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Résumé – Un défaut bien connu des modèles numériques d ’élévation (MNE) obtenus par des techniques de corrélation, est le
phénomène d’adhérence, qui apparâıt le long des bords très contrastés de l’image comme une dilatation de la partie supérieure
(ou inférieure) du terrain estimé. Le phénomène est directement lié à la taille des voisinages utilisés lors de la maximisation de
la corrélation normalisée, et la magnitude de ces artefacts ne peut pas être négligée quand une précision très sous-pixellaire est
cherchée. Le travail de Delon et Rougé [3] donne une caractérisation de ce phénomène, fournissant un lien entre les disparités
mesurées par corrélation et les vraies disparités. Il permet aussi de détecter des régions incorrélables, c’est à dire, des régions
ne contenant aucune information utile pour une corrélation suffisamment précise. Comme cette relation (entre disparités vraies
et estimées) est exprimée par un système linéaire très mal posé, des nombreuses suppositions simplificatrices ont été adoptées
pour sa résolution, conduisant à la correction barycentrique du phénomène d’adhérence. Le résultat, bien que beaucoup amélioré
par rapport aux disparités brutes, reste légèrement flou et oscillant, ce qui est particulièrement gênant pour le MNE urbain.
Dans cet article nous proposons des suppositions simplificatrices moins contraignantes pour l’inversion du système, à savoir, sa
régularisation par un terme de surface minimale ou variation totale. Une telle approche permet d’obtenir un terrain avec des
bords moins flous, tout en interpolant les régions vides (sans information fiable de corrélation) d’une façon raisonnable.

Abstract – It’s well known that DEMs (Digital Elevation Models) obtained by stereo correletion techniques suffer from
adhesion phenomenon, which is a distortion of the model that appears near strong discontinuties or borders of the image. This
phenomenon is directly related to the correlation process, and the magnitudes of the artifacts cannot be neglected when trying
to obtain sub-pixel accuracies.

The work by Delon and Rougé [3] characterizes this phenomenon, giving a link between measured and true disparities, and
allowing to detect uncorrelatable regions (or regions providing no useful information for correlation). Since this leads to a very ill
posed system of equations, many simplifying assumptions have been adopted in order to easily solve it, leading to the so called
barycentric correction of the adhesion phenomenon. Even though the result is highly improved with respect to the raw correlation
disparities, one still observes a slightly blurred disparity map, which is specially annoying in urban areas.

In this work we propose more precise and natural assumptions to solve this system, namely to regularize the solution by a
minimal surface or total variation term. Such an approach is naturally expected to allow less blurred edges while still filling in
empty areas (without meaningful correlation information) in a reasonable manner.

1 Introduction

The ability of obtaining depth information form an image
pair has a wide range of applications. This problem has
been studied in depth from multiple approaches during
the last decade (see [1] for a complete review). All the
most common approaches rely on the fact that the depth
of the object is inversely proportional to the disparity of
its image projection from two different viewpoints, a phe-
nomenon celled “stereopsis”.

The obtention of DEMs (Digital Elevation Models) from
aerial or satellite images requires sub-pixel accuracies in
the terrain model. A common technique to reach these
precisions is the stereo correlation. This method as other
block matching methods suffer from the adhesion phenom-
enon, which is directly related to the windowing process
and appears near strong discontinuities or borders of the
images as a distortion of the elevation map.

The work by Delon and Rougé [3], characterizes this
phenomenon, giving a link between measured and true
disparities, and allowing to detect uncorrelatable regions
(or regions providing no useful information for correla-
tion). Since this leads to a very ill posed system of equa-
tions, many simplifying assumptions have been adopted
in order to easily solve it, leading to the so called barycen-
tric correction of the adhesion phenomenon. Even though
the result is highly improved with respect to the raw cor-
relation disparities, one still observes a slightly blurred
disparity map, which is specially annoying in urban areas.

In this work we propose more precise and natural as-
sumptions to solve this system, namely to regularize the
solution by a minimal surface or total variation term. Such
an approach is naturally expected to allow less blurred
edges while still filling in empty areas (without meaning-
ful correlation information) in a reasonable manner. We
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discuss the technical difficulties of implementing this ap-
proach, and compare some results obtained by both meth-
ods on synthetic data.

In section 2 we present some fundamental concepts and
recent advances by J. Delon and B. Rougé, on the formal-
ization of the adhesion phenomenon and their solution
the barycentric correction, summarized from [2, ch 4-5].
In section 3 we introduce a more direct and natural way
to correct the adhesion, showing in section 4 some details
of the implementation. The results will be commented in
section 5, followed by the conclusions in section 6.

2 Analytic study of correlation

Assuming that the images have small baseline and are
taken from high altitude we can consider a simplified im-
age formation model with parallel projection, where no
occlusions (due to vertical structures) can occur. Addi-
tionally we assume that the images have been previously
rectified to have a horizontal epipolar geometry [4], this
reduces the bi-dimensional matching problem to one di-
mension. Under the hypothesis of subpixel disparities,
the relation between the image pair u, ũ and the disparity
ε can be modelled by: ũ(x) = u(x + ε(x)).

Assuming that the real disparities are small enough to
perform first order approximations of the correlation, De-
lon and Rougé [2] found that the process of maximizing
the Normalized Cross Correlation (NCC) 1

ρx0(m) =

∫
ϕx0

u(x + m)ũ(x)dx
√∫

ϕx0
u2(x + m)dx

∫
ϕx0

ũ2(x)dx
(1)

produces a disparity map m which is related to the true
disparity map ε by the “fundamental equation of correla-
tion” (2):

(εdx0) ∗ ϕ = m(dx0 ∗ ϕ) (2)

In this equation the function dx0 expresses the “edgeness”
of the image u around the point x0 (center of the window
ϕ ):

dx0(x) =
u′2(x)

∫
ϕx0

u2(y)dy − u(x)u′(x)
∫

ϕx0
u′(y)u(y)dy

(∫
ϕx0

u2(y)dy
)2

This is a two variable function of x0 and x, which is
computed over the reference image u, sometimes the no-
tation d(x0, x) will be used to enforce the fact of being a
two variable function.

Equation (2) is very hard to solve for ε, because it
only provides information near the edges of u (the regions
with high dx0). In [2] this difficulty was circumvented by
a barycentric correction which consists of approximating
dx0 by a delta function at the barycenter of the window:

x1 =
R

ϕ
dx0 (x)xdxR

ϕ
dx0 (x)dx

. Then associate the computed dispar-

ity m(x0) to the location of the barycenter x1, meaning
1With

R
ϕx0

u(x)dx we denote (in a compact way) the convolution

of u with the window function ϕx0 centered at point x0; as the win-
dow has a compact support the convolution is well defined. In other
cases we use a more extended representation like:

R
u(x)ϕ(x0 − x)dx

(where the implicit integration domain is the entire support of the
image u).

ε(x1) = m(x0), the resulting irregular sampling of ε is
later interpolated on a regular grid.

Delon and Rougé [2] also derived a measure that bounds
the residual error in the computation of the disparity map
ε, introduced by the fundamental equation of correlation.
The measure N(u, ϕ, x0) (eq. (3)) is a simplified case of
the model defined by Delon in [2, ch 5.2]. It’s computed
over the image u and considers the correlation window
ϕ and the standard deviation of the image noise σnoise

(considered gaussian).

N(u, ϕ, x0) =
σnoise

‖u‖ϕx0

√∫
ϕx0

dx0(x)dx
< λ (3)

By imposing a threshold λ this bound can be used to
determine the zones where the disparity map ε (resulting
from the correlation process) have at least a precision λ
(as used in Section 4).

3 Variational Solution

Here we propose an alternative to the barycentric correc-
tion while adding regularization. More precisely, given the
measured disparity map m (found by maximizing correla-
tion) we shall instead invert equation (2) by minimizing
E(ε) = ωD(ε) + S(ε) with respect to ε, where D(ε) is the
data fitting term and S(ε) is a surface regularization. To
do so we start from the first guess ε = ε0 given by barycen-
tric correction and follow the gradient descent path:

∂ε

∂t
= −∂E

∂ε
= −(ω

∂D

∂ε
+

∂S

∂ε
).

Data term & its Euler-Lagrange: The data term is
taken to minimize an energy based on eq. (2), the funda-
mental equation of correlation:

D(ε) = ‖(ε∆dx0) ∗ ϕ−m(dx0 ∗ ϕ)‖2,
which is a very ill posed system so its solution will need
some regularization to return be solved. To calculate its
first derivative we start converting it to matrix notation
by introducing the operator K

(Kε)(x0) =
∫

ε(x)dx0(x)ϕ(x0 − x)dx

(K1)(x0) =
∫

1dx0(x)ϕ(x0 − x)dx

Then D(ε) can be written as:

D(ε) = |(Kε)−
=b︷ ︸︸ ︷

diag(m)(K1) |2
= < Kε− b, Kε− b >

= < Kε, Kε > −2 < Kε, b > + < b, b >

And calculating it’s first derivative:
∂D

∂ε
=

∂

∂ε
< Kε, Kε > − ∂

∂ε
2 < Kε, b >= 2K∗(Kε− b)

.
The conjugate matrix K∗ is defined as:

(K∗g)(x) =
∫

ϕ(x0 − x)dx0(x)g(x0)dx0



(observe that it is integrated over the variable x0, and
dx0(x) is not complex valued). This is demonstrated with:

< Kf, g >=
∫ (∫

f(x)ϕ(x0 − x)d(x0, x)dx
)
g(x0)dx0 =∫

f(x)
(∫

ϕ(x0 − x)d(x0, x)g(x0)dx0

)
dx =< f,K∗g >.

The solution for the problem is the following Partial Dif-
ferential Equation, which can be minimized by a gradient
descendent method. 2

∂D

∂ε
= 2K∗(Kε− diag(m)(K1)) (4)

Regularization term & its Euler-Lagrange: The
energy for minimizing the surface is similar to the pro-
posed in [5] and [6]:

S(ε) =
∫ √

a2 + |∇ε|2dx

In this case the value of a2 is used to control the rela-
tive weight of vertical changes; values of a2 < 1 result in
sharper edges because the changes of height are less ex-
pensive. For our problem the value of a2 may be selected
similar to the proportion (b/h)2, where b is the distance
between the cameras and h is the distance between the
cameras to the object. This choice balances the horizon-
tal (pixel) and vertical (altitude) scales so that S(ε) rep-
resents the terrain surface measured in pixels. A smaller
choice of a makes S(ε) tend to the total variation of ε.

The calculus of the E-L solution of this type of surface
minimization leads to the following equation.

∂S

∂ε
= div(∇ε/

√
a2 + |∇ε|2)

4 Multiple window sizes

In the previous section we presented a variational method
to minimize the effects of adhesion artifacts. But the re-
sult only takes into account a single window size, so now
we extend it by integrating disparities from multiple corre-
lation windows into a single energy. We build a weighted
sum of multiple D terms (weighted by ωi) for all win-
dow sizes i, and apply to each term a mask Θi to select
only one term for each pixel. This mask prevents multi-
ple terms from acting simultaneously over the same pixel
and distorting the solution (this happens specially near
the image borders where many terms have simultaneously
high values). The resulting energy will be:

E(ε) = S(ε) +
∑

i

ωi Θi D(mi, ϕi, ε) (5)

Θi(x) =





1 , if i = imin(x)

0 , otherwise.
imin(x) = arg min

i
{size(ϕi) : N(u, ϕi, x) < λ}

2The numerical implementation of this differential equation, can
be efficiently computed with six convolutions by the window function
ϕ (plus some pixel-by-pixel additions and multiplications), resulting
from developing the operator K and dx0 .

For the determination of the masks Θi we use eq. (3) to se-
lect the areas of sufficient precision {x : N(u, ϕi, x) < λ},
for each correlation window size. As the term N(u, ϕi, x)
allows to compare directly the correlation curvatures of
different window sizes, we select the smallest admissible
window size for each pixel of the image.

5 Experimental results

Here we present some early results of an implementation of
the minimization of equation (5). We computed the “cor-
relation maps” with seven sizes of correlation windows for
our images. The initial condition of the algorithm is the
DEM obtained with the barycentric correction (fig. 2),
and the computed correlation maps are used as parame-
ters.

In fig. 3 we can observe that regularization (with low
a value) sharpens the borders and reduces the oscillatory
artifacts of the structures, but as expected from a minimal
surface term the corners tend to be rounded.

The adhesion artifacts can be noticed between the ground
truth (fig. 1) and the initial condition (fig. 2), noticing that
the central structures suffer particulary from horizontal di-
lation in the initial condition. But the regularized DEM
(fig. 3) is qualitatively similar to the ground truth, the
borders are straight lines and less dilated, this is due to
the data term that emphasizes the border values of the
object.

The small objects present at the right side of the im-
ages, are more blurry in the regularized DEM because the
data term is small in zones poorly contrasted. Increas-
ing the relative weight of the data term with respect of
the regularization will conduct to instability of the first
one. This is due to the nature of the data term which has
very large range of values, from high values in zones with
highly contrasted to very small values in zones with low
contrast.

Most areas of the image don’t have any valid data term,
so the regularization is predominant there, but this isn’t
necessarily true at lower resolutions. The actual imple-
mentation of our method only operates at one resolu-
tion, while the result of the barycentric corrected DEM
[2], is generated with a multi-resolution algorithm. With
a multi-resolution implementation the influence areas of
each window will be magnified at lower resolution, allow-
ing to correct the elevation model in zones where the ac-
tual implementation doesn’t act.

6 Conclusion and future work

We presented a method to correct the adhesion phenom-
enon that also prevents the oscillatory artifacts result of
barycentric correction and allows to interpolate in non
feasible areas, while sharpening the edges. In some cases
the resulting DEM is not better than the original (the
barycentric correction), but we believe that most of these
problems may be addressed in the future works.

The problems related with the data term’s range of
values, can be addressed by re-scaling eq. (4) depending
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Fig. 1: Ground truth elevation model.
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Fig. 2: Elevation model barycentric corrected.
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Fig. 3: Computed elevation model applying 2000 steps of
the algorithm to the result of the barycentric correction.

the contrast of each pixel of the image. Using a more
anisotropic regularization we can avoid the rounding of
the corners proper of the surface minimization term, but
produces elevation maps more similar to the reference im-
age, so this term needs to be controlled carefully.

Lastly as mentioned in section 5 a multi-resolution im-
plementation is more robust to the lack of valuable infor-
mation at a certain resolution. The non-trivial aspect of
this extension concerns how to integrate data-fitting terms
at multiple resolutions into a single energy. The possible
solutions are applying the resulting ε from every scale to
the images and change scale, or adding the ε obtained so
far to process the next scale. Of course recovering the
exact urban shapes would involve a later detection stage
where straight borders of buildings, planar walls and roofs
are explicitly detected and fitted to the image data as
for instance in [7]. We are also working on similar ideas.
Anyhow, a DEM restoration like the one proposed here is
still more general (and hence also useful in regions where
planar or straight-line shapes cannot be significantly de-
tected), and serves also as a more accurate initial guess
that can guide such later detection stages.
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