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ABSTRACT 
 
It is difficult to know if a nano-structure has similar 
characteristics with bulk structure properties. Hence, this 
paper developed atomistic-continuum mechanics (ACM), 
and used the finite element method (FEM) to transfer an 
originally discrete atomic structure into an equilibrium 
continuum model. The purpose of this research is to study 
the Young’s modulus of copper in nano-scale structure 
under tensile testing and vibration loading.  In this 
approach, the face-centered-cubic (fcc) metal bonds 
might be able to describe the inter-atomic forces between 
adjacent atoms.  In short, the bond of the atomic lattice 
could be replaced by the spring element.  The mechanical 
properties are discussed in terms of change in the 
structural size and the percentage of point defects of 
copper. 

 

1. INTRODUCTION 
 
During the last few decades, many studies have been 
focused on the notable mechanical properties of nano-
scale crystal structures, especially the properties of their 
Young’s modulus.  To date, however, no measurement 
systems are accurate enough to describe the physical 
behavior of nanostructure properties. For this reason, 
researchers have developed a renewed interest in the field 
of potential function to describe diatomic interaction.  
Shenoy et al. [1] offered a mixed atomistic and 
continuum method for materials analysis. Girifalco and 
Weizer [2] noted that the crystal properties, in terms of 
the Morse function, calculated the Morse potential 
parameters for cubic metals using the experimental values 
of the energy of vaporization, the lattice constant, and the 
compressibility. Rottler et al. [3] have presented an 
analysis of the time evolution of the self-interstitial atom 

and vacancy point defect populations in pure bcc metals 
under constant irradiation flux conditions.  Chiang et al. 
[4] have proposed an atomic-level single-lattice method 
with a closed-form equation that is presented to predict 
the elastic characteristics of bulk metals. 
    The current study uses finite element methods (FEM) 
and the atomistic-continuum mechanics method (ACM) 
[5-6] to explore Young’s modulus and the size effect of 
nanostructures.  In view of the preceding research 
proposed, three major sets of research questions are 
addressed in this study as follows:  First, the single-
spring-single-lattice (SSSL) [4] was applied to calculate 
the analytical solution for a variety of metals.  Second, 
this study explores how the size effect controls the 
structure’s Young’s modulus.  Third, the result has 
considered the structure with point defects to compare the 
Young’s modulus under tensile and vibration analysis. 
Furthermore, the research discussed the relationship 
between the point defects distribution and Young’s 
modulus.   In this article, an equivalent-spring structure is 
represented. A spring element is applied to transform the 
metallic bonds in order to describe the interatomic force 
between adjacent metallic bonds. Moreover, the 
originally discrete atomic structure is analyzed in the 
continuum level. 
 

2. FUNDAMENTAL THEORY 
 
2.1. Crystal Structure  
 
Most solids are crystalline with their atoms arranged in a 
regular manner with a simple lattice, such as body-center-
cubic (bcc), face-center-cubic (fcc), and hexagonal closed 
packed (hcp). The main goal of this study is to explore 
the fcc crystal structure. Attraction and repulsive forces 
holds metal atoms together through the metal bond. The 
fcc  
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bonding structure could be classified as the face-centered 
spring (with initial length r0) and corner-corner springs 
(with initial length 2r0cosθ) as shown in Fig. 1. Both 
face-centered springs (as C1C2…CiCj) and corner-corner 
springs (as C1F3 CiFj; F1F3…FiFj) represent the 
interatomic forces between adjacent atoms.  It results 
from the fact that the valence electrons (outer shell 
electrons) are not bound to a particular atom but are free 
to be shared by all of the atoms. In other words, they are 
delocalized in. 
 
 
 
2.2. Finite element Method (FEM) and Atomistic-
Continuum Method (ACM) 
 
The beauty of the ACM methodology is the usage of the 
same model for tensile and vibration analysis. In ACM, 
the mass is the actual atomic mass, and the metal bonds 
are those obtained from the equivalent spring element.   
Therefore, in this research, modal analysis is also applied 
numerically to validate the experimental results. In this 
part of the analysis, the elementary theory of lateral 
vibration of beams was employed, and the relationship 
between natural frequencies and the Young’s modulus of 
the beam was obtained.  The results of both tensile and 
modal analyses were found to be reliable and acceptable 
[9].   One can generate the equations for a typical static 
constant-strain finite element. The total potential energy
πp is a function of the nodal displacement x, y, and z. 
Here, the total potential energy is given by Eq. (1) 
 

p b p sUπ = +Ω +Ω +Ω                                                          (1) 

where U, Ωb, Ωp, andΩs  represent the strain energy, 
the potential energy of the body force,  the potential 
energy of the distributed, and the potential energy of the 
surface force load respectively. The above equation can 
be rewritten as a finite element integrated form as shown 
in Eq.(2): 
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where {d} represents the nodal displacement vector, [B] 
is the strain-displacement matrix, [D] is the modulus of 
the elasticity matrix, [N] is the shape function matrix, {F} 
is the body force vector, {P} is the external load vector, 
and {Ts} is the traction force vector. 

The ACM method transfers the interatomic potential 
function into a force-displacement curve to create an 
equivalent atomistic-continuum transfer element. 
Subsequently, the equivalent nanoscale model was 
analyzed by FEM. Compared with molecular dynamics, 
the ACM is more efficient, and it provides results quickly 
in an acceptable range. In this analysis, the following 
assumptions were established: First, the diatom binding 
energy was described by Morse potential function that 
has been adopted to describe the interatomic force for 
more than 70 years. The Morse potential describes the 
relationship of potential energy and diatom distance, and 
depicts the relationship of bond strength and diatom 
distance.  Second, the crystal structures are under small 
deformation. Third, metallic bonding is the bonding 
between atoms within metals. It involves the delocalized 
sharing of free electrons among a lattice of metal atoms. 
Thus, the metallic bond may ignore the angle effect. 
Fourth, molecules are formed as atoms are held together 
with the bonds. 

 
0 02 ( ) ( )( ) [ 2 ]ij ijr r r r

ijr D e eα αϕ − − − −= −                                              (3) 

where α and D are constants with dimensions of the 
reciprocal distance and energy, respectively, and r0 is the 
equilibrium distance between two atoms. The constant 
used in the Morse potential function is shown in  Table 1. 
 

  
Figure 1.Simple-spring-single lattice model construction for 
the fcc structure and two springs sets which represented the 
center-corner by a red line; the corner to corner spring is 
represented by a black line. 
 

Table 1. Parameters used in the Morse potential function 
Metal α [1/Å] r0[Å] D[eV] 

Pb 1.18 2.73 0.23 
Ag 1.36 3.11 0.33 
Ni 1.42 2.78 0.42 
Cu 1.35 2.86 0.34 
Al 1.16 3.25 0.27 
Ca 0.80 4.56 0.16 
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The Young’s modulus E could be estimated by the 
following equation: 
 

/
/
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where Ftotal is the total reaction force, ε represents the 
applied tensile strain loading which is the elongation per 
length, and A represents the equivalent area in the ACM. 
 
2.3. SSSL Analytical Solution 
 
The nanostructure is too small to experiment by tensile 
testing. Hence, some researchers apply modal analysis to 
investigate the mechanical properties of nanostructures 
[8]. The inter-atomic force and the position of atoms are 
respectively replaced by an equivalent spring element and 
nodes as shown in Fig. 1.  The following are the distinct 
characteristics of a spring element as compared to a truss 

or a beam element: (1) has the same nature as of repulsive 
and attractive forces, (2) cannot resist bending moment, 
(3) has no cross-sectional area that needs to be defined, 
and (4) has a potential between atoms that is the same as 
the spring element. According to the two former 
characteristics, a spring element could represent a more 
realistic equivalent model since the chemical bond could 
neither be bent nor be defined by a cross-sectional area. 
This method could examine the nanostructures’ 
mechanical properties with high computing efficiency. 

In this thesis, the diatom binding energy was 
described by the Morse potential function.  By comparing 
the results with existing bulk Young’s modulus, it can be 
concluded that the present method can achieve the same 
results as other existing methods. Both analytical and 
numerical solutions were close to each other in this 
research. Equation 6 calculates the Young’s modulus of 
the crystal structure. 
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where nx and ny are respectively the number of lattices in 
the x and y directions. This model is basically a single 
cubic structure, though by the assumption of symmetric 
boundary conditions.  Equation 6 is considered as an 
infinitely repeated cubic structure. If nx and ny approach 
infinity, the Young’s modulus would come close to the 
bulk modulus as shown in Table 2.  The data in Table 2 
indicate that the neighbor lattice’s bonding number will 
affect the Young’s modulus significantly.  The 
comparison of the Young’s modulus of the face-centered-
cubic in a single crystal structure can be divided into 
three categories: bulk analytic Young’s modulus 
(calculated with the neighbor’s lattice bonding, the same 
with the Chiang [4]), nano-scale analytic Young’s 
modulus (without considering the neighbor’s lattice 
bonding), and experimental bulk modulus as shown in 
Fig. 2. In Fig. 2,  
the single crystal structure without considering the 
neighbor’s lattice bonding leads to the bulk modulus. 

 
3. SIMULATION RESULTS 
 
3.1. Young’s modulus of Copper by modal analysis 
and by tensile analysis 
 
Copper is one of the most discussed materials in 
microelectro-mechanical and nanoelectro-mechanical 
systems (MEMS/NEMS). Hence, determining copper’s 
mechanical properties is very important. This study  

Figure 2. Analytic solution results of face center cubic in 
different kinds of metal. 
 
Table 2. Young’s modulus of FCC calculated in different 
lattice numbers. 

Lattice  
number(nx x ny) PbE  AgE  NiE  CuE  

1× 1 (Bulk)[4] 119.33 201.00 304.36 220.24 
1× 1(Nano-scale) 64.80 110.41 166.18 120.15 

3× 3 54.18 91.53 138.38 100.11 
6× 6 51.05 86.11 130.29 94.27 

10× 10 49.75 83.86 126.93 91.84 
100× 100 47.94 80.75 122.27 88.48 

1000× 1000 47.75 80.43 121.80 88.14 
10000× 10000 47.74 80.40 121.75 88.10 

100000× 100000 47.73 80.40 121.75 88.10 

Bulk Modulus 46.00 100.00 180.00 140.00 
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compared the Young’s modulus in different crystal 
planes of copper.  In some research, they use the analytic 
solution from Generalized Hook’s Law [8]. Meanwhile, 
this experiment used the atomistic-continuum method to 
calculate the Young’s modulus.  This is a comparative 
study of the Cu elastic constant which is in the (100), 
(110), and (111) crystal planes.  The Young’s modulus 
was calculated according to the crystal structure’s 
bonding numbers and SSSL. The results are shown in 
Table 3, which reflects that different crystal planes will 
have different bonding numbers. The resulting Young’s 
modulus is acceptable and is similar with the results of 
the Generalized Hook’s Law. Figure 3 shows the ACM 
model and boundary condition of the crystal structure. 
This structure was built as a cantilever beam with a fixed 
end, while another side was given an external small 
displacement. The numerical model tested by the 
ANSYS® software obtained the reaction forces and 
natural frequency of the nanostructures, which could shed 
light on their mechanical properties. The size of the 
nanostructure is affected by the atoms’ mechanical 
properties. This clearly showed that the there is a 
correlation between lattice numbers and elastic constant. 
It also shows that as the lattice numbers move closer to 
infinity, the Young’s modulus would approach the bulk 
modulus. The more lattice numbers were calculated, the 
steadier elastic constant was obtained. By considering the 
atomic structure of copper, the mass of copper (Matom = 
1.05×10-25kg) is assumed to be concentrated at the centers 

of atoms, which is equivalent to the mass of the nodes in 
the ACM model as the modal analysis is processed. 
Young’s modulus could be calculated by the equation 
which is from the the Euler-Bernoulli beam theory.  After 
the resonant frequency is calculated, the Young’s 
modulus could be obtained by Eq. (7): 
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where ρ = Matom/Vtotal = Natommcu/Vtotal is the density, Natom 
is the number of atoms, mcu is the mass of copper atom,  
Vtotalis the volume of the model, L represents the length, 
and f1 represents the first resonant frequency of the 
crystal structure.  In this analysis, when we adopted the 
same model in different crystal numbers to calculate the 
Young’s modulus, we could obtain both modal analysis 
and tensile analysis; results have the same trend as shown 
in Figure 4. Figure 5 shows the mode shape of the atomic 
model. The other resonant frequency was obtained by 
obtaining the Young’s modulus using the other equation 
for the other mode. 
 

Table 3. Analysis of copper in (100), (110), and (111) direction 
results comparison   

FCC Plane (100) (110) (111) 
Number of center to center 12 28 48 
Number of corner to corner 5 10 13 

Area of each plane nm2 0.16 0.23 0.14 
Elastic constant (Gpa)[8] 66.7 130.3 191.1 
ANSYS elastic constant 

average(Gpa) 66.78 103.25 186.31

 

 
Figure 3. Boundary condition of the atomistic-continuum-
transformation structure of face center cubic 
 

 
 
 
 
 
 

Figure 4. Analytic solution results of face-centered-cubic in 
different kinds of metal, and simulation results of the 
Young’s modulus of copper in the same size by tensile and 
modal analyses 

 
Figure 5. Mode Shape of atomic model: (a) first mode, (b) 
second mode, (c) third mode, (d) fourth mode 
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3.2. Young’s modulus of Copper with point defects 
 
A perfect crystal with every atom of the same type in the 
proper location does not exist. All crystals have some 
defect. As is already known, vacancy plays a major role 
in many kinds of point defects. Vacancy point defects 
analysis was based on the perfect crystal structure results.  
This section simulated and discussed the point defect 
distribution in three types as shown in Figure 6. One is 
the point defect distribution on the free side of the 
cantilever beam; the other is the point effect distribution 
on the fixed end, and the other is the point defects 
uniform distribution on the cantilever beam. 

    On the other hand, different kinds of defect and 
concentration of various vacancies affect the mechanical 
properties of crystal.  The results of the tensile and modal 
analysis with the point defects of copper are shown in Fig. 
7. Generally speaking, the Young’s modulus will be 
changed by the percentage of point defect.  The Young’s 
modulus was observed to be higher with the tensile 
testing compared to the modal analysis. The Young’s 
modulus increases as the point defect increases when the 
point defect distribution is on the free side. Because the 
point defects distribution is on such side, the model could 
increase the model frequency or decrease its stiffness. 
This is the reason why the point defects will increase the 
model frequency and the Young’s modulus of the models 

at the same time.  The study thus sought to determine if 
the point defect distribution could affect mechanical 
properties. The study carried out the following 
simulations: tensile testing and modal analysis. 
 
 
 

4. CONCLUSION 
 
In summary, the ACM atomic model was constructed 
using atomistic-continuum mechanics for application not 
only in axis tensile loading test but also in modal analysis. 
Both the tensile and modal analysis results were reliable 
and acceptable compared with the literature mentioned 
above. The simulation results of resonant frequency 
analysis agree with the analytical solution of the resonant 
frequency based on the Euler-Bernoulli beam theory.  
The size effect was observed at the nanoscale range from 
the atomistic model. The Young’s modulus of the 
nanoscaled structure has size-dependent properties. In 
this research, comparing tensile and vibration analyses 
strongly suggests that the point defect distribution will 
affect the structure’s mechanical properties. The most 
important finding from these data suggests that vacancy 
defect distribution concentrates at the free side of the 
specimen can provide adequate results.  The ACM 
method simplifies the complexities of interaction forces 
among atoms while maintaining the calculation’s 
accuracy and the computation efficiency. The results also 
reveal that the point defect distribution will affect the 
structure’s mechanical properties. When the vacancy 
defect distribution is concentrated at the free end of the 
specimen, the Young’s modulus increases. However, the 
point defects distributed on the fixed end will decrease 
the Young’s modulus. According to the methodology of 
ACM, one could estimate the mechanical properties of a 
nanostructure with an appropriate potential energy.  The 
crystal defects might be beneficial to examine in the 
future how the mechanical properties could be controlled 
by the point defects. 
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