
UCC Library and UCC researchers have made this item openly available.
Please let us know how this has helped you. Thanks!

Title A comparison between two optimisation alternatives for mapping in
wireless network on chip

Author(s) Sacanamboy, Maribell; Quesada, Luis; Bolanos, Freddy; Bernal, Alvaro;
O'Sullivan, Barry

Publication date 2016-11

Original citation Sacanamboy, M., Quesada, L., Bolanos, F., Bernal, A. and O'Sullivan,
B. (2016) 'A comparison between two optimisation alternatives for
mapping in wireless network on chip', 2016 IEEE 28th International
Conference on Tools with Artificial Intelligence (ICTAI), San Jose, CA,
USA, 6-8 November. doi:10.1109/ICTAI.2016.142

Type of publication Conference item

Link to publisher's
version

http://dx.doi.org/10.1109/ICTAI.2016.142
Access to the full text of the published version may require a
subscription.

Rights © 2016, IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works,
for resale or redistribution to servers or lists, or reuse of any
copyrighted component of this work in other works.

Item downloaded
from

http://hdl.handle.net/10468/5690

Downloaded on 2019-12-02T13:48:45Z

https://libguides.ucc.ie/openaccess/impact?suffix=5690&title=A comparison between two optimisation alternatives for mapping in wireless network on chip
http://dx.doi.org/10.1109/ICTAI.2016.142
http://hdl.handle.net/10468/5690

A comparison between two optimisation alternatives
for mapping in wireless network on chip

Maribell Sacanamboy
Universidad del Valle and

Pontificia Universidad Javeriana
Cali, Colombia

Email: msacanamboy@javerianacali.edu.co

Luis Quesada
Insight Centre for Data Analytics

University College Cork
Email: luis.quesada@insight-centre.org

Freddy Bolanos
Department of Electrical Eng. and Automatics
Universidad Nacional de Colombia - Medellı́n

Email: fbolanosm@unal.edu.co

Alvaro Bernal
Electrical and Electronics Eng. School
Universidad del Valle Colombia - Cali

Email: alvaro.bernal@correounivalle.edu.co

Barry O’Sullivan
Insight Centre for Data Analytics

University College Cork
Email: barry.osullivan@insight-centre.org

Abstract—Network on Chip (NoC) is a well known approach
that aims at improving the performance of many-core systems.
The design of such systems involves the optimal mapping of
tasks to nodes, and the corresponding scheduling of the tasks at
every node, which results in a challenging optimisation problem
considering the constraints that need to be respected. In this
paper, after formalising the problem and elaborating on its
complexity, we present an AI approach to solve the problem and
evaluate it against a MIP approach. Our empirical evaluation
shows that the AI approach is able to obtain solutions of good
quality very quickly.

I. INTRODUCTION

Network on Chip (NoC) is a well-known approach that aims
at improving the performance of many-core systems. NoC sys-
tems are composed by a set of processing elements or nodes,
organised in a network, which implies the use of routers for
the sake of sharing information among nodes. Such a network
approach performs better with respect to traditional connection
alternatives, such as buses. Generally, processors in the NoC
are different from each other (i.e. the NoC is heterogeneous)
which means that a clever computational load distribution may
lead to very high performance implementations.

Nevertheless, as the amount of nodes grows in order to
cope with performance constraints, the link latency (i.e. the
time needed to transport messages among nodes) and the
network traffic become a bottleneck in NoC systems [1]. As a
result, Hierachical Network on Chip deals with higher network
sizes, allowing the communication among a larger number of
nodes. A Hierarchical NoC has several communication levels.
Each level exhibits different features regarding link latencies
and availability. Generally, one of these levels corresponds to
wireless links, which is why such systems are also known as
Wireless NoC or WNoC. The availability of several commu-
nication levels helps reduce mean link latency and cope with
higher traffic profiles [1], [2].

Several proposals have been made concerning the hardware
implementation of WNoC systems [3], [4]. In general, WNoC
are composed by two communication levels. The first level
corresponds to a wired, regular, mesh-type network, which
communicates to adjacent nodes and configures subnets. When

a given message must travel to a destination node which
belongs to the same subnet such a message may use the first
level links in order to reach its destination. However, if the
message must travel between nodes that belong to different
subnets, the second communication level must be used. This
second level corresponds to a wireless, high-speed network.

The mapping and scheduling problem deals with the match-
ing of tasks from an executable sentence with the available
nodes and the execution order of tasks running on each node.
When a given executable sentence is issued in the system,
its tasks must be mapped to the WNoC nodes, in such a
way that its execution optimises some measure of quality, e.g.
elapsed time. There has been some work that deal with the
mapping problem in NoC environments [5], [6], [7], but none
of them refers to mapping in WNoC systems. Some other
approaches deal with the efficient representation of both the
sentence and the network architecture, for the sake of speeding
up the mapping computation time [8], but does not consider
the mapping problem directly.

Other approaches are able to issue mapping solutions online,
i.e. at runtime. Such approaches allow the most complex com-
putations to be performed offline, whereas a lighter algorithm
may compute the mapping solution at runtime [9]. However,
the reported results deal only with unrealistic network sizes
which suggests that the this hybrid solution is not suitable
for realworld applications. Other mapping efforts are devoted
to the minimisation of power consumption [10], [11], which
may be viewed as the quality metric to optimise, instead of the
execution time of the application. However, such approaches
use optimisation algorithms such as simulated annealing,
which are very limited by the local-optimum drawback. We are
aware of Benders decomposition approaches proposed for the
mapping and scheduling problems [12]. However, the fact that
the latency in our problem is node-dependent and multi-layer
adds an extra level of complexity to our problem.

This paper describes a comparison between two modern
optimisation approaches for the computation of mapping and
scheduling of tasks. The quality metric to optimise has been
chosen as execution time in a two-level WNoC, as described

earlier. The remainder of the paper is organised as follows.
In Section II we present the mathematical model of the
optimisation problem. In Section III we describe the PBIL
algorithm. The experimental results are given in Section IV.
Finally, Section V summarises our main conclusions and future
work.

II. MATHEMATICAL MODEL OF THE MAPPING PROBLEM

We present the optimisation problem formally. We first
describe the input of the problem and the set of variables.
Then we introduce the constraints that need to be respected
and the optimisation function. At the end we elaborate on both
the complexity of the problem and the size of the mathematical
model.

A. Input

• A dependency graph (T, L) on a given set of tasks T .
• A 2-dimensional matrix d representing the distance be-

tween each pair of nodes on a given network with set
of nodes N . This distance has two components: one
corresponding to the wired section of the path (dw), and
another corresponding to the wireless section of the path
(dr).

• A 2-dimensional matrix t representing the time that the
task would spend if executed at a given node. That is, tia
is the time that task i spends if executed at node a.

• A set of incompatible pairs of tasks P . In what follows
we will often call P the incompatibility graph.

• Each router in the networks has its own latency. In the
model we use λw to denote the wired latency, and λr to
denote the wireless one.

• The speed of the link depends on whether it is wired or
wireless. σw refers to the speed of a wired link and σr
to the speed of a wireless one.

• The amount of data that task i sends to task j is denoted
by πij .

B. Variables

• A Boolean variable xia denoting whether task i is placed
at node a.

• A Boolean variable yijab denoting whether task i is placed
at node a and task j is placed at node b.

• A Boolean variable pij to denote whether task i is using
a wired link when going from i to j.

• A Boolean variable qij to denote whether task i is using
a wireless link when going from i to j.

• A Boolean variable ψij to denote whether task i precedes
task j.

• A float variable δijw denoting the wired distance from the
node of task i to the node of task j.

• A float variable δijr denoting the wireless distance from
the node of task i to the node of task j.

• A float variable τ i denoting the execution time of task i.
• A float variable si denoting the time at which task i is

starting.
• A float variable ω denoting total execution time

(makespan).

C. Constraints

1) The distance from the node of task i to the node of task
j will depend on the nodes associated with the tasks.
Note that there is only one variable yijab that will be set
to 1 since each task can only be mapped to one node.
The following constraint will ensure that δijw and δijr take
the expected value based on the assignment of tasks to
nodes:

∀〈i, j〉 ∈ L : δijw =
∑

a∈N,b∈N

dwab × y
ij
ab (1)

∀〈i, j〉 ∈ L : δijr =
∑

a∈N,b∈N

drab × y
ij
ab (2)

2) We define p and q accordingly. Notice that (dwab > 0)
and (drab > 0) are Boolean constants:

∀〈i, j〉 ∈ L : pij =
∑

a∈N,b∈N

(dwab > 0)× yijab (3)

∀〈i, j〉 ∈ L : qij =
∑

a∈N,b∈N

(drab > 0)× yijab (4)

3) We define the y variables in term of the x variables in
the expected way:

∀〈i, j〉 ∈ L, a ∈ N, b ∈ N : yijab ⇔ xia ∧ x
j
b (5)

4) Each task is assigned to one node only:

∀i ∈ T :
∑
a∈N

xia = 1 (6)

5) The tasks in an incompatible pair of tasks should be
placed in different nodes:

∀(i, j) ∈ P, a ∈ N : xia + xja < 2 (7)

6) The execution time of a task depends on the node the
task is executed:

∀i ∈ T : τi =
∑
a∈N

tia × xia (8)

7) If task j depends on task i, then task j has to wait until
receiving the data from task i:

∀〈i, j〉 ∈ L : sj ≥ si+
τ i+
(πij/σw)× δijw+
(πij/σr)× δijr +
λw × pij+
λr × qij

(9)

8) The end of execution cannot be reached before the end
of a task:

∀i ∈ T : si + τ i ≤ ω (10)

9) If task i precedes task j, task j must wait for task i:

∀i, j ∈ T : sj ≥ si + τ i − α× (1− ψij) (11)

where α is a constant greater than the maximum start
time possible for task j. That is, if task i is not con-
strained to precede task j, then the previous inequality
is a tautology.

10) If task j depends on task i, task i precedes task j:

∀〈i, j〉 ∈ L : ψij = 1 (12)

11) If task i and task j are executed by the same node, one
of them must precede the other one:

∀i, j ∈ T, a ∈ N : (xia ∧ xja)⇒ (ψij ∨ ψji) (13)

12) A node can only handle one task at a time, so ω is
greater than or equal to the sum the execution times of
the tasks allocated to it:

∀a ∈ N : ω ≥
∑
i∈T

tia × xia (14)

This is a redundant constraint that is quite useful to
tighten the lower bound of ω.

yijab ⇔ xia ∧ x
j
b is not really an integer linear equation.

However it can be translated into a set of linear equations by
putting the Boolean formula in conjunctive normal form and
translating each clause into its corresponding linear equation
formula. That is:

yijab ⇔ xia∧x
j
b ≡ (¬xia∨¬x

j
b∨y

ij
ab)∧(x

i
a∨¬y

ij
ab)∧(x

j
b∨¬y

ij
ab)

Once we have the formula in conjunctive normal form, it can
be easily translated into an equivalent set of linear equations
as follows:

xia + xjb − y
ij
ab < 2

xia − y
ij
ab > −1

xjb − y
ij
ab > −1

Similarly, (xia ∧ xja)⇒ (ψij ∨ ψji) is not a linear equation
either. However, in this case the transformation is straightfor-
ward since it is equivalent to ¬xia ∨ ¬xja ∨ ψij ∨ ψji.

D. Objective

The objective is to minimise the makespan (ω).

E. Complexity of the optimisation problem

We recall that for each task we are deciding the node on
which the task will be executed and the time at which the
task is executed. Even if we focus on the mapping problem
only, it is not difficult to prove that the optimisation problem
we are addressing is NP-Hard. We can reduce the well known
NP-Hard Graph Colouring Problem [13] to our problem as
follows:
• The set of nodes in the WNoC system represents the set

of colours available.
• The set of tasks corresponds to the set of nodes of the

graph.
• Each incompatibility in the incompatibility graph repre-

sents an arc in the graph that we want to coulor.

Then, the question of whether we can colour a graph with
m colours is equivalent to the question of whether we can
find a mapping of tasks to nodes assuming we have m nodes
available for executing the tasks.

F. Size of the mathematical model

The size of the mathematical model is dominated by the
number of linear equations, which depends on the number
of tasks in T , the number of nodes in N , the number of
dependencies in L, and the number of incompatibilities in P .
We observe that the constraint leading to the highest number of
linear equations is Constraint 3. If we assume that the number
of tasks is comparable to the number of nodes (i.e., |N | ∼ |T |),
and the dependency graph is dense (i.e., |L| ∼ |T |2), this
constraint would lead to O(|T |4) linear equations.

III. THE PBIL ALGORITHM

A. Description of the algorithm

PBIL is a heuristic optimisation algorithm inspired by
evolutionary algorithms and also from competitive learning
neural networks [14]. As its name suggests, PBIL is an
algorithm that works on a population of potential solutions
to a given optimisation problem. Any combinatorial problem
can be represented with a set of attributes. Each attribute may
have a set of potential values depending on the problem at
hand. The PBIL approach mainly relies on a probability array
that stores the search information that has been acquired so far.
Figure 1 shows an example of a PBIL probability matrix (B)
for a generic problem with V attributes, for which there may
be up to U choices for each attribute. In the specific context
of WNoC mapping problems, attributes refer to tasks and the
choices refer to the nodes where such tasks may be executed.

In Figure 1, B(i, j) stands for the probability of attribute j
taking value i. As the algorithm converges (through search
iterations), some of the probabilities of the array become

Fig. 1. A typical PBIL probability array

Input: Tolerance, A dependency graph (T, L) on a given
set of tasks T , An architectural graph of the WNoC, B
{The PBIL probability array}

Output: Optimal solution
1: B(i, j)← 1/|U | ∀ 1 ≤ i ≤ |U | and 1 ≤ j ≤ |V |
2: repeat
3: Population← Generate Population(B);
4: Best← Choose Best(Population);
5: Entropy ← Assess(B);
6: LR← Learning Rule(Entropy);
7: B ← Update(B,Best, LR);
8: until (Entropy ≤ Tolerance)
9: Optimal solution← Best;

Algorithm 1: A basic Adaptive PBIL algorithm

higher than others, which means that those choices are related
to better solutions in the search space. At the beginning of the
algorithm it is common to have the whole set of probabilities
assigned to the same value, which means that all the choices
are equally probable in early stages of the search process. In
constrained scenarios, where some choices are precluded, the
associated probabilities are set to zero. Algorithm 1 shows the
iterative convergence process for a typical PBIL optimisation
approach.

Line 1 in Algorithm 1 implements the initialisation process
for the probability array (B). Since there are up to |U | choices
for each attribute, as can be observed from Figure 1, each
probability in array B is set to 1/|U |. This means that each
solution of the search space has the same probability as the
remaining ones when the algorithm begins. In Line 3 we
generate a new population by calling Create Population.
Those choices with higher probabilities will be more prone to
be chosen in such generated population.

Once the population is generated, the best solution of
such population must be found, for the sake of guiding the
search process. The Choose Best routine locates the best
solution in the population, by using as criterium the figure of
merit concerning the optimisation process. The Choose Best
routine is located at Line 4 in Algorithm 1. At the same time it
is necessary to assess the convergence state of the algorithm.
This is performed by a measure of the entropy of array B,
as shown in Line 5 of the algorithm. The entropy calculation
is performed by means of the classical Shannon’s formulation
for the probabilities in array B [15].

The learning rate parameter is represented by the LR
variable in Algorithm 1 (Line 6). This parameter serves to
adjust the convergence speed of the algorithm. Higher values
of LR result in faster convergence times, at the expense of
poorer solution quality. This is referred to as exploitation of
the search space. Lower values of LR lead to solution space
exploration, i.e. slower searching for the sake of improving the
solution quality. An adaptive approach of the PBIL algorithm
adjusts the LR parameter dynamically in order to favour the
exploration at early stages of the convergence process and
improve exploitation at the end of such convergence [7]. The

way in which the LR parameter changes is referred to as the
learning rule. A linear learning rule was implemented in the
Learning Rule routine, at Line 6 in Algorithm 1 [5].

Once the LR parameter is ready it is time to update the
probabilities in the B array in order to approach the best
solution found at the current iteration. This task is performed
by the Update routine, which must increase the probabilities
associated with the best choice for each attribute. Since an
attribute may be viewed as a complete probability event, the
sum along each column of the probability array in Figure 1
must be equal to one. As a consequence, if a single probability
is increased (i.e. the one associated to the best solution) the
remaining probabilities in this column must be decreased
accordingly. The Update routine performs changes to the
probabilities by means of a modified hebbian rule, as depicted
in Equation (15).

B (i, j)N =

B (i, j) +
[
1−B (i, j)

]
· LR, if j = k[

1−B(i,k)N

]
·B(i,j)

1−B(i,j) , otherwise.
(15)

In Equation (15), it is assumed that the best choice for
attribute i corresponds to the k-th position, which means that
such an entry in the matrix P must be increased. The remain-
ing probabilities in column i must be decreased proportionally.
B (i, j)N refers to the updated value of the probability at entry
(i, j), whereas B (i, j) refers to the value prior to the updating
process.

This iterative process – which involves the generation of a
population starting from the B array, the search of the best
solution or makespan, and the adjusting of the original prob-
ability values according to such best solution – repeats itself
until the Entropy becomes low enough. As the probabilities
tend to concentrate in some individual positions of the array,
the Entropy tends to zero. The termination of the convergence
process compares Entropy values with a Tolerance, since
reaching zero is a very restrictive condition. At the end, the
best solution found so far is returned as the best makespan.

The basic version of the PBIL algorithm depicted in Al-
gorithm 1 must be customised at some key points to solve
the mapping of tasks in WNoC environments, as described
previously. Such customisations deal in the first place with
the probability array. Figure 1 shows a typical probability
matrix where there are a set of V attributes for which there
may be up to U implementation choices. The representation of
the mapping problem is done by associating each attribute in
the PBIL algorithm with a task to be executed. Consequently,
as each attribute is associated with an executable task, and
the optimisation problem deals with the best combination of
resources (nodes) for implementing such tasks, a mapping
solution is completely defined by a set of resources, V , which
represents the set of tasks of the input instance. In other words,
it can be said that for Figure 1 V corresponds to the number
of tasks of the input instance and U corresponds to the set of
resources that are suitable to implement such tasks (i.e. V = T
and U = N).

At the end of the optimisation process, since probabilities
are concentrated in some specific entries of the matrix –
for each column in the array, there will be a entry with a
probability value above the remaining ones – the best solution
may be easily derived by simply taking such options with
higher probability, representing implementation resources, for
each attribute, i.e. each task. If there is a constraint regarding
some specific task-resource combination, for instance it is
precluded that some task to be executed in some specific node,
the initialisation process (Line 1, in Algorithm 1) must set the
associated probability of such a combination to zero so that
none of the subsequent generated populations take into account
such a choice. This condition implies that, for that specific
column, the initialisation of the remaining probabilities should
be set to 1/(|U | − 1).

We ensure that the constraints of the problem are met in
the implementation of Generate Population. This is done
by discarding those members of the population that do not
meet the constraints so that they are not taken into account
when choosing the best solution, and the probabilities in the
PBIL array are not affected by those members.

B. Complexity of the algorithm

The complexity of the algorithm is given in terms of
the input of the problem. In what follows we focus on the
complexity of the five instructions comprising the loop.
• Generate Population. As already mentioned, this pro-

cedure is responsible for creating a population of potential
solutions. This population is represented by an array of
dimensions |Ps| by |T |, where |Ps| corresponds to the
population size, and |T | corresponds to the number of
tasks in the input instance. This function is implemented
by means of two nested loops, whose limits of iteration
are |Ps| and |T |. In the inner loop the validation for each
matrix population solution is performed. This validation
is done by two nested cycles with an upper limit of
iteration |N | − 1, the algorithm assigns the first task to
a node randomly, validating the assignment based on the
incompatibility graph. The number of operations required
for Generate Population routine is O(|Ps| × |T | ×
[(|N | − 1)2 + |P |]).

• Choose Best. This function evaluates the population
matrix based on the optimisation criterion and determines
the makespan evaluating a vector containing the best
solutions. This routine is based on a cycle whose upper
limit is |Ps|. Within this cycle two functions are called.
The first function calculates the latencies for all tasks for
each solution of the population matrix and it is defined
by two nested cycles, which have an upper limit of |T |.
The second function computes a vector with the best
solutions, calculating the node time and communication
channels for all paths in the dependency graph. These
times are stored in a matrix. This array is filled by
two nested loops bounded by |L| and |N |2. Finally,
a vector is obtained with the best solutions through a
cycle, in which each row of the matrix of paths is

added. The complexity of this final loop is O(|L|). The
total number of operations required by Choose Best is:
O(|Ps| × [|T |2 + (|L| × |N |2) + |L|]).

• Assess. This function computes the Shannon entropy
for the population matrix using the sum instruction of
Matlab, which is an operator that adds up all the data of
the array B, so the complexity of this step isO(|N |×|T |).

• Learning Rule. This function computes the learning
rate parameter and is based on the value of entropy
(E) of B. This parameter is obtained by applying a
linear learning rule [5], which is represented by the linear
equation LR = mE + b. m and b are adjusted taking
into account the minimum and maximum values of LR
(LRmin, LRmax), which are part of the input of the
algorithm. The complexity of Learning Rule is O(1)
since it is independent of the size of the input of the
problem.

• Update. This routine updates the probability matrix using
two nested loops with limits of iteration |T | and |N |, so
the complexity of this step is O(|T | × |N |).

According to the above, Choose Best has the highest
complexity, so it has the strongest impact on the performance
of the PBIL algorithm.

IV. EXPERIMENTAL RESULTS

The tests were realised using a set of eleven synthetic
instances generated through the Graph Tool called TGFF
(Task Graphs For Free) [16], which is a GNU tool used
for embedded system applications. These instances consist
of tasks, which are described by one task graph. In this
case from ten to sixty tasks with increments of five tasks
were considered. The TGFF tool provides the profile of both
bandwidth and execution times of processors for each task in
the instance.

The hardware used to solve the problem of task assignment
was modelled using a hierarchical wireless heterogeneous two-
level architecture. The first level consists of four subnets of
four nodes per subnet. The topology of these subnets is mesh-
like and each subnet is wiredly interconnected. The second
level is determined by a star topology and allows wireless
interconnection between all subnets placed in the first level.
The nodes in each subnet were composed of two elements:
the first one related to processing features determined by a
processor with different technological characteristics and the
second one related to communication features defined by a
router. The network traffic is modelled by a simple XY routing
algorithm. The algorithm PBIL was implemented and tested
using the R2016 tool Matlab. The MIP was implemented in
CPLEX using its Python interface [17].

As explained in Section II, as part of the input we have the
dependency graph and the incompatibility graph. In Table I we
show the number of edges in columns L and P respectively.
The number of nodes for all these instances is 16. We show
the dependency graph and the incompatibility graph of the
instance involving 20 tasks in Figures 3 and 4. As it can be
observed, the dependency graph has long dependency paths

(a) Best solution found with the MIP and PBIL optimisation
approaches (allowing the PBIL approach to iterate 10 times)

(b) Best solution found with the MIP and PBIL optimisation
approaches (allowing the PBIL approach to iterate until it finds
the best solution)

(c) Processing Time to find the best solution for both optimi-
sation approaches MIP and PBIL (allowing the PBIL approach
to iterate 10 times)

(d) Processing Time to find the best solution for both optimi-
sation approaches MIP and PBIL (allowing the PBIL approach
to iterate until it finds the best solution)

Fig. 2. Best solutions and execution times of the two optimisation approaches.

like the one going from task 1 to task 17, which contains
tasks 1, 4, 7, 12, 16, and 17. These dependencies impose a
total order on the execution of these tasks, i.e. the makespan
is bound to be greater than or equal to the sum of the times
of execution of those tasks. In the incompatibility graph we
observe that we have four components. All components are
actually cliques which leads us to conclude that at least m
nodes would be required, where m is the size of the biggest
clique. Notice, however, that all the tasks in the dependency
path mentioned above can be executed in the same node since
there is no incompatibility constraint between them.

As mentioned before, the optimisation criterion for these
tests was the minimum time of execution (makespan) ob-
tained from the optimal mapping of tasks to nodes and the
corresponding scheduling of the tasks. For both optimisation
alternatives, a stopping criterion timeout of 1800 seconds was
considered.

In Figure 2, we show the results obtained for the eleven
instances by the two optimisation alternatives. In Figure 2(a)

and 2(b) the Y -axis refers to the makespan given in seconds
and the X-axis shows the eleven instances represented by the
number of tasks, ranging from ten to sixty tasks. In Figure 2(c)
and 2(d) the Y -axis refers to the execution time given in
seconds.

Recall that the PBIL approach is random. So, in order to
evaluate its performance we have run the procedure several
times. In Figures 2(a) and 2(c) we have run the procedure a
fixed number of times (10 times) per instance and compared
the best solution with the one obtained by the MIP approach.
As we can observe, the solutions obtained are very close in
quality with respect to the ones obtained by the MIP approach.
The time spent by the PBIL approach is very low if we take
into account the time spent by the MIP approach. In Table I we
also report the maximum value and the median value over the
10 iterations, and compare that with the actual values obtained
by the MIP approach.

In Figures 2(b) and 2(d) we have allowed the PBIL
approach to run as many times as possible within a timeout of

TABLE I
MAKESPAN AND TIME FOR PBIL AND MIP

Instance Makespan(s) Time(s) Makespan(s) Time(s) Gap
T L P Min Max Median Min Max Median MIP MIP
10 9 10 47.43 54.17 51.48 0.70 1.49 0.92 47.41 0.79 0.04
15 16 20 63.33 70.16 68.00 1.36 2.21 1.63 63.24 1.72 0.14
20 24 26 94.45 105.50 104.00 2.45 3.34 2.77 94.45 3.79 0.00
25 32 41 420.09 434.58 423.29 3.32 6.53 4.11 420.09 4.42 0.00
30 42 53 122.76 134.93 131.49 6.16 12.42 7.65 109.17 17.40 12.45
35 49 63 109.31 127.02 117.76 8.98 14.89 10.62 99.85 65.08 9.48
40 48 115 155.15 169.72 165.28 6.96 54.78 10.12 152.92 49.63 1.46
45 54 141 125.97 143.72 134.46 8.72 55.86 11.38 105.76 270.74 19.11
50 73 107 327.41 353.16 340.47 20.81 28.69 23.21 314.66 202.47 4.05
55 78 117 173.28 208.69 188.31 20.58 41.40 26.03 139.02 1563.26 24.64
60 73 264 86.73 100.32 94.38 19.16 237.51 55.07 78.50 1800.00 10.48

Fig. 3. Dependency graph for the instance of 20 tasks

30 minutes. The time reported, though, is the time at which the
best solution is found. We observe a small improvement in the
quality of the solutions but the number of iterations required to
reach such solution is high (as it can be observed in Figure 5),
which leads to considerably higher execution times.

In Table I we also show the gap between the best makespan
obtained by PBIL after 10 iterations and the one obtained by
the MIP approach. This gap does not evolve monotonically
with respect to the number of tasks in the instance. This is
due to the fact that the complexity of the dependency graph
and the incompatibility graph does not increase monotonically
with respect to the number of tasks either. Another thing worth
noting is that the MIP approach does not scale. Indeed we
observe that the execution time increases considerably after
50 tasks. However, it is important to remember that the MIP
approach is proving optimality, which means that a suboptimal
solution of decent quality can be computed in much less time.

V. CONCLUSION

MIP is a deterministic optimisation method that ensures
optimality in all cases. On the other hand PBIL is a heuristic

approach that does not guarantee that the best solution or
makespan from the search space is found. The reason for
this is because PBIL works with a stochastic search based on
estimates and randomness, so there is no certainty on finding
the global optimum.

However, in our experiments we showed that the PBIL
approach obtains solutions that are very close to the optimal
ones using a small amount of time. While the MIP approach
guarantees optimality, it does not scale to instances involving
a large number of tasks, not only because it takes considerably
more time to prove optimality, but also because the size of its
model increases quite rapidly with respect to the number of
nodes and tasks.

As noted earlier, we are aware of Benders decomposition
approaches proposed for related mapping and scheduling prob-
lems [12]. We plan to build on those approaches to develop a
more scalable complete approach taking into account that one
of the challenges in our case is to model the node-dependent
multi-layer latency in the master problem.

We have focussed on the optimisation problem associated
with the mapping and scheduling of tasks. While this problem
is interesting in its own right, we have observed that the user
usually finds it hard to understand why it is not possible
to achieve some expected performance. Motivated by this
fact, as part of our future work, we also plan to implement
a tool that supports the user in this task. More concretely,
given an infeasible target (makespan) our objective is to
come up with a preferred explanation for infeasibility. In
Section II we presented the mathematical model containing
12 types of constraints. There are certainly constraints that
are more relevant than others when it comes to explaining the
reason for infeasibility. For instance, the user may want to be
presented first we dependency constraints and even between
dependencies there may be some dependencies that are more
important than others.

ACKNOWLEDGMENT

The authors would like to thank Pontificia Universidad
Javeriana Cali, Universidad Nacional de Colombia and Uni-
versidad del Valle for their support in the development of
the current paper. This work is partially supported by the
Science Foundation Ireland under Grant No.10/CE/I1853. The

Fig. 4. Incompatibility graph for the instance of 20 tasks

Fig. 5. Number of attempts carried out by PBIL to find the best solution

Insight Centre for Data Analytics is also supported by Science
Foundation Ireland under Grant No. SFI/12/RC/2289.

REFERENCES

[1] A. Guerre, N. Ventroux, R. David, and A. Merigot, “Hierarchical
network-on-chip for embedded many-core architectures,” NOCS 2010
- The 4th ACM/IEEE International Symposium on Networks-on-Chip,
pp. 189–196, 2010.

[2] A. Lankes, T. Wild, and A. Herkersdorf, “Hierarchical NoCs for op-
timized access to shared memory and IO resources,” 12th Euromicro
Conference on Digital System Design: Architectures, Methods and Tools,
DSD 2009, pp. 255–262, 2009.

[3] X. Li, Survey of Wireless Network-on-Chip Systems. PhD thesis, Auburn
University, 2012.

[4] A. Rezaei, F. Safaei, M. Daneshtalab, and H. Tenhunen, “HiWA :
A Hierarchical Wireless Network-on-Chip Architecture,” International
Conference on High Performance Computing & Simulation, HPCS,
pp. 499–505, 2014.

[5] F. Bolanos, J. E. Aedo, F. Rivera, and N. Bagherzadeh, “Mapping and
Scheduling in Heterogeneous NoC through Population-Based Incremen-
tal Learning,” Journal of Universal Computer Science, vol. 18, no. 7,
pp. 901–916, 2012.

[6] F. Bolaños, Mapping Techniques for Embedded Systems Design with Re-
liability Considerations. PhD thesis, University of Antioquia Medellı́n,
Colombia, 2012.

[7] F. Bolaños, J. Aedo, and F. Rivera, “Static and dynamic task mapping
onto network on chip multiprocessors,” Dyna, vol. 81, no. 185, pp. 28–
35, 2014.

[8] P. M. Wells, K. Chakraborty, and G. S. Sohi, “Adapting to intermittent
faults in multicore systems,” SIGOPS Oper. Syst. Rev., vol. 42, pp. 255–
264, Mar. 2008.

[9] A. K. Singh, A. Kumar, and T. Srikanthan, “A hybrid strategy for
mapping multiple throughput-constrained applications on mpsocs,” in
Proceedings of the 14th International Conference on Compilers, Archi-
tectures and Synthesis for Embedded Systems, CASES ’11, (New York,
NY, USA), pp. 175–184, ACM, 2011.

[10] C. Çelik and C. F. Bazlamaçci, “Effect of application mapping on
network-on-chip performance,” in Proceedings of the 20th Euromi-
cro International Conference on Parallel, Distributed and Network-
Based Processing, PDP 2012, Munich, Germany, February 15-17, 2012,
pp. 465–472, 2012.

[11] E. Antunes, M. Soares, A. Aguiar, S. J. Filho, M. Sartori, F. Hessel, and
C. A. M. Marcon, “Partitioning and dynamic mapping evaluation for
energy consumption minimization on noc-based mpsoc,” in Thirteenth
International Symposium on Quality Electronic Design, ISQED 2012,
Santa Clara, CA, USA, March 19-21, 2012, pp. 451–457, 2012.

[12] A. Emeretlis, G. Theodoridis, P. Alefragis, and N. Voros, “A logic-
based benders decomposition approach for mapping applications on
heterogeneous multicore platforms,” ACM Trans. Embed. Comput. Syst.,
vol. 15, pp. 19:1–19:28, Feb. 2016.

[13] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman
& Co., 1979.

[14] S. Baluja, “Population-based incremental learning: A method for in-
tegrating genetic search based function optimization and competitive
learning,” tech. rep., Pittsburgh, PA, USA, 1994.

[15] C. E. Shannon, “A mathematical theory of communication,” SIGMO-
BILE Mob. Comput. Commun. Rev., vol. 5, pp. 3–55, Jan. 2001.

[16] R. Dick and D. Rhodes, “Task Graphs For Free (TGFF).” Available
at:http://ziyang.eecs.umich.edu/ dickrp/tgff/, 1998.

[17] IBM ILOG CPLEX Optimization Studio, “http://www-
03.ibm.com/software/products/en/ibmilogcpleoptistud,” April 15
2016.

