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Résumé – Dans cet article, nous utilisons la décomposition tensorielle PARAFAC (PARAllel FACtors) en vue de développer une nouvelle
approche pour l’égalisation aveugle multi-utilisateur dans le cadre des systèmes de communications sans fil. Le système considéré est basé sur
l’utilisation conjointe d’un réseau d’antennes et d’un sur-échantillonnage à la réception. Nous proposons tout d’abord un modèle tridimensionnel
du type PARAFAC pour le signal reçu, dont les 3 dimensions sont l’espace, le temps et le sur-échantillonnage. Ensuite, nous présentons un
nouveau récepteur aveugle multi-utilisateur pour la séparation des signaux et pour l’égalisation. Le récepteur proposé combine une modélisation
PARAFAC, une méthode de sous-espace et l’exploitation de la propriété d’alphabet fini des symboles transmis. Des résultats de simulations sont
montrés pour illustrer la performance du récepteur aveugle proposé.

Abstract – In this paper, we make use of the PARAFAC (PARAllel FACtors) tensor decomposition and propose a new blind multiuser
equalization approach for wireless communications systems employing an antenna array and oversampling at the receiver. First, a tridimensional
PARAFAC model for the received signal is proposed, the 3 dimensions being space, time and oversampling. Then, a blind receiver performing
joint blind multiuser signal separation and equalization is formulated, combining PARAFAC modelling and a subspace method together with the
use of Finite Alphabet (FA) property of symbols. Simulation results are provided to illustrate the performance of the proposed receiver.

1 Introduction

The blind multiuser equalization problem is an attractive
research topic in the area of signal processing for wireless
communications. It consists in recovering the information
transmitted by several co-channel users with the assumption
of a frequency-selective channel and without the knowledge
of training sequences. Most of receiver algorithms deal with
matrix (two-dimensional or 2-D) models for the received
signal, exploiting its space and time dimensions as well
as structural (problem-specific) properties of the transmitted
signals (finite-alphabet, constant-modulus, etc) for signal
separation and equalization [1, 2, 3].

Unlike the decompositions of 2-D arrays (matrices), which
are generally nonunique for any rank greater than one (for
rank one it is unique up to a scalar factor), low-rank
decompositions of 3-D arrays (also called third-order tensors)
are essentially unique. One of the most studied low-rank
decompositions of 3-D (or higher dimensional) tensors is
called PARAFAC (PARAallel FACtor) analysis, which was
independently developed by Caroll and Chang [5] and
Harshman [6] in the context of psychometrics and widely
studied in the chemometrics area [7]. In the context of
wireless communications, PARAFAC has recently appeared
as a powerful tool for receiver signal processing, allowing
to perform multiuser channel identification, beamforming and
symbol recovery in a blind way. Most of research bringing
PARAFAC to the context of signal processing for wireless
communications were carried out by Sidiropoulos and his
co-workers (see [8] and several references therein).

In this work, we present a new approach to the problem

of blind multiuser equalization of single-input multiple-output
(SIMO) wireless communication systems employing a receiver
antenna array together with oversampling. We first show
that the received signal can alternatively be represented as
a tridimensional (3-D) PARAFAC model, the 3 dimensions
being space, time and oversampling. After formulating
the model, a new blind multiuser equalization receiver for
joint blind multiuser signal separation and equalization is
proposed, combining PARAFAC modelling and a subspace
method together with the use of Finite Alphabet (FA) property
of symbols. The key aspect of the proposed algorithm
is that multiuser signal separation (PARAFAC stage) and
equalization (Subspace+FA stage) are iteratively performed.
Simulation results are provided to illustrate the performance
of the proposed receiver with that of classical ones.

This paper is organized as follows. In Section 2, some
background on the PARAFAC decomposition is given. Section
3 is dedicated to the signal modelling, where the proposed
PARAFAC model is introduced. In Section 4, our PARAFAC
receiver for blind multiuser equalization is formulated. Section
5 contains simulation results for performance evaluation. The
paper is finalized in Section 6 with some conclusions and
perspectives.

2 Parallel Factor (PARAFAC) analysis
For an I × J × K third-order tensor X , its Q-component
PARAFAC decomposition is given by

xi, j,k =
Q

∑
q=1

ai,qb j,qck,q. (1)
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The standard PARAFAC model for a three-way (3-D) array
expresses the original tensor as a sum of rank-one three-way
factors, each one of which being an outer product of three
vectors. By analogy with the definition of matrix rank, the rank
of a third-order tensor is defined as the minimum number of
rank-one three-way components needed to decompose X .

The PARAFAC decomposition can also be represented in
matrix notation. Define an I ×R matrix A, J ×R matrix B and
K ×R matrix C. Define also a set of matrices Xi . . ∈ C

J×K ,
i = 1, · · · , I, a set of matrices X. j . ∈ C

K×I , j = 1, · · · ,J and
a set of matrices X. .k ∈ C

I×J , k = 1, · · · ,K. Based on these
definitions, the model (1) can be written in three different ways.
For each writing of the model a system of simultaneous matrix
equations exists. The three writings of the model are:

Xi . . = BDi[A]CT i = 1, · · · , I, (2)
X. j . = CD j[B]AT j = 1, · · · ,J, (3)
X. .k = ADk[C]BT k = 1, · · · ,K, (4)

where the operator Di[A] forms a diagonal matrix from the i-th
row of A. The matrices Xi.., i = 1, · · · , I, X. j., j = 1, · · · ,J, and
X..k, k = 1, · · · ,K can be interpreted as slices of the tensor along
the first, second and third dimensions, respectively. Stacking
the matrix slices X..k, k = 1, · · · ,K into a a matrix X1 ∈ C

IJ×K ,
we have

X1 =




X..1
...

X..K


 =




AD1[C]
...

ADK [C]


BT = (C�A)BT , (5)

where � is the Khatri-Rao (columnwise Kronecker) product.
Two other matrices X2 ∈ C

JK×I and X3 ∈ C
KI×J containing

the full tensor information can be similarly formed by stacking
the matrix slices X. j., j = 1, · · · ,J, and Xi.., i = 1, · · · , I.
Uniqueness of the PARAFAC decomposition was studied by
Harshman [6] and the proof was provided by Kruskal [4].
According to Kruskal, a trilinear PARAFAC decomposition
over R is unique, except for trivial permutation and scaling
ambiguity. The uniqueness theorem is now revisited. Consider
a set of I matrices Xi . . = BDi[A]CT i = 1, · · · , I, where A ∈
R

I×R, B ∈ R
J×R and C ∈ R

K×R. If kA +kB +kC ≥ 2(R+1) the
matrices A, B and C are unique up to common permutation and
scaling of columns. This means that, any matrices A, B and C
satisfying the model Xi . ., i = 1, · · · , I, are linked to A, B and C
by

A = AΠ∆1, B = BΠ∆2, C = CΠ∆3, (6)

where Π is a permutation matrix and ∆1, ∆2 and ∆3 are diagonal
matrices satisfying the condition ∆1∆2∆3 = I.

3 Signal modelling
Let us consider a linear and uniformly-spaced array of M
antennas receiving signals from Q co-channel users. Assume
that the signal transmitted by each co-channel user is subject
to frequency-selective multipath propagation and arrives at
the receiver via L specular paths. The length of the channel
impulse response is K symbols long. At the output of each
receiver antenna, the signal is sampled at a rate that is P times
the symbol rate. Due to temporal oversampling, the resolution
of the pulse-shaping filter response is increased by a factor P.

Such an increase in the temporal resolution is interpreted here
as an addition of a third axis (or dimension) to the received
signal, called here the oversampling dimension. Let us organize
the P oversamples of the signal received at the m-th antenna
at the n-th symbol period in a vector xm(n) = [xm(n)xm(n +
1/P) · · ·xm(n +(P−1)/P)]T ∈ C

P. Its discrete-time baseband
representation in absence of noise can be factored as

xm(n) =
Q

∑
q=1

L

∑
l=1

blqam(θlq)
K−1

∑
k=0

g(k− τlq)sq(n− k), (7)

blq is the fading envelope of the l-th path of the q-th user,
am(θlq) is the phase response of the m-th antenna-element to
the l-th path of the q-th user, θlq being the associated direction
of arrival. Similarly, τlq denotes the propagation delay (in
multiples of the symbol period T ) and

g(k− τlq) =




g(k− τlq)
g(k− τlq +1/P)

...
g(k− τlq +(P−1)/P)


 (8)

represents the k-th component of the oversampled
pulse-shaping filter response evaluated at delay τlq. The
channel length K is such that K ≥ max(τlq). This condition
guarantees that all multipath energy is captured in our
frequency-selective channel impulse response model. Finally,
sq(n) is the information symbol transmitted by the q-th user at
the n-th time symbol period. Depending on the type of signal
processing used at the receiver, we may utilize either the above
parametric channel model, with explicit description of angles
and delays (narrowband assumption), or a non-parametric
one, when we are not interested in characterizing angle and
delay parameters of the channel. In this work we focus on
the parametric model, which means that all the multipath
parameters of all users are captured in our tensor model.
Define

al,q = [a1(θlq)a2(θlq) · · ·aM(θlq)]
T ∈ C

M (9)

and

Gl,q = [g(0− τlq) · · ·g(K −1− τlq)] ∈ C
P×K (10)

as the spatial and temporal responses of the channel to the l-th
multipath of the q-th user, l = 1, . . . ,L, q = 1, . . . ,Q. In order to
rewrite (7) in a more compact form, let us concatenate the LQ
spatial and temporal responses into equivalent matrices A =
[a1,1 · · ·al,q · · ·aL,Q] ∈ C

M×LQ and G = [G1,1 · · ·Gl,q · · ·GL,Q] ∈
C

P×KLQ, and define b = [b11 · · ·blq · · ·bLQ]T ∈ C
LQ as a vector

of multipath gains. Define also the overall channel impulse
response matrix H ∈ C

P×KLQ as

H = G(diag(b)⊗ IK) ∈ C
P×KLQ, (11)

where the operator ⊗ defines the Kronecker product. The
matrix H is nothing but the temporal response matrix scaled
by the complex multipath gains. The operator diag(·) forms
a diagonal matrix out of its vector argument. Considering
that a block of N transmitted symbols is processed at the
receiver, we define S = [ST

1 · · ·S
T
Q]T ∈C

KQ×N a block-Toeplitz
matrix concatenating Q Toeplitz symbol matrices, each one
of which having its first row and column equal to s(r)

q =

[sq(1)sq(2) · · · sq(N)] and s(c)
q = [sq(1)0 · · · 0]T , respectively.



TAB. 1: IPSP Algorithm
• i = 0; Initialize Â(0) and B̂(0)

1. i = i+1;

2. Update Ĉ(i) =
[(

B̂(i−1) � Â(i−1)Ψ
)

Φ
]†

X1;
3. Subspace + FA projection stage (Table 2)
4. Form Ĉ(i) from Ĉ(i)

1 , · · · , Ĉ(i)
Q ;

5. Update [Â(i)]T =
[(

(ΦĈ(i))T � B̂(i−1)
)

ΨT
]†

X2;

6. Update [B̂(i)]T =
[
Â(i)Ψ� (ΦĈ(i))T

]†
X3;

7. Go to step 2 until convergence.

TAB. 2: Subspace + FA projection stage
for q = 1 to Q,
- Determine T(i)

q from Ĉ(i)
q (subspace method [9]);

- Ŝ(i)
q = [T̂(i)

q ]−1Ĉ(i)
q ;

- s(i)
q = proj [Ŝ(i)

q ];
- Ĉ(i)

q = toeplitz [s(i)
q ];

end

In absence of noise, the received signal is a 3-D tensor
X ∈ CM×N×P that can be expressed as a set of M × N
space-time slices X. . p, each one of which admitting the
following factorization:

X. . p = (AΨ)Dp (H)(ΦS) , p = 1, · · · ,P, (12)

where

Ψ = ILQ ⊗1T
K ∈ C

LQ×KLQ, (13)
Φ = IQ ⊗1L ⊗ IK ∈ C

KLQ×KQ, (14)

are constraint matrices, composed of 1’s and 0’s. The term
1K being a “all ones" column vector of dimension K × 1. The
operator Dp (H) takes the p-th row of its matrix argument and
forms a diagonal matrix out of it. Note that (12) follows a
tridimensional (3-D) PARAFAC model. With respect to the
PARAFAC decomposition in Section 2, Equation (12) can be
interpreted as the p-th matrix slice of a (M,N,P)-dimensional
tensor X . According to (12), the received tensor is completely
characterized by a set of three matrix components AΨ, H
and ΦS. This tensor model is a PARAFAC model having a
constrained structure, the constraints being given by matrices
Ψ and Φ. According to (2), the received signal tensor can
also be expressed as a set of P × M matrix slices X.n . =
HDn

(
(ΦS)T

)
(AΨ)T , n = 1, . . . ,N or as a set of N × P

matrix slices Xm . . = (ΦS)T Dm (AΨ)HT , m = 1, . . . ,M. The
three unfolded matrices Xi=1,2,3, containing the full tensor
information, are defined as X1 = [XT

. .1 · · ·X
T
. .P]T ∈ C

MP×N ,
X2 = [XT

.1 . · · ·X
T
.N .]

T ∈ C
PN×M and X3 = [XT

1 . . · · ·X
T
M . .]

T ∈
C

NM×P, respectively.

4 Receiver algorithm
A combined PARAFAC-Subspace receiver for joint blind
multiuser signal separation and equalization is now presented.
Multiuser signal separation is done in the 3-D tensor space,
exploiting oversampling, time and space dimensions of the
received signal in an alternating way. The alternating
least squares (ALS) algorithm [6] is used for this purpose.

Equalization is done in the 2-D matrix space, where the
Toeplitz structure of users symbol matrices as well as the
Finite-Alphabet (FA) property of the transmitted symbols are
exploited for symbol estimation via a subspace method. The
key aspect of the proposed algorithm is that multiuser signal
separation (PARAFAC stage) and equalization (Subspace+FA
stage) are iteratively performed. The goal of the PARAFAC
stage is to estimate three component matrices from which
the model parameters, i.e. the oversampled channel response
matrix H, the spatial signature matrix A and the transmitted
symbols S. In turn, the goal of the subspace+FA stage is to
determine an ambiguity matrix that is inherent to the model
as well as to estimate the transmitted symbols in the 2-D space,
which are then used as an input to the PARAFAC stage to refine
the estimates of model parameters in the 3-D space. In the
following, we describe the proposed algorithm. This algorithm
is called Iterative PARAFAC-Subspace with Projection (IPSP).

For the received signal tensor X ∈C
M×N×P, multiuser signal

separation consists in estimating in an alternating way three
matrices Â ∈ C

KLQ×N , B̂ ∈ C
M×KLQ and Ĉ ∈ C

P×KLQ from
the matrix representations Xi=1,2,3 of the received signal tensor.
The multiuser signal separation problem can be formulated as
a set of three independent nonlinear least squares problems:

B̂ = argmin
B

‖X1 − (C�AΨ)ΦB‖2

Â = argmin
A

‖X2 − ((ΦB)T �C)(AΨ)T‖2 (15)

Ĉ = argmin
C

‖X3 − (AΨ� (ΦB)T )CT‖2

One iteration of the multiuser signal separation stage is
composed of three steps. At each step one component matrix
is updated while the others are fixed to the values obtained at
the previous step. Assuming that identifiability conditions are
satisfied, an estimate of the component matrices A, H and S are
related to Â, B̂ and Ĉ in the following way

B̂ = T(Π⊗ IK)S, Â = A(Π∆⊗ IL), Ĉ = H(Π⊗ IKL)T−1

where Π is a permutation ambiguity matrix, ∆ is a scaling
ambiguity matrix and T ∈ C

KQ×KQ is a block-diagonal (partial
rotation) ambiguity matrix, which must be determined at the
receiver in order to recover users symbol sequences. Since T
is block-diagonal, the symbol sequences can be recovered by
solving the following set of independent equations:

B̂1 = T1S1, B̂2 = T2S2, . . . , B̂Q = TQSQ. (16)

The subspace+FA stage consists in estimating T1, · · · ,TQ via
a subspace method [9]. For reasons of space, we report the
interested reader to [9] for further details on this algorithm.
After determining the partial rotation ambiguity matrices, users
symbol matrices can be estimated. An estimation of the
symbol sequences can be obtained from the projection of the
first row of the estimated symbol matrices Ŝ1, . . . , ŜQ onto the
FA. Then, an updated (post-equalized) version of the received
signal tensor, now free from the partial rotation ambiguity, is
then formed and used as an input to the PARAFAC stage to
refine user signal separation in the 3-D space. Tables 1 and 2
show the pseudo-code for the IPSP receiver algorithm. Table 1
enumerates the steps of the IPSP algorithm, with emphasis on
the ALS stage while Table 2 shows the steps associated to the
subspace+FA stage.
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FIG. 1: BER versus SNR. L=2 and K=2.

5 Simulation Results

The performance of the blind PARAFAC-Subspace receiver is
evaluated through computer simulations. Results are shown
in terms of bit-error-rate (BER) versus signal-to-noise ratio
(SNR), averaged over 1000 Monte Carlo experiments. For
each experiment, multipath fading gains are redrawn from an
i.i.d. Rayleigh generator while user signals are redrawn from
an i.i.d. distribution. Users symbols are modulated using
binary-phase shift keying (BPSK). The number of users is fixed
to Q = 2. For each experiment, a block of N = 50 received
samples is processed at the receiver and the BER is averaged
over the two users. At the beginning of the algorithm Â(0)

and B̂(0) are initialized as Â(0) = A + E1 and B̂(0) = B + E2,
with E1 and E2 being random error matrices, the entries of
which are drawn from a normal distribution with standard
deviation 10−1. More sophisticated strategies exist but they
are beyond the scope of this work. The performance results are
compared by varying the number M of receiver antennas and
the oversampling factor P. The number of multipaths/user is
L = 2 and the length of the overall temporal channel response
is K = 2. Multipath delays, gains and angles are respectively
(τ11,τ21) = (τ12,τ22) = (0,T ), (b11,b21) = (b12,b22) = (1,0.5),
(θ11,θ21) = (0,30o) and (θ12,θ22) = (−20o,−40o). Figure
1 shows the results for the proposed PARAFAC-Subspace
receiver with the IPSP algorithm. As the number of antennas or
the oversampling factor increases, the performance gradually
improves. Note that an increase in the number M of antennas
offers a greater performance improvement than an increase in
the oversampling factor P. These results confirm that user
signals are better distinguished in the space dimension than in
the oversampling dimension. In order to provide a performance
reference for our PARAFAC-Subspace receiver, we have also
evaluated the performance of the blind space-time receiver
proposed by Van der Veen et al. in [3], which is also based
on a subspace method and FA projection. The performance
of the Minimum Mean Square Error (MMSE) receiver with
perfect knowledge is also considered as a reference. According
to Figure 2, our receiver outperforms the blind space-time
receiver of [3], and is close to the MMSE one, with a
performance gap of 3 dB approximately.
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FIG. 2: Performance of the PARAFAC-Subspace receiver
compared to those of the blind space-time receiver of [3] and
MMSE receiver with perfect channel knowledge.

6 Conclusions
In this work, a new blind multiuser equalization receiver has
been proposed for joint blind multiuser signal separation and
equalization. The receiver is based on a PARAFAC modelling
of the received signal when an antenna array and oversampling
are jointly employed at the receiver. The proposed Iterative
PARAFAC-Subspace with Projection (IPSP) receiver combines
PARAFAC modelling and subspace method with the use
of FA-property of symbols in order to perform user signal
separation and equalization iteratively. Our results have shown
that the performance of the proposed blind receiver is better
than that of the blind space-time receiver of [3] and is close to
that of the MMSE receiver with perfect channel knowledge.
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