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Abstract  —  A new methodology for the prediction of  

oscillator phase noise under the effect of an interference signal is 
presented. It is based on a semi-analytical formulation in the 
presence of the noisy interferer, using a realistic oscillator model 
extracted from harmonic-balance simulations. The theoretical 
analysis of the phase process enables the derivation of key 
mathematical properties, used for an efficient calculation of the 
interfered-oscillator phase noise spectrum. The resulting quasi-
periodic spectrum is predicted, as well as the impact of the 
interferer phase noise over each spectral component, in 
particular over the pulled oscillation frequency. It is 
demonstrated that under some conditions, the phase noise at this 
component is pulled to that of the interference signal. Resonance 
effects at multiples of the beat frequency are also predicted. The 
analyses have been validated with experimental measurements, 
obtaining excellent agreement. 

Index Terms — Microwave oscillator, frequency-domain 
analysis, interferer, injection pulling, phase noise. 

I.  INTRODUCTION 

A well-known problem in communication systems is the 
pulling of the local-oscillator frequency by an interferer. In 
phase-locked loops (PLLs), this unwanted frequency shift can 
unlock the voltage-controlled oscillator (VCO) from its low 
frequency reference [1]. Synchronization to the interference 
may also occur, which in the PLL would lead to a mixing of 
the reference frequency and the synchronized-oscillation 
frequency. Though these effects have been studied in previous 
work, little effort has been devoted to investigate the impact of 
the interferer signal and its power spectral density on the 
interfered oscillator phase noise. This characteristic is of 
critical importance in communication systems, as it can give 
rise to demodulation errors. Predicting its degradation in the 
presence of an interferer will help correct the prototypes at the 
design stage, so as to make them more robust against the 
interferer action.  

Here an analysis of the effect of an interferer on the phase-
noise spectrum of an oscillator circuit is presented. To have an 
impact on this spectrum, the interferer frequency must be 
close to that of the interfered oscillator, as otherwise the two 
signals will have independent phase variations. The analysis is 
involved since in the general case of an oscillator that is not 
locked to the interferer, the solution will be quasi-periodic, 
with two fundamental frequencies: the oscillation frequency, 
affected by the interferer, and the interferer frequency. 
Ordinary phase-noise analysis methods of oscillator circuits 
are unable to consider an additional fundamental. The only 
way to address the problem would be through a two tone 
analysis, plus phase-noise analysis of the oscillator carrier, 
which has failed to converge in commercial harmonic balance 

(HB). Instead, a semi-analytical method is applied here. A 
realistic model of the interfered oscillator is used, based on 
derivatives obtained through finite differences in HB, 
calculated about the free-running point [2-4]. The analysis will 
be based on the determination of the phase perturbation of the 
interfered oscillator in the presence of the undesired signal 
spectrum, as well as its own noise sources. 

II. ANALYSIS OF THE QUASI-PERIODIC STATE 

 The analysis will be illustrated through its application to 
the FET-based oscillator at 2.5 GHz in Fig. 1. The interference 
signal is modeled as a current source, in parallel with the 
oscillator output resistor of 50 . Interference signal entering 
through the output port is a realistic situation in front-end 
systems. However, the formulation can be equally applied for 
other locations of the interference equivalent source. It will be 
derived in terms of the voltage signal v(t) at the oscillator 
drain terminal. Note that the analysis can be performed at a 
node different from the one where the interferer current source 
is connected, since its effect is modeled by means of transfer 
functions [2-4]. 

 

 

Fig. 1 Schematic of the interfered oscillator operating at 2.5 GHz based on the 
FET NE3210S01. The interference is modeled with a current source and 
introduced into the oscillator through a circulator 

 
In this preliminary work, the interferer will be assumed to 

be a small amplitude single-tone current source with its own 
phase-noise process (t). This signal is expressed as 

  ( )( ) 2Re inj t t
g gi t I e    with 2in inf  . The introduction 

of the source ig(t) perturbs each k-th harmonic component of 
the signal v(t): 
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where each vk(t) is a narrow band process centered at the 
frequency component kfin. While the harmonic amplitudes Vk 



are slightly perturbed by the interferer, the phase components 
k(t) are unbounded in the non-synchronized state [1]. Now, 
following the semi-analytical formulation technique (SAF) 
proposed in [2-4], the Implicit Function Theorem is applied to 
obtain an envelope-domain model of the oscillator dynamics 
in the form of a single outer-tier equation: 
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where Y is the first harmonic total admittance at the 
observation node, V1 is the first harmonic amplitude and 

 2 o inf        , where o=2fo is the free-running 

frequency. The phase (t) ≡(t) represents the first-harmonic 
phase shift from the interferer frequency fin. Using the 
technique in [5], the effect of all the noise sources existing in 
the circuit has been modeled with an equivalent current 

generator  ( ) ( ) inj t
n ni t Re I t e   connected in parallel at the 

transistor drain. In the absence of noise sources, if the free-
running oscillation at fo does not synchronize to the interferer, 
system (2) provides a quasi-periodic solution with one 
autonomous component at fo [6] Note that in the case of a 
phase-locked loop (PLL) or an injection-locked oscillator the 
situation would be different. In those cases, the admittance 
function Y has a dependence on the amplitude and phase 
components of the reference or external generator signal [5, 
7]. This dependence removes the system autonomy of the 
interfered system quasi-periodic solution [8]. Therefore, the 
interfered system does not remain invariant under phase shifts, 
providing different phase noise results than the autonomous 
case, which will be the one analyzed here.  

Assuming small interferer amplitude, equation (2) can be 
approximated by a first-order Taylor series about the free-
running state, which yields the following equation for the 
phase shift [4]: 
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In [4], the coefficients (Kc, Ks, Hr, Hi) are provided in terms 
of Ig and the derivatives of the admittance function (2) 
evaluated at the free-running solution, together with a 
technique to calculate these derivatives through finite 
differences in commercial HB. The coefficients Kc, Ks contain, 
among others, the admittance derivatives with respect to the 
real and imaginary parts of the current source phasor that 
models the interferer, acting as transfer functions. Equation (3) 
provided by the SAF technique can be used to calculate the 
oscillator phase noise in the presence of a noisy interferer. The 
study must be preceded by the analysis of the steady-state 
solution, in the absence of noise sources. 

A. Phase dynamics in the absence of noise sources 

In the absence of noise sources, Equation (3) represents an 
autonomous system that can be written as: 
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  (4)

The phase shift becomes a constant value =s, fulfilling 
g(s)=0, only when the free-running frequency synchronizes to 
the interferer. Then, in the more general unsynchronized 
conditions ( ) 0,  g     must be fulfilled, implying that (t) 

grows or decreases monotonically. Let us assume that 
( ) 0,  g    . The case ( ) 0,  g     is symmetric. The time 

required by the phase variable to pass through an arbitrary 
interval [a,b] is given by: 
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From the definition of g(), the phase shift fulfills: 
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Property (6) implies that ( )t  is periodic, since: 
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Considering (6)-  (7), the phase variable can be expressed 
as: 
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Now, introducing expression (8) in the process v1(t) in (1) 
one obtains: 
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(9)

Equation (9) implies that, for a small amplitude interferer, 
v1(t) is a multi-tone signal containing the intermodulation 
products k in bf f kf  . The oscillator frequency is pulled 

from fo to '
1o in bf f f f   . This theoretical result has been 

verified by simulating the spectrum of the time-varying first 

harmonic component ( )
1 1( ) j tX t V e   using the envelope-

transient method in commercial HB software. This simulation 
is compared in Fig. 2 with the result of equation (9). Here, the 

components  0, ,b Nf P P
 

have been calculated in the 

frequency domain by introducing expression (8) in equation   
(4) and solving the resulting HB system. 



 

Fig. 2. Spectrum of the first harmonic component ( )
1 1( ) j tX t V e   in the 

presence of an interferer with Ig=0.2 mA and f = -10 MHz. 

B. Phase noise analysis 

Let (t) (t) be the phase shift in absence of noise sources. 
The noisy components introduced by the local sources and the 
interferer perturb the steady state (t) in the form 

0( ) ( ) ( )t t t     . Assuming that ( )t  is small, equation 

(3) can be linearized about (t) obtaining: 
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Equation (10) shows that the phase perturbation is a cyclo-
stationary process governed by the periodic function b0(t). 
Then, the phase perturbation can be expressed as: 
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where each time-varying harmonic k(t) is a narrow-band 
stochastic process. Equations (9) and (11) show that the phase 
noise about each component at fk is the result of the 
contributions of all the components k. In particular, the main 
contribution to phase noise about the pulled frequency 

1'of f  is given by 0. This is because the contributions of 

the components k for k ≠ 1 are scaled by the factors 
1

1 1/ 1kX X  . Then, the phase noise about 'of  can be 

approximated by the power spectral density of the process 
0(t), assumed to be stationary. The conversion between the 
interferer phase noise (t) and 0(t) is determined by the 

harmonic components  kB  of b0(t). In particular, the dc 

component of this signal is: 
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where g=d/dt has been applied. As a consequence, there is 
no direct conversion from the interferer phase noise (t) to 
0(t). The rest of the coefficients Bi determine the noise 

conversion between all the harmonic components fk, 
represented in Fig. 2, as gathered from (10). In this 
preliminary work, the analysis has been limited to the 
coefficient B1, translating equation (10) to the frequency 
domain to approach the phase noise about fo’ by: 
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where 
2

12 B   acts as a sensitivity coefficient that 

determines the influence of the interferer phase noise, f is the 
frequency offset from the carrier at fo’ and the second term is 
the oscillator’s own noise. In the absence of an interferer  
becomes zero and equation (13) agrees with the free-running 
oscillator phase noise. The introduction of the interferer 
provides >0, increasing the level of the phase noise 
characteristic, since it adds a term proportional to the 
interferer phase noise. The interferer influence is most 
noticeable when its phase noise characteristic is higher than 
that of the free-running oscillator. In that case, equation (13) 
predicts that the phase noise characteristic about fo’ is pulled 
towards the interferer phase noise curve. This behavior has 
been verified in Fig. 3, where the measured phase noise 
spectrum and the one predicted by equation (13) (SAF) have 
been compared. The interferer is not represented. Instead, its 
measured phase noise from zero offset frequency is traced for 
comparison. As predicted by (13), the oscillator phase noise is 
pulled to that of the interferer. Equation (13) also 
demonstrates a resonance effect, with maximum phase noise 
at an offset frequency about fb. Note that the singularity 
predicted by (13) at fb is fully consistent with the presence of a 

steady-state spectral line at '
2 o bf f f  . The noise resonances 

at frequency offsets kfb for k>1 could be obtained by 
considering the corresponding coefficients Bk when translating 
equation (10) to the frequency domain. Measurements are 
superimposed with a very good agreement. 

 
Fig. 3. Phase noise in the presence of an interferer with Pin  = -29.6 dBm and 
f ≈ -2 MHz. The phase noise characteristic about fo’ is pulled towards the 
interferer phase noise. 
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III. CONCLUSION 

The influence of the phase noise of an interferer on free-
running oscillator phase noise has been studied. A semi-
analytical formulation has been derived, which leads to a 
simple equation that predicts the pulling effect of the 
interfered oscillator phase noise towards that of the 
interference signal. This prediction has been verified by 
measurements in a FET-based oscillator at 2.5 GHz in the 
presence of an interferer at 2 MHz offset. 
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