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ABSTRACT

Much current research is concentrated on building comput-
ing networks based on nanoscale devices. However, there
has been less progress in programming these networks to
produce useful computation. This paper considers a model
of computation based on Random Boolean Networks (RBNs).
RBNs have the ability to form complex dynamic patterns in
ways that produce collective information processing. This
approach to information processing is very different from
classical approaches, and requires non-standard synthesis
and analysis techniques. A random network-based model
seems to be appealing for emerging nanotechnologies in
which it is difficult to control the growth direction or achieve
precise assembly. We formally define the model, discuss
its universality, and investigate an evolutionary method for
”programming” RBNs to perform computations.

1. INTRODUCTION

Random Boolean Networks (RBNs) were introduced by Ka-
uffman in 1969 in the context of gene expression and fitness
landscapes. Each vertex in an RBN represents a gene. An
edge from one vertex to another implies a causal link be-
tween the two genes. ”On” state of a vertex corresponds to
the gene being expressed. Time is viewed as proceeding in
discrete steps. At each step, the new state of a vertex is a
Boolean function of the previous states of its predecessors.

Kauffman has shown that it is possible to tune the pa-
rameters of an RBN so that it exhibits self-organized critical
behavior ensuring both stability and evolutionary improve-
ments. Statistical features of self-organized RBNs match
the characteristics of living cells. The number of cycles in
the network’s state space, called attractors, corresponds to
the number of different cell types. The attractor’s length
corresponds to the cell cycle time. The sensitivity of attrac-
tors to different kind of disturbances, modeled by changing
a network connection, a state of a vertex, or the associated
function, reflects the ability of the cell to resist damage, mu-
tations and virus attacks.

RBNs were also applied to the problems of cell dif-
ferentiation [1], immune response [2], evolution [3], and
neural networks [4, 5]. They have attracted the interest of
physicists due to their analogy with the disordered systems
studied in statistical mechanics, such as the mean field spin
glass [6, 7, 8].

In this paper, we investigate how RBN can be used for
computing logic functions. We formally define the model,
discuss its universality, and investigate an evolutionary me-
thod for ”programming” RBNs to compute a given function.

Our motivation for considering random networks is that
they seem to be an appealing mathematical model for emerg-
ing nano-scale technologies in which it is difficult to control
the growth direction or achieve precise assembly, e.g. car-
bon nanotubes. It has been demonstrated that random ar-
rays of carbon nanotubes are much easier to produce com-
pared to the ones with a fixed structure [9]. Random arrays
of carbon nanotubes can be deposited at room temperature
onto polymeric and many other substrates, which makes
them a promising new material for lightweight flexible dis-
plays, smart materials or clothing, biological and chemical
sensors, tunable frequency-selective surfaces, etc. Conven-
tional semiconductors are not suitable for such applications
because they and too expensive and require a crystalline
substrate. The effort to developing organic semiconductors
has achieved only moderate success so far, mostly because
of the low-quality electron transport of organic semiconduc-
tors. Random arrays of carbon nanotubes provide a high-
quality electron transport and therefore can be a much better
alternative.

The paper is organized as follows. Section 2 gives a def-
inition of RBNs and summarizes their properties. Section 3
describes how we can use RBNs for computing logic func-
tions. Section 4 addresses the problem of constructing an
RBN for a given function. Section 5 concludes the paper
and discusses open problems.
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2. BACKGROUND AND PREVIOUS WORK

In this section, we give a brief introduction to Random Bo-
olean Networks. For a more detailed description, the reader
is referred to [5].

2.1. Definition of RBN

An (n, k)-Random Boolean Network is a synchronous Bo-
olean automaton with n vertices. Each vertex v has k pre-
decessors, assigned independently and uniformly at random
from the set of all vertices, and an associated Boolean func-
tion fv : {0, 1}n → {0, 1}. Functions are selected so that
they evaluate to values 0 and 1 with given probabilities p

and 1 − p, respectively. Time is viewed as proceeding in
discrete steps. At each step, the next value of the state vari-
able xv associated with a vertex v is a function of the pre-
vious values of the state variables xui

associated with the
predecessors of v, ui, i ∈ {1, 2, . . . , k}:

x+
v = fv(xu1

, xu2
, . . . , xuk

),

A state of an RBN is defined by the ordered set of values of
the state variables associated with its vertices.

An example of an RBN with n = 10 and k = 2 is shown
in Figure 1. We use “·”, “+” and “′” to denote the Boolean
operations AND, OR and NOT, respectively.

2.2. Frozen and chaotic phases

The parameters k and p determine the dynamics of an RBN.
If a vertex controls many other vertices, and the number of
controlled vertices grows in time, the RBN is said to be in
a chaotic phase [10]. Typically such a behavior occurs for
large values of k ∼ n. The next states of the RBN are ran-
dom with respect to the previous ones. The dynamics of the
network is very sensitive to changes in the values of state
variables, associated Boolean function, or network connec-
tions.

If a vertex controls only a small number of other vertices
and their number remains constant in time, the RBN is said
to be in a frozen phase [11]. Usually, independently on the
initial state, after a few steps, the network reaches a stable
state. This behavior usually occurs for small values of k,
such as k = 0 or 1.

There is a critical line between the frozen and the chaotic
phases, when the number of vertices controlled by a vertex
grows in time, but only up to a certain limit [12]. Statisti-
cal features of RBNs on the critical line are shown to match
the characteristics of real cells and organisms [13, 14]. The
minimal disturbances typically create only small variations
in the network’s dynamics. Just some rare perturbations
evoke radical changes.

For a given probability p, there is a critical number of
inputs kc below which the network is in the frozen phase
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Fig. 1. An example of an (10, 2)-RBN.
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Fig. 2. The reduced network for the RBN in Figure 1.

and above which the network is in the chaotic phase [6]:

kc =
1

2p(1 − p)
. (1)

2.3. Attractors

An infinite sequence of consecutive states of a network is
called a trajectory. A trajectory is uniquely defined by the
initial state. Since the number of possible states is finite, all
trajectories eventually converge to either a single state, or a
cycle of states, called attractor. The basin of attraction of
A, denoted by B(A), is the set of all trajectories leading to
the attractor A.

A number of algorithms for finding attractors in RBNs
have been presented. Most of them are based on an explicit
representation of the set of states on an RBN and therefore
are applicable to networks with up to 32 vertices only [15,
16, 17, 18]. The algorithm presented in [19] uses an implicit
representation, namely Binary Decision Diagrams [20], and
can handle larger RBNs. It is a very efficient algorithm
which finds the set of states of all attractors simultaneously
without computing the rest of the states.
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2.4. Redundant Vertices

It is possible to reduce the state space of an RBN by re-
moving redundant vertices which have no influence on net-
work’s dynamics. A vertex v is considered redundant for
an RBN G if the network GR obtained by removing v form
G has the same number and length of attractors as G. If a
vertex is not redundant, it is called relevant.

There are several types of redundant vertices. First, all
vertices v whose associated function fv is constant 0 or con-
stant 1 are redundant. If u is an successor of an redundant
vertex v and if after the substitution of the constant value
of fv in fu the function fu reduces to a constant, then u is
redundant, too.

Second, all vertices v which have no successors are re-
dundant. If u is a predecessor of an redundant vertex v and
if all successors of u are redundant, then u is redundant, too.

Third, a vertex can be redundant because its associated
function fv has a constant value due to the correlation of its
input variables. For example, if a vertex v with an associ-
ated OR (AND) function has predecessors u1 and u2 with
functions fu1

= xw and fu2
= x

′

w, then the value of fv is
always 1 (0). This kind of redundant vertices are hardest to
identify.

Exact and approximate bounds on the size of the set of
relevant vertices for different values of k and p have been
given [21, 11, 12, 10, 22]. In the infinite size limit n → ∞,
in the frozen phase, the number of relevant vertices remains
finite. In the chaotic phase, the number of relevant vertices
is proportional to n. On the critical line, the number of rel-
evant vertices scales as n1/3 [15].

The algorithms for computing the set of all redundant
vertices, e.g. [16], are too computationally expensive and
therefore are feasible for RBNs with up to a thousand ver-
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Fig. 4. An (8, 2)-RBN for the 2-input AND.

tices only. The decimation procedure presented in [18] com-
putes only a subset of redundant vertices, but it is applica-
ble to large networks. In time linear in the size of an RBN
it finds redundant vertices evident from the structure of the
network (1st and 2nd type). The decimation procedure will
not identify the redundant vertices whose associated func-
tions have constant values due to the correlation of their in-
put variables (3rd type).

The reduced network for the RBN in Figure 1 is shown
in Figure 2. Its state transition graph is given in Figure 3.
Each vertex of the state transition graph represents a 5-tuple
(xv2

xv3
xv6

xv8
xv10

) of values of states on the relevant ver-
tices v2, v3, v6, v8, v10. There are two attractors: {01111,
01110, 00100, 10000, 10011, 01011} and {00101, 11010,
00111, 01010}.

3. COMPUTING LOGIC FUNCTIONS WITH RBNS

In this section we discuss how RBNs can be used for com-
puting logic functions. One possibility is to use state vari-
ables of RBN vertices to represent function’s variables, and
to map attractors into the function’s values.

Suppose that we have an (n, k)-RBN which has m at-
tractors A0, A1, . . . , Am−1. The basins of attractions B(A0),
B(A1), . . . , B(Am−1) partition the Boolean space {0, 1}n

into m connected components via a dynamic process. At-
tractors constitute stable equilibrium points. If we assign a
value i, i ∈ {0, 1, . . . ,m − 1} to the attractor Ai and as-
sume that the set of minterms represented by the states in
the basin of attraction of Ai is mapped to i, then, the RBN
represents the function f : {0, 1}r → {0, 1, . . . ,m − 1} of
variables x1, . . . , xn, where the variable xi corresponds to
the state variable of the vertex vi. If m = 2, then the RBN
represents a Boolean function.
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Fig. 5. The reduced network for the RBN in Figure 4 and
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Definition 1 An (n, k)-RBN with m attractors represents
the function of type f : {0, 1}n → {0, 1, . . . ,m − 1} which
is defined as follows:

(a1, . . . , an) ∈ B(Ai) ⇒ f(a1, . . . , an) = i,

∀(a1, . . . , an) ∈ {0, 1}n,∀i ∈ {0, 1, . . . ,m − 1},

Note, some variables of f may be redundant. The num-
ber of vertices on which f actually depends is equal to the
number of relevant vertices of the RBN.

As an example, consider the (8,2)-RBN shown in Fig-
ure 4. The vertices v4 and v5 are relevant vertices, deter-
mining the dynamic of the RBN according to the reduced
network in Figure 5(a). The state transition graph of the
reduced network is shown in Figure 5(b). There are two at-
tractors, A0 and A1. We assign the logic 0 to A0 and the
logic 1 to A1. The initial states 00, 01 and 10 terminate in
the attractor A0 (logic 0) and the initial state 11 terminates
in the attractor A1 (logic 1). So, the RBN represents the
2-input AND.

As another example, consider the RBN in Figure 2 and
its state transition graph in Figure 3. If we assign the logic
0 to the left-hand side attractor and the logic 1 to the right-
hand side one, then we get the Boolean function

f = x2x
′

3x
′

5 + x′2x3x4(x1 + x5).

The RBN representation described by Definition 1 is not
unique since we can find many different RBNs representing
the same function. For example, the reduced network in
Figure 6 has the same state transition graph as the one in
Figure 5.

One can easily show that an RBN representation with
two attractors exists for any n-variable Boolean function,
since we can always construct a trivial (n, n)-RBN as fol-
lows. Choose any assignment (a1, . . . , an) ∈ {0, 1}n of
variables of f such that f(a1, . . . , an) = 0. Assign (a1, . . . ,

an) to be the next state of every state (b1, . . . , bn) of RBN
for which f(b1, . . . , bn) = 0.

Similarly, choose any assignment (c1, . . . , cn) ∈ {0, 1}n

of variables of f such that f(c1, . . . , cn) = 1. Assign (c1, . . . ,
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Fig. 6. An alternative network for the 2-input AND and its
state transition graph. The states are ordered as (xv1

xv2
).
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Fig. 7. An (3,1)-RBN for the 3-variable majority func-
tion and its state transition graph. The states are ordered
as (xv1
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).

cn) to be the next state of every state (d1, . . . , dn) of RBN
for which f(d1, . . . , dn) = 0.

By construction, the resulting RBN has two single-vertex
attractors: A0 = (a1, . . . , an) and A1 = (c1, . . . , cn) and
the following associated functions fv1

, . . . , fvn
:

• fvi
= f if ai = 0 and ci = 1;

• fvi
= f ′ if ai = 1 and ci = 0;

• fvi
= 0 if ai = 0 and ci = 0;

• fvi
= 1 if ai = 1 and ci = 1.

It is desirable to minimize the input degree k of an RBN
as much as possible, ideally to k = 2, so that a complex
functionality is obtained from simpler primitives. However,
some functions require k = n for an RBN with two attrac-
tors to exist. One example of such function is a 3-variable
majority function. Any (n, k)-RBN representing it with
k < 3 has at least 4 attractors (see Figure 7 and Table 1
for an example).

It is possible, however, to find a (n, 3)-RBN for the ma-
jority such that the functions associated to the vertices are
simpler than the majority itself. Consider, for instance, the
case shown in Table 2 and Figure 8. The vertex v3 has a
3-input XOR associated to it. Other two vertices are 1- and
2-variable functions.

Rather than increasing the input degree of RBN ver-
tices, we can work with multiple-valued output functions,
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x1 x2 x3 x+
1 x+

2 x+
3 f

0 0 0 0 0 0 0
0 0 1 1 0 0 0
0 1 0 0 0 1 0
0 1 1 1 0 1 1
1 0 0 0 1 0 0
1 0 1 1 1 0 1
1 1 0 0 1 1 1
1 1 1 1 1 1 1

Table 1. A mapping of states for the 3-variable majority
function resulting in 2 attractors and k = 3.

or, equivalently, map the same logic value to several attrac-
tors. Consider again the RBN representing the majority in
Figure 7. We can assign four different values to the attrac-
tors and treat the resulting representation as a function of
type {0, 1}3 → {0, 1, 2, 3}. Note that this function actually
counts the number of 1’s in the input assignment.
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Fig. 8. An (3,3)-RBN for the 3-variable majority func-
tion and its state transition graph. The states are ordered
as (xv1

xv2
xv3

)

x1 x2 x3 x+
1 x+

2 x+
3 f

0 0 0 0 0 1 0
0 0 1 1 0 0 0
0 1 0 0 0 0 0
0 1 1 1 0 1 1
1 0 0 0 0 0 0
1 0 1 1 0 1 1
1 1 0 0 1 1 1
1 1 1 1 1 0 1

Table 2. A mapping of RBN states for the 3-variable ma-
jority function resulting in 2 attractors and k = 3.

4. SYNTHESIS OF RBNS

In the traditional logic synthesis, functions are realized by
composing them from simpler functions such as AND, OR,

v5v3 00
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x
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v3
+ xv5

xv3
+ x

′

v5

Fig. 9. The reduced network for the RBN in Figure 4 with
three mutations (described in Section 4) and its state transi-
tion graph. The states are ordered as (xv3

xv5
).

NOT. Such a compositional approach does not apply easily
to RBNs, because, as it was shown in [23], the number of
attractors increases as a result of composition. If the RBN
G1 has p1 attractors, the RBN G2 has p2 attractors, and G1

and G2 have no vertices in common, then then the RBN
composed from G1 and G2 has p1 • p2 attractors, where •
is the least common multiple of p1 and p2. So, by compos-
ing RBNs we increase the number of output values of the
function represented by RBNs.

To avoid this problem, we use an evolutionary program-
ming algorithm to construct an RBN for a given function
directly. It starts from a population of randomly selected
RBNs. In each generation, the fitness of every RBN in the
population is evaluated by comparing (XORing) its function
with the target function. Smaller number of 1’s in the result
implies a better fit. Then, multiple individuals are selected
based on their fitness and modified by applying mutations
to form a new population. The mutations are implemented
by applying one of the following transformations, chosen at
random, to a randomly selected vertex:

• a predecessor of a vertex v is changed, i.e. the edge
(u, v) is replaced by an edge (w, v), v, u, w ∈ V ;

• the Boolean function of a vertex is changed to a dif-
ferent Boolean function.

The selected new population starts another generation and
the process is repeated.

As an illustration, suppose that the RBN representing
the 2-input AND gate in Figure 4 is the starting point of the
algorithm. If the the following three mutations are applied
to this RBN:

1. edge (v4, v5) is replaced by (v3, v5);

2. edge (v2, v3) is replaced by (v3, v3);

3. edge (v7, v3) is replaced by (v5, v3).

then the resulting RBN represents the 2-input XNOR. The
reduced version of this RBN is shown in Figure 9. WE as-
sume that the logic 0 is assigned to A1 and the logic 1 is
assigned to A2.

Our current version of the algorithms is too slow for
large functions, because it re-computes the complete state

© EDA Publishing/ENS 2007 ISBN :978-2-35500-003-4     18   



space in order to evaluate the fitness function. We are search-
ing for a possibility to make re-computations local in order
to speed up the algorithm.

5. CONCLUSION AND OPEN PROBLEMS

In this paper, we present a model of computation in which
states of the relevant vertices of an RBN represent variables
of the function, and attractors represent function’s values.
Such a model seems to be appealing for emerging nanotech-
nologies in which it is difficult to control the growth direc-
tion or achieve precise assembly.

Future work includes developing a more efficient tech-
nique for “programming” RBNs to a functionality which
minimizes input degree of RBN nodes, and investigating the
”real-world” requirements of dealing with unreliable nodes
or connections, and noisy systems.

We also plan to compare RBNs to other types of net-
works, with a different connectivity. The dynamics of a
random network strongly depends on the way of selecting
connections. In RBNs, each vertex has an equal probabil-
ity of being connected to other vertices. Alternatively, in
cellular automata [24], each vertex is connected only to its
immediate neighbors, and all connections are arranged in a
regular lattice. Intermediate cases are possible, for exam-
ple, in small-world networks [25] some connections are to
distant vertices and some to neighboring vertices.
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