study the two 
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principal mechanisms, a prototype experimental device was developed allowing sinkage tests 

and translation shear tests (Benoit, 2002) (Benoit et al. 2003) (Gotteland & Benoit, 2006). This 

can be effective to model the tractive effort of a vehicle provided that the phenomena brought 

into play are well understood. 

This article reports the validation of the translation shear test for the study of granular top 

soil shearing. The experimental study is presented: the prototype device allowing the translation 

shear tests and the granular soil tested. The results are presented and phenomena are modelled 

to understand the soil’s failure mechanism.  

 

2 Experimental methods and soil tested 
 

2.1 Experimental device 
 

In order to reproduce the mechanisms associated with soil shearing by the running gear, a 

prototype experimental device was developed (Upadhyaya et al., 1993; Benoit, 2002) providing 

a shear test by the translation of a plate (see FIG. 1). 

 

 
 

FIG. 1 – Translation shear test with the prototype experimental device 

 

This test is carried out with the translation on approximately 400 mm, at a slow constant 

speed (~23 mm.min
-1
) or fast (~840 mm.min

-1
), with an instrumented shear head (see FIG. 2) 

loaded vertically. Five parameters are measured simultaneously: horizontal displacement j, 

vertical displacement (sinkage) z, vertical load N, total horizontal force Ttotal, bulldozing force 

Tbull. The shear force T is calculated as the difference between the total horizontal force and 

bulldozing force (T =  Ttotal - Tbull ). Horizontal and vertical displacements are measured.  The 

shear plate (length L = 340 mm, width l = 240 mm) can have a smooth interface to represent the 

soil-steel friction, a bin interface to confine the soil inside and reproduce a soil-soil friction, and 

an interface with grousers to study their influence. 

 

 

 

 

 

 

 

 
 

 

 

FIG. 2 – Instrumented shear head 
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2.2. Tested soil and experimental protocols 

 
The translation shear tests were carried out on 0/5-mm sand. Extracted underwater, it has 

less than 0.3% fine particles (<80 mm) and 85% of particles smaller than 2 mm. Its low fines 

content makes it insensitive to water. The primarily siliceous grains are angular. The French 

GTR classification (GTR, 1992) of this sand is D1 with a friction angle close to 33° and a 

cohesion close to zero (<1 kPa). The behaviour of this sand can be considered as purely 

frictional. For the presented translation shear tests, the device is fixed on a 1-m
3
 bin (height 0.8 

m, width 1 m, length 1.3 m). The sand set-up is defined by a protocol so that the bulk density 

can be reproduced. The average bulk unit weight obtained is 16.3 kN.m
-3
. The water content 

was also controlled by four samples per layer that were dried and weighed (see Table 1). 

 

Table 1– Properties of D1 sand 

 

D1 sand Properties Mean value Variability  

Mechanical characteristics 

(triaxial tests, direct shear tests) 

Friction angle 

Cohesion c 

33° 

<1 kPa 

6% 

- 

(translation shear tests) Water content w 

Bulk unit weight  

1.2% 

16.3 kN.m
-3
 

6% 

5% 

 

2.3. Experimental results 
 

Two phenomena were studied: the relationship between the normal load N and the shear 

force T, and the sinkage of the instrumented shear head induced by the shearing of the D1 sand. 

Twenty-four translation shear tests were carried out on sand, four per modality. The shear plate 

used was the alveolate plate to reproduce a soil-soil friction necessary for determining the 

mechanical parameters of the sand. The normal loads N tested were 4.1 kN, 8.2 kN and 12.3 kN 

(normal stress = 50, 100 and 150 kPa, respectively). The force-displacement curves and the 

sinkage-displacement curves showed good reproducibility, confirming the relevance of the 

protocol’s set-up (see FIG. 3).  
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FIG. 3 – Translation shear test, (normal stress 50 kPa, slow speed = 23 mm.min
-1
): (b) mean 

values (j/L, T) curve, (d) mean values (j/L, z/L) curve 
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FIG. 4 – Influence of the translation speed (N1 = 50 kPa, N2 = 100 kPa, N3 = 150 kPa): (a) 

mean values (j/L, T) curves, (b) mean values (j/L, z/L) curves 

 

The same shapes of the average curves were found for the other normal loads and 

translation speeds (see FIG. 4). Changing the translation speed influenced the initial slope of the 

curves (j/L, T) (see FIG. 4). 

 

3. Modelling and Calculation of soil parameters 

 

3.1. Equations of the problem 

 

The failure mechanism can be analytically approached by geometry with two rigid blocks 

(see FIG. 5). This method, where blocks are widespread for stability calculations, is 

cinematically acceptable according to Janosi et al. (1961). 

 

 

 

 

 

 

 

 

 

 

 

 

FIG. 5 – Failure mechanism with two rigid blocks 

 

Using the identified geometry, the force balance can be put into an equation to carry out 

an ultimate equilibrium calculation, i.e. by assuming that the limit of soil resistance is reached 

along the lines. Solving the problem leads to a system of two equations with two unknown 

factors. The force balance provides a relation between forces N and T on the plate, the soil 

parameters and the geometrical parameters. 
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3.2. Parametric study 

 
In order to evaluate the influence of each parameter compared to the others, a parametric 

study was carried out. Some parameters were fixed (friction angle = 33°, null cohesion c, bulk 

unit weight = 16.3 kN.m
-3
). The plate length L was 340 mm. Then the horizontal force T 

depended only on angles α and β and on the normal load N equal to 4.1, 8.2 or 12.3 kN. As the 
experimental observations confirmed the proximity between the values of the two angles α and 
β, the assumption α = β was made. The calculated forces T were compared with the 

experimental data (see FIG. 6). In D1 sand and for a normal load N = 4.1 kN, N = 8.2 kN and 

12.3 kN, the value of the calculated force T was respectively equal to 1.9 kN, 2.5 kN and 3.1 kN 

for an angle α = 11°, 18° and 22°. The angle α between the failure line and the horizontal line 
increased with normal load N applied to the shear plate. 
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FIG. 6 – Determination of angle α for different normal loads N 

 

The sinkage induced by soil shearing was observed in all the experimental tests. Two 

combined mechanisms caused this phenomenon. The first is a variation of the stress distribution 

below the plate involving a modification of the bulk unit weight of the soil. The second 

mechanism is the sinkage of the plate depending on the failure line induced by its load. In the 

shear tests carried out on D1 sand, the sinkage induced by the horizontal displacement was 

quasi linear. In experiments, the shear plate followed a slip surface with an angle that can be 

evaluated with the measured sinkage (tanα = z/L). The results of the calculations of the angle α 
for various normal loads N highlight the similarity with the experimental data of the sinkage 

induced by shearing. The experimental values of the relative sinkage z/L for a normal load N of 

4.1 kN, 8.2 kN and 12.3 kN were equal to 23%, 31% and 36%, respectively (see FIG. 7). 

 

3.3. Calculation of the soil parameters 

 

One of the advantages of shear tests is that they provide soil mechanics parameters and in 

particular the friction angle and the cohesion c used by the Mohr-Coulomb yield criterion. 

Calculating these parameters requires that the maximum shear stress on the failure surface be 

determined. In this type of test, the shear force T divided by the plate surface S does not 

correspond to the maximum shear stress. The Tm/S values show a linear behaviour but are not 

superimposed with the Coulomb straight line corresponding to the values of the D1 sand, φ = 
33° and c = 0 (see FIG. 7). The analysis of the failure mechanism provides a Mohr-Coulomb 

behaviour by locating the failure lines and therefore specifying the value of the maximum shear 

stress. With angle α and parameters T, N, bulk unit weight, β, L, and c described previously, the 
friction angle of granular topsoil can be calculated using equilibrium calculation. 
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4. Conclusion 
 

A prototype experimental device allows laboratory (and in-situ shear tests) by translation 

of a plate at slow or fast speed, representative of traditional soil mechanics tests and the real 

kinetics of the slip under a vehicle’s running gear, respectively. The tests presented were 

performed in the laboratory on clean sand. The protocol to set up the soil allows a good 

reproducibility of the tests. The main results are: 1) the shear-displacement curves had no peak 

state so that the Janosi-Hanamoto (1961) approach could be used, 2) the tests showed a 

significant sinkage, 3) the increase in the translation speed induced a decrease in the initial slope 

of the curve, 4) the critical state force was not modified by the speed (i.e cohesion and friction 

angle were not affected by the translation speed).  In a first approximation, an analytical 

approach of this mechanism related the geometry of the slip line to the mechanical parameters 

of the granular soil, is used. This approach is based on the method of calculation to the ultimate 

equilibrium for two rigid blocks.  
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FIG. 7 – Experimental results and Coulomb straight line in the Mohr plan 
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