Persistent phosphors under pressure

Philippe F. Smet^{1,*}, Ang Feng¹, Simon Michels¹, Robin Petit¹, Mathias Kersemans²

¹LumiLab, Department of Solid State Sciences, Ghent University, Gent, Belgium ²Mechanics of Materials and Structures, Department of Materials, Textiles and Chemical Engineering, Ghent University, Gent, Belgium *E-mail: philippe.smet@ugent.be

The phenomenon of mechanoluminescence is closely related to ability of phosphors to store energy in their lattice. Therefore, it is a good approach to first focus on the trapping and detrapping mechanisms in persistent phosphors, before heading into the topic of mechanoluminescent materials and their range of promising applications¹⁻³.

Although from a distance persistent luminescence appears as a fairly simple process, characterized by the slow emission of light after ending the excitation, the relevant processes of trapping and detrapping are of a rather complex nature. These processes, including an often ignored optically stimulated deptrapping route⁴, are illustrated for two benchmark persistent phosphors, SrAl₂O₄:Eu,Ln and Sr₂MgSi₂O₇:Eu,Dy⁵⁻⁶.

In the second part of this presentation, we discuss the consequences of disturbing the persistent luminescence process by applying pressure. We focus on the mechanoluminescence processes in BaSi₂O₂N₂:Eu, a phosphor showing an interesting elasticolumiscent behavior and a clear response to ultrasound radiation pressure fields⁷⁻⁸. The role of the trap depth distribution present in this material is carefully analyzed to understand the combined persistent and mechanoluminescent response. Finally, the prospects of novel ML analysis and detection procedures are explored.

Reference:

- 1. K. Van den Eeckhout, P.F. Smet, D. Poelman, Materials 3, 2536 (2010).
- 2. K. Van den Eeckhout, D. Poelman, P.F. Smet, Materials 6, 2789 (2013).
- 3. C.N. Xu et al., Appl. Phys. Lett. 74, 2414 (1999).
- 4. C. Tydtgat, K.W. Meert, D. Poelman, P.F. Smet, Opt. Mater. Express 6, 844 (2016).
- 5. K. Korthout et al., Phys. Rev. B 84, 085140 (2011).
- 6. D. Van der Heggen et al., Materials **10**, 867 (2017)
- 7. J. Botterman et al., Acta Materialia 60, 5494 (2012).
- 8. M. Kersemans et al., Appl. Phys. Lett. 107, 2342012 (2015).