
A layered methodology for fast deployment of new
technologies

Loı̈c Lagadec, Bernard Pottier, and Alix Poungou
LESTER FRE 2734, Université de Bretagne Occidentale

loic.lagadec@univ-brest.Fr

Abstract—Few efforts have been reported in building com-
puting architectures out of nanodevices by contrast with the
extensive research focusing on nanodevices fabrication aspects.
Addressing mass market and reducing time-to-market appear
now as key issues. We propose a layered approach, taking
advantage of FPGAs good characteristics, to offer the promise
of fast deployment of new technologies.

I. I NTRODUCTION

A variety of nanodevice technologies have been demon-
strated. While there are many practical challenges still remain-
ing, a key issue is now “How do we enable fast deployment
of new technologies to mass market?”

Despite research projects will go on offering new computing
solutions to implement applications, it remains difficult to
assess the real interest for final products, as well as to produce
some usable development environment for these products.

Applying a methodology similar to the interpreters or the
virtual machines met in the early years of microprocessors,
can lead to similar benefits in terms of quick availability on
new architectures. The original idea was to define portable
machines description in order to isolate the compiler, tools
and OS from the fast evolution of real architectures. These
portable machines had simple specifications so that they could
effectively be implemented on a target.

In the case of nano technologies, we propose a CAD open
framework that will enable the following porting flow:

• Layer 0, target technology : modeled as tiles, connectiv-
ities, logic, switching elements,

• Layer 1, gate array/FPGA : model described on the target
technology,

• Layer 2, application : model described on the Layer 1
model,

This flow only makes sense if the CAD algorithms allowing to
implement logic functions, to place and route, to floor plan, are
easily available: L0 to L1 to implement the micro architecture,
L1 to L2 to implement the application. The answer we propose
is to use interpretative and generic techniques for the CAD
tools.

This paper focuses on implementing a FPGA on a nano-tube
technology called NASIC. This implementation is a tiling of
cells that own logic and routing capabilities. Once the FPGA
is implemented it can act as a L1 target to port L2 applications
and to investigate costs and performances.

In the practical case of NASIC the primitives are the cell
Look Up Table (LUT), the routing switch, and a register
assembled together following the technology rules.

Given an available L1, an estimated time to build up an L0 is
within the order of 6 man-months. As the model is parametric,
it is easy to vary the L0 definition on details such as tile sizes,
routing capabilities ...

II. NANOSCALE FPGA

A. Nanoscale FPGA in NASIC

1) Nanodevices: The most mature among all known-
nanoelectronic devices are the carbon nano tubes [1], [2]
and silicon nano wires [3]. A large part of research in nano
electronics entirely focuses on these two technologies due
to their CMOS similarity. These filiform technologies are
synthesized with few nanometer in diameter and micrometer
in length. they can act as the metallic wires, semiconductors
or insulating materials [4], [5], [6] and are used to fabricate
mechanic switches [7].

2) NASICs technology:TheNanoscale Application-Specific
Integrated Circuits(NASICs) concept and architectures have
been developed at UMAss by Moritz [8]. NASICs rely on
nano-arrays of orthogonally crossed nanowires, surrounded by
microwires that are used to carry on the control signals.

The NASIC circuits operate based on a temporary storage of
data on a nanowire, each nanowire having a transistor at both
ends connected to a clock phase. The figure 1 shows a simple
realization of the AND function with such a technology. The
grid is built out of two orthogonal plans of nanowires with
different doping: the red nanowires are p-doped and the blue
nanowires are n-doped. Each junction of two nanowires can
contain active nanodevices (n-FET or p-FET transistors) or be
detached. In this design, signals are expressed in both their
original form and their complementary form.

The logic implementation is based on the PLA model, but
as the complementary signals must be generated, additional
lines appear (in fig. 1, only the bottom line is required for a
classical implementation). The product terms of the function
are realized with the p-doped nanodevices (left part of the
figure) and the sum of the product terms are coupled with the
n-doped nanodevices (right part of the figure).

3) NASICs circuit and design rules:The NASIC approach
has been demonstrated through implementing aWIre Stream-
ing Processor(WISP) [8]. WISP is a simple but complete

ENS’07 Paris, France, 3-4 December 2007

© EDA Publishing/ENS 2007 ISBN :978-2-35500-003-4 20

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by I-Revues

https://core.ac.uk/display/15495436?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

a b

S

P
ul

l−
up

P
ul

l−
do

w
n

Pull−up

Pull−down

Vdd Gnd

Vdd

Gnd

a b

S

n−Nanofil

p−Nanofil

n−FET

p−FET

Fig. 1. 1-bit AND gate realized with nanowires FETs

design exercising the principles of NASIC design; the proces-
sor is made up of a 5-stage pipeline (fetch, decode, register
file, execute and write back) supporting a simple ISA (nop,
movi, mov, add, mul).

Some stages among the five seem critical as they high-
light key strategies to preserve the density advantage of the
technology despite implementation constraints.Decodeand
Executestages are basic computing elements;Fetch supports
the program counter by providing a local state;Register File
demonstrates the local storage mechanism (that can be seen
as simple RAM implementation); theWrite Backstage brings
the need for a U turn in the data propagation flow.

In addition to offering a demonstrator of a computing
architecture based on nanodevices, WISP has mainly been a
test-bed for different strategies to be applied when designing
computing architectures, that can be wide spread reused.

4) Layered adapter:A preliminary work has targeted the
definition of a virtual FPGA architecture [9], coupled with
some exploration tools. The implementation flow of an appli-
cation follows bottom-up approach i.e. a CMOS technology,
programming support (physical FPGAs) and a computation
model (virtual FPGAs) as shown in the figure 2.

The virtual FPGA concept favors portability of applications
from a FPGA family to another at the expense of some
performances loss, hence some domain-specific functionalities
are also integrated into the virtual FPGAs in order to minimize
these costs.

The know-how developed in this scope can benefit to
addressing new target technologies such as the NASICs,
assuming a layered scheme can fit to. In particular, realizing an
FPGA (computation model) based on a programming support
(NASIC tiles) implemented on a technology (grid of carbon
nano tubes or silicon nanowires) conforms to the proposed
layered approach.

5) Reconfigurable architectures:Reconfigurable architec-
tures can be seen as a compute and configuration plans

stacking up. The configuration plan stores the behavior of
the architecture (switch activation, logic functions, etc. . .)
whereas the compute plan implements the application. Hence,
migrating from a circuit to a reconfigurable circuit requires to
implement configuration storage mechanisms. These directly
benefit from the WISP Register File design.

Physical FPGA NASIC tiles

Virtual FPGAs Nanoscale FPGAs

Nanotube/nanowire

Grid
CMOS

Computation models

Programming supports

Technologies

Fig. 2. Computation models in the reconfigurable Area

B. NFPGA architecture

The FPGA (L1 architecture) acting as a demonstrator is
wilfully simple but still owns parametric characteristic to favor
prospection. The FPGA exhibits regular tiling of cells. The
cells are made up from a short list of basic elements. Hence,
designing a FPGA relies on design rules for elements compo-
sition and on a circuit level description of these elements.

a) Architecture composition:The L1 tile is made up of a
LUT and neighbor-to-neighbor directional routing resources.

As illustrated in the figure 3, the schematic view of the
NFPGA cell consists of two parts: a LUT which regroups
a decoder and RAM memories, and routing representing the
input-output multiplexers.

��
��
��

��
��
��

Inputs

Outputs

Configuration

����������������������
����������������������
����������������������
����������������������

���
���
���

���
���
���

�����
�����
�����
�����

���
���
���

���
���
���

Routing

Switch

Config.
register

RAM

Configuration

Decoder

LUT

Adresses

Data In

Data Out

Fig. 3. Schematic of the nano scale FPGA cell. All internal connections
between the modules are directional.

b) Basic elements:

• Decoder
The figure 4 represents the address decoder layout with
4 input bits hence 8 nanowires (the signalsai and their

© EDA Publishing/ENS 2007 ISBN :978-2-35500-003-4 21

complementaries). This figure also refers to figure 1, with
a by 90 counter clockwise rotation: black points are p-
FET, white ones are n-FET.
It contains 16 nanowires as outputs (the signalssi and
their complementaries, 9 are symbolized in the diagram).
The lower part (the black points) shows the various
address combinations to select the output line and the
higher part makes it possible to activate only one output
line.
The inputs of the address decoder comes from the com-
pute plan.

a0

a0

a1

a1

a2

a2

a3

a3

s0

s0

s1

s1

s2

s2

s3

s3

s15

n−FET

n−Nanofil

p−Nanofil

Vdd

p−FET

Gnd

Fig. 4. Address decoder.

• Look-Up Table
A LUT (figure 5) contains2N inputs coming from the
address decoder and2 ∗ K bits of data to be stored.
The LUT outputs2 ∗K bits. The LUT inputs are in the
configuration plan whereas the LUT’s outputs are back
in the compute plan.

n−FET

n−Nanofil

p−Nanofil

Vdd

p−FET

Gnd

s1

s2

s3

s4

wVal

wVal

rVal

rVal

Fig. 5. LUT layout.

• Routing configuration
The programmable interconnect relies on multiplexers.
The routing configuration drives these multiplexers be-

havior (figure 6) by providing some signals to the switch
block. Note that all of the outputs must be concurrently
read in this case (2 × 2 signals per each of the 4
multiplexers) by contrast with the LUT’s outputs that can
be seen as picking upK signals out of2N .

config1

config1

config0

config0

selX3

selX2

selX1

selX4

configX30

configX21

configX30

configX31

configX21

configX20

configX20

configX11

configX11

configX10

configX10

configX31

configX40

configX40

configX41

configX41

n−FET

n−Nanofil

p−Nanofil

Vdd

p−FET

Gnd

Fig. 6. Routing configuration layout.

• Switch block
The figure 7 shows a 4-to-1 multiplexer. It takes as
inputs the signals F, North, South, East and their com-
plementaries (compute plan), gives the signal Out and its
complementary. The inputsai and their complementary
signals are the address bits coming from the previous
routing configuration stage (configuration plan) which
select the 4 input signals to be switched towards the
output. The 4 white spots in the bottom of the grid are
used to direct the North and South signals in the proper
computing direction. The top part represents all possible
combinations of the multiplexer output.

III. T OOLS

A. L0 to L1 model

1) L0 model: The L0 model is an extension of the Madeo
framework [10]. The Madeo framework originally applied
to FPGAs, with technical realizations over JBits/Virtex or
some prospective architectures such as LPPGA [11]. Hardware
elements are described with their geometric properties and
tiling. This description relies on the Madeo HDL, as shown
in table I.

The Madeo framework includes a set of back end tools that
apply to any L0 assuming it can be described using Madeo
HDL : placer router, editor, user interfaces, etc. . . Hence by
enforcing new technologies fit within the Madeo HDL/model
framework (see table II), the back end is compatible.

2) L1 model: The L1 model describes the NFPGA as an
application to be implemented over the L0 level. L1 appears
as a regular tiling of modules. the modules appear as a graph
of logic descriptions. As an example, the nano gridf of table

© EDA Publishing/ENS 2007 ISBN :978-2-35500-003-4 22

NorthNorth

SouthSouth

F

F

Out

Out

a0

a0

a1

a1

East

East

n−FET

n−Nanofil

p−Nanofil

Vdd

p−FET

Gnd

Fig. 7. Switch connection points.

((COMPOSITE
(((FUNCTION

(INPUTS x1 x2 x3)
(OUTPUTS out_f)) "END of FUNCTION"

NAMED function) " end of NAMED "

((MULTIPLEXER
(INPUTS north south east out_f)
(OUTPUT out_east)) "END of MULTIPLEXER"

NAMED mux_east) " end of NAMED "

[...] "mux_north, mux_west, mux_south"

((MULTIPLEXER
(INPUTS north south east west)
(OUTPUT out)) "END of MULTIPLEXER"

NAMED mux_x1) " end of NAMED "
[...] "mux_x2, mux_x3, mux_x4"

) "END OF ELEMENTS"
(CONNECTION

SRC mux_x1 PIN out
DEST function PIN x1

[...] "mux to LUT"

SRC function PIN out_f
DEST mux_east PIN out_f

[...] "LUT to mux"

) "END OF CONNECTION") "END OF COMPOSITE"
PRODUCE NFPGATile) " END of PRODUCE "

TABLE I
PARTIAL L0 DESCRIPTION OFNFPGA

II can implement the functionfunction of table I, provided it
appears as a RTL description (table III). From a practical point
of view, the NFPGA is represented by a 2-dimension matrix
where the cells contain, each one, a K-LUT and 4xN 4-to-
1 multiplexers, where N is the width of the channels. The
structure model of the NPGFA cell is extensible due to the
variability of both the channel width and both the LUT size.
The cell complexity strongly depends on these two parameters.

(
(
(
(
(NANOGRID 36 36) "END of NANOGRID"
REPRESENTATION
(DEFAULTCOLOR gray) "END of DEFAULTCOLOR"
(COLOR black) "END of COLOR"
(TEXT 60 40 ’function name’) "END of TEXT"

) "END of REPRESENTATION"
NAMED f) " end of NAMED "
PRODUCE NanoGrid) " END of PRODUCE "

CATEGORY ENS07) "END of CATEGORY"

TABLE II
PARTIAL L0 DESCRIPTION OFNASICS (NANOARRAY)

.i 22

.o 2
-------0000 01
------0-001 01
-----0--010 01
----0---011 01
---0----100 01
--0-----101 01
-0------110 01
0-------111 01
-------1000 10
------1-001 10
-----1--010 10
----1---011 10
---1----100 10
--1-----101 10
-1------110 10
1-------111 10
.e

TABLE III
A 3 INPUTS LUT: THE LAST THREE BITS ENCODE THE ADDRESS, THE
OUTPUT AND ITS COMPLEMENTARY SIGNAL ARE BOTH GENERATED.

The structure of the multiplexers is simplified by the use of
the disjoint routing.

We need to consider a regular tiling mechanism for the ma-
trix, agglomerate structuration mechanism for the cell and the
basic elements. In each cell, there are N output multiplexers
for feeding a LUT, K input multiplexers and a K-LUT.

B. Synthesis

Using the layouts of the FPGA-basic elements designed
in the NASIC technology, the NASIC implementation of
the aforementioned parts can be realized by combining the
topologies of the elements composing each part according to
the Moritz-design rules.

1) Basic element synthesis:The first version of the NFPGA
synthesis was focused on the synthesis at the first level of
the structuring hierarchy (Cell level). To simplify the cell
synthesis , the implementation of this one is divided into
two implementations: the routing implementation (input and
output multiplexers) and the logic implementation (LUT). This
technique permit to regard th

© EDA Publishing/ENS 2007 ISBN :978-2-35500-003-4 23

Fig. 8. The L1 layout of a 3-LUT over a Nasic L0

• Part A and A1 : The writing of configuration proceeds
as follows: first, part A takes as inputs either the config-
uration MSB or the LSB (controlled by A1). This design
technique serializes the configuration while minimizing
the diagonal effect.

• Part B : The configuration is stored on the nanowires and
taken as input in part C.

• Part C : The stored values are read and sent to D.
• Part D and D1 : The LUT inputs are the address.

Part D1 extracts the output signal of the LUT and its
complementary.

Store (B) Read (C)

Selection (A1)

Decoding (D)

Output (D1)

Write (A)

iNPUTS

Fig. 9. The NASIC grid of the 3-input LUT.The left diagram illustrates the
cutting of the grid in several basic units.

2) Floorplanning: Floorplanning consists in minimizing
the global design area by applying some transformation over
an assembly of modules (rotation, translation, swap, etc. . .).
This general situation must be specialized in a NASIC scope
as both internal floorplanning (see figure 9) and external floor-
planning (WISP-0 implementation illustrates such a floorplan-
ning in [12]) are required. However, internal floorplanning can

be archived when placing elements (by allocating a nanowire
to only one signal, floorplanning shows a diagonal effect).
External floorplanning relies on Transitive Closure Graphs
(TCG) to ensure non slicing floorplans when performing
annealing schedule [13].

IV. CONCLUSION

Among other challenges the emerging nanodevices have to
face, is the lack of stable computing support that prevents
from reaching mass market. On the other side, reconfigurable
architectures are nowadays widespreadly used due to the ease
of tailoring versions to meet application-specific requirements
while preserving the cost low by cross recouping them over
many applicative fields.

This paper brings a solution to implement, at low cost,
well known regular FPGA architectures on top of emerging
devices. The key idea behind this work is to offer to application
designers a stable layer on top of which to work. This approach
has already proved to be highly efficient during the early days
of microprocessors. We argue transposing it to nanodevices
will be as fruitful.

ACKNOWLEDGMENT

Thanks to Damien Picard for his contribution to the automa-
tion of the L1 to L0 translation.

REFERENCES

[1] C. T. White, D. H. Robertson, and J. W. Mintmire, “Helical and
rotational symmetry of nanoscale graphitic tubules,”Physic review,
vol. 47, no. 9, pp. 5485–5488, March 1 1993.

[2] P.-W. Chiu, “Towards carbon nanotube-based molecular electronics,”
Ph.D. dissertation, Walker Schottky Institut, Germany, July 2003.

[3] Y. Cui, X. Duan, J. Hu, and C. M. Lieber, “Doping and electrical
transport in silicon nanowires,”Physical chemistry, vol. 104, no. 22,
pp. 5213–5216, June 2000.

[4] Mintmire and al, “Are fullerene tubes metallic?”Physical review letters,
vol. 68, pp. 631–634, 1992.

[5] Saito and al, “Electronic structure of graphene tubules based-on c60,”
Physical review, vol. B, no. 46, pp. 1804–1811, 1992.

[6] C. Dekker, “Carbon nanotubes as molecular quantum wires,”Physics
today, vol. 52, no. 5, pp. 22–28, May 1999.

[7] T. Kueckes, K. Kim, E. Joselevich, G. Tseng, C. Cheung, and C. Lieber,
“Carbon nanotube based nonvolatile random access memory for molec-
ular computing,”science, vol. 289, pp. 94–97, 2000.

[8] C. A. Moritz and T. Wang, “Latching on the wire and pipelining in
nanoscale designs,” inthird Workshop on A non-Silicon Computation.
Allemagne: ISCA, june 2004, pp. 39–45.

[9] L. Lagadec, D. Lavenier, E. Fabiani, and B. Pottier, “Placing, routing
and editing virtuals fpgas,”Computer Science, vol. 2147, pp. 357–366,
2001.

[10] L. Lagadec, “Abstraction and modélisation et outils deCAO pour les
architectures reconfigurables,” Ph.D. dissertation, Université de Rennes
1, 2000.

[11] G. Varghese, H. Zhang, and J. M. Rabaey, “The design of a low energy
fpga,” in ISLPED, 1999, pp. 188–193.

[12] C. A. Moritz, T. Wang, M. Ben-Naser, and Y. Guo, “Wire-streaming
processor on 2-d naniwires fabrics,” inNanotech. NSTI, 2005.

[13] J.-M. Lin and Y.-W. Chang, “TCG: A transitive closure
graph-based representation for non-slicing floorplans,” inDesign
Automation Conference, 2001, pp. 764–769. [Online]. Available:
citeseer.ist.psu.edu/lin01tcg.html

© EDA Publishing/ENS 2007 ISBN :978-2-35500-003-4 24

