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ABSTRACT   

The applications of nanoparticles in optical techniques of diagnosis and treatment of biological tissues are increasing. 
Image contrast can be improved in diagnostic approaches such as fluorescence, spectroscopy or optical coherence 
tomography. The therapeutic effect can be increased if nanoparticles are previously incorporated in the biological tissue. 
This is the case in thermotherapy, or in Photodynamic Therapy. All these applications take advantage of specific 
properties of the nanoparticles involved, either optical up- or down-conversion, thermal confinement or the ability to act 
as a drug-carrier. 

Although many biomedical applications that involve nanoparticles are being proposed and tested, there is a need to take 
into account the influence of those nanoparticles on optical radiation propagation. The previously mentioned optical 
treatment and diagnosis techniques assume a particular optical propagation pattern, which is altered by the addition of 
nanoparticles. This change depends on the nanoparticle material, shape, size and concentration, among other parameters. 
In order to try to quantify these changes, in this work several phantoms that include different nanoparticles are analyzed, 
in order to estimate the influence of nanoparticles in optical propagation. A theoretical model of optical propagation, 
which takes into account the absorption and scattering changes in the medium, is also considered. Nanoparticles of 
different sizes from 40 nm to 1 µm are analyzed. Nanoparticle materials of interest in biomedical applications are 
employed. The results are relevant in diagnosis interpretation of images and treatment outcome evaluation when 
nanoparticles are present.   
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1. INTRODUCTION  
The use of bio-nanotechnology is a promising novel strategy for the development of new ways to overcome actual 
drawbacks in clinical applications [1]. The combination of different types of nanoparticles with current therapeutic 
techniques offers new possibilities to biomedicine, such as improved drug carriers, energy transducers to absorb the light 
and transfer the energy to the drug molecule or even photodynamically active nanoparticles, as in the case of 
photodynamic therapy [2]. They can even lead to a selective localization of hyperthermic treatment due to their capacity 
of being targeted to the tumor in vivo and subjected to laser irradiation from an external source [3]. Nanoparticles have 
also an important role in the field of diagnosis, offering a solution to improve the disadvantages of conventional agents, 
such as poor contrast, photobleaching, and low chemical and optical stability in a biological environment [4]. During the 
last years, a big effort had been devoted to the research of different types of nanostructures, synthesis and manufacturing 
methods, new biomedical applications and the study of the optical and thermal effects in the medium surrounding them 
[5]. The use of models that take into account those effects has become an important tool in order to predict the response 
of biological environments when nanoparticles are administered in the target tissue. 

Optical phantoms are quite relevant in biomedical optical techniques applications, as they offer the possibility to test a 
priori assumptions by mimicking optical properties of biological tissues [6]. Optical phantoms can be built based on 
several materials, such as homogenized milk, non-dairy creamer, wax, or even suspensions of oils/fats in an aqueous 
solution such as Intralipid and India ink. The previously mentioned materials do not allow for multilayered structures, 
and present difficulties in building inhomogeneities. In order to cope with these issues, phantoms can be made from 
materials such as silicone, polyester, polyurethane or epoxy resin. 
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In this work optical phantoms are employed in order to analyze the influence of several types of nanoparticles in optical 
radiation propagation. Nanoparticles parameters, such as material type or size, influence optical radiation distribution. 
The adequate consideration of optical propagation is essential to an accurate a priori knowledge of treatment or diagnosis 
optical techniques results. In section 2 the theoretical model of nanoparticles optical properties and optical radiation 
propagation is presented. Section 3 contains results on specific nanoparticles optical properties, optical radiation 
influence and phantoms. Some conclusions are presented in section 4. 

2. NANOPARTICLES AND OPTICAL RADIATION MODEL 
Optical radiation propagation can be modeled by means of different approaches. For the present problem the distribution 
of light in a three-dimensional tissue must be obtained. This objective is reached by means of the Radiation Transport 
Theory (RTT) [7]. The model assumes that the scattering events are sufficiently numerous as to the light to be considered 
incoherent, so polarization or interference effects can be neglected. As a consequence, the basic parameter of light is the 
specific intensity )ˆ,( srI , that is, the light power per unit area per unit solid angle. The radiation is expected to be at the 
point rr , and to follow the direction ŝ . The scattering events are treated according to the scattering phase function 

)ˆ·̂( ssp ′ , which contains the probabilities of light to be scattered in the different directions. Optical radiation comes 
from direction s′ˆ  and is redirected to ŝ . The basic idea in order to write the differential radiation transport equation is 
that radiation from a particle attenuates due to absorption and scattering and also gains power because another particle 
can scatter light in the direction of the particle of interest. This can be written:  
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The absorption and scattering events which optical radiation suffers as it propagates through the biological medium with 
embedded nanoparticles must take into account contributions from optical properties depending on the type of 
pathological tissue and from nanoparticles. In order to quantify both contributions, absorption and scattering coefficients, 
µa and µs respectively, have been calculated by equations (2) and (3), where the subscript NP indicates properties of 
nanoparticles and the subscript t indicates properties of the tissue or phantom. 

 ataNPa μμμ +=      (2) 

 stsNPs μμμ +=      (3) 
Numerical analysis has been widely applied to a great variety of problems governed by differential equations. In the 
particular topic of the radiation transport equation, the Monte Carlo method has demonstrated its applicability and 
accuracy, compared with exact solutions. Perhaps the most used implementation of the Monte Carlo method applied to 
the RTT model is the one by Wang and Jacques, [8, 9]. This implementation of the Monte Carlo model is also multi-
layered, so it is possible to define several layers of different materials, with their borders always perpendicular to the 
laser beam, which is very useful due to tissues usually can be divided in different strata. 

The optical response of tissues varies depending on the type and size of the nanoparticle embedded in the target tissue 
[10]. In order to get the optical absorption and scattering properties of nanospheres of arbitrary radius, the efficiency 
factors of absorption Qabs, scattering Qsca and extinction Qext, can be calculated by means of Mie’s theory for an 
homogeneous spherical nanoparticle with radius r [11]. 
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 scaextabs QQQ −= .     (6) 
The amplitude coefficients an and bn for the scattered field are calculated by the expressions 7 and 8. In these equations 
spherical Bessel functions are used. The parameters are refractive index of the sphere relative to the host medium m, the 
size parameter x=kr, and the wave number k =2π/λ, where λ is the wavelength in the ambient medium and μ1 is the ratio 
of the magnetic permeability of the sphere to the magnetic permeability of the host medium. 
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cm radius was used to deliver an irradiance of 200 mW⁄cm2. Figure 3 shows the optical absorption in the in the host 
material and using 80 nm radius Au nanoparticles with a density of 4·109 cm-3. As it can be observed, the presence of Au 
nanoparticles involves greater absorption in the most superficial regions of the material. 

 
 

Figure 3. Optical absorption (W/cm3) in the host material without (a) and with Au nanoparticles (b). 

Optical propagation with nanoparticles results in an increase of the absorption, and as a consequence in a reduction of the 
light penetration in the target tissue. The differences are strongly dependent on the nanoparticle size, the concentration, 
as well as on the wavelength of the optical radiation employed. The effective penetration depth, given by ߜ = 1 ඥ3ߤ௔ߤ௦ᇱ൘     

according to the diffusion limit, can be calculated for different wavelengths and nanoparticles types. Table 1 contains 
some results. Figure 4 shows an example of the fabricated optical phantoms. 

Table 1.  Effective penetration depth (cm) for several spectral bands of Au nanoparticles. 

λ 
(nm) 

No 
nanoparticles 

Radius=40 nm 

Density=2·109 cm-3 

Radius=80 nm 

Density=2·109 cm-3 

Radius=80 nm 

Density=4·109 cm-3 

500  0.0521 0.0505 0.0483 0.0424 

550  0.0666 0.0658 0.0603 0.0551 

600  0.0939 0.0933 0.0851 0.0779 

650  0.1290 0.1283 0.1169 0.1069 

700  0.1521 0.1517 0.1445 0.1376 

750  0.1980 0.1974 0.1890 0.1808 

800  0.2635 0.2626 0.2501 0.2382 

 

 
Figure 4. Optical epoxy phantom with TiO2 embedded nanoparticles. 
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4. CONCLUSIONS 
The use of nanoparticles in biomedical applications is increasing nowadays. The influence of nanoparticles in optical 
propagation on biological tissues can greatly affect optical distribution and, as a consequence, treatment or diagnostic 
efficiency. In this work a model for nanoparticles optical properties, based on Mie theory, has been presented and 
applied for several nanoparticles. A Monte Carlo method has been used to calculate optical propagation in host materials, 
either tissues or optical phantoms, with and without nanoparticles. As this type of results are difficult to obtain in real 
biological tissues, optical tissue mimicking phantoms are employed. The results allow to consider estimated optical 
radiation distribution in a particular biological tissue with particular nanoparticles and concentration. 
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