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Abstract
In this work we investigate a mesoporous silica (MS) decorated with dipyridyl‐pyridazine (dppz)

ligands and further grafted with a mixture of Eu3+/Tb3+ ions (28.45%:71.55%), which was

investigated as a potential thermometer in the 10–360 K temperature range. The MS material

was prepared employing a hetero Diels–Alder reaction: 3,6‐di(2‐pyridyl)‐1,2,4,5‐tetrazine

was reacted with the double bonds of vinyl‐silica (vSilica) followed by an oxidation procedure.

We explore using the dppz‐vSilica material to obtain visible emitting luminescent materials

and for obtaining a luminescent thermometer when grafted with Eu3+/Tb3+ ions. For the dppz‐

vSilica@Eu,Tb material absolute sensitivity Sa of 0.011 K−1 (210 K) and relative sensitivity Sr of

1.32 %K−1 (260 K) were calculated showing good sensing capability of the material. Upon temper-

ature change from 10 K to 360 K the emission color of the material changed gradually from

yellow to red.
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organic‐functionalized silica, ratiometric sensors, temperature sensors
1 | INTRODUCTION

Organic‐functionalized mesoporous silica (MS), as well as periodic

mesoporous organosilica (PMO), grafted with lanthanide (Ln3+) ions

or complexes are an interesting class of hybrid organic–inorganic

materials, which have been investigated for their use in luminescence

applications.[1–6] These materials are promising ‘platforms’ for binding

Ln3+ ions and Ln3+ complexes due to their large surface areas, well‐

ordered nanoporous structures and the possibility to incorporate

organic groups, which can be further functionalized. This allows the

formation of hybrid Ln3+ materials, which can show a wide range of

luminescence properties both in the visible and near‐infrared (NIR)

region.[7,8]
r; dppz, dipyridyl‐pyridazine;
F, metal organic framework;

owder X‐ray diffraction; Sa,

wileyonlinelibrary.com/journa
It is well known that Ln3+ ions have very interesting luminescence

properties. These properties are primarily due to the well‐shielded

nature of the 4f‐4f transitions.[9,10] Ln3+ ions exhibit narrow emission

peaks from the ultraviolet‐visible (UV‐vis) to NIR region, and they have

significantly long decay times as well as high quantum yields. A signif-

icant downside of Ln3+ ions is that they have very low absorption coef-

ficients. This is due to the 4f‐4f transitions being parity forbidden by

the Laporte rule. As a way to tackle this problem many hybrid

(organic–inorganic) materials have been developed, which enable

exciting the Ln3+ ion using the organic ligand (the so called ‘antenna

effect’).[11,12]

MS materials, for example SBA‐15, SBA‐16, MCM‐41 and MCM‐

48 have already been combined with various organic ligands, for

example modified β‐diketonates, pyridyl groups, 1,10‐phenathroline

and calix[4]arene derivatives. Some of these materials have further

been explored as ‘platforms’ for covalent grafting of Ln3+ ions/

complexes. For example MS nanospheres grafted with Ln3+ complexes

(Ln = Eu3+, Tb3+, Sm3+, Nd3+, Yb3+) using 2‐(5‐bromothiophen)
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imidazo[4,5‐f][1,10]‐phenanthroline have been reported, also

Ln(HFAASi‐SBA‐15)3phen, Ln = Eu3+, Tb3+ (where HFAASi = modified

hexafluoroacetylacetone; phen = 1,10‐phenantroline), and phen‐Ln‐

HTPP‐SBA‐15 as well as phen‐Ln‐PPIX‐SBA‐15, Ln = Nd3+, Yb3+

(where HTPP = (meso‐(tetra(p‐hydroxyphenyl)porphyrin, PPIX = proto-

porphyrin IX) have been reported as unique examples of hybrid mate-

rials based on Ln3+ grafted onto organic‐functionalized MS.[13–15]

In previous, recent work we functionalized a MS (as well as a

PMO) material with dipyridyl‐pyridazine (dppz) ligands and further

covalently attached Er3+, Yb3+ and Nd3+ complexes onto the

dppz ligand.[16] Here, we further expand this work and prepare a

Eu3+/Tb3+ material (28.45% Eu:71.55% Tb, based on X‐ray fluores-

cence (XRF)), which shows temperature‐dependent luminescence

properties and can be used as a ratiometric temperature sensor when

observing the relative emission intensities of both the 544.0 nm

Tb3+ peak and 611.0 nm Eu3+ peak.

In current literature, Ln3+ metal organic frameworks (LnMOFs) are

among the most often reported Ln3+‐based luminescent thermometers

materials as they demonstrate very promising temperature‐dependent

luminescence properties.[17,18] Many LnMOFs have already exhibited

excellent thermometric behavior over a wide temperature range or

specifically in the cryogenic region or in the physiological region.

Among other materials, which have been explored as Ln3+‐based

luminescent thermometers are Ln3+ doped inorganic phosphors, Ln3+

complexes, e.g. β‐diketonate complexes and phosphonates, and very

recently also Ln3+ polyoxometalates (LnPOMs).[19–24]

In this work we report an example of a mixed‐lanthanide (Ln, Ln′)

ratiometric thermometer material based on an organic‐functionalized

MS, where the MS was functionalized with dppz ligands to form the

dppz‐vSilica material, and in a later step post‐functionalized with

Eu3+/Tb3+ ions (in the form of a chloride salt) to obtain the final hybrid

material – dppz‐vSilica@Eu,Tb.
2 | EXPERIMENTAL SECTION

2.1 | Synthesis

The dppz‐vSilica@Ln (Ln = Eu3+, Tb3+) materials were obtained in a

syntheses involving a few steps. In the first step, the substituted

tetrazine was prepared in accordance to the procedure reported in

the literature.[25] The vSilica and dppz‐vSilica materials were prepared

as described in our previous work.[16] Based on carbon–hydrogen–

nitrogen (CHN) analysis the N% content in the dppz‐vSilica material

was determined to be 0.65%. Finally, dppz‐vSilica@Ln materials were

prepared by dissolving a certain amount of LnCl3·6H2O (Ln = Eu3+,

Tb3+) in a certain amount of methanol and then adding the dppz‐vSilica

(solid) to the solution. The molar ratio of the LnCl3·6H2O to the dppz‐

vSilica was 4:1. The compounds were synthesized using a heating

block set to 65°C (reaction carried out for 6 h). After cooling down

the product was filtered and washed well with methanol. Afterwards

it was dried using a vacuum oven set at 50°C. For the dppz‐

vSilica@Eu,Tb material a 1:1 ratio of the ions (Eu3+:Tb3+) was used in

the synthesis. According to XRF analysis a dppz‐vSilica@28.45%Eu,

71.55%Tb material was obtained in the synthesis.
2.2 | Characterization

Powder X‐ray diffraction (PXRD) patterns were recorded on a

Thermo Scientific ARL X’TRA diffractometer equipped with a Cu Kα

(λ = 1.5405 Å) source, a goniometer and a Peltier cooled Si (Li) solid‐

state detector. Elemental analysis (CHN) was performed on a Thermo

Flash 2000 elemental analyzer, V2O5 was used as the catalyst. To con-

firm the stability of the material thermogravimetric analysis (TGA) and

differential thermal analysis (DTA) were performed on a Stanton

Redcroft 1500 apparatus under air flow, in a temperature range from

20 to 800°C with a heating rate of 10°C min−1. The Brunauer–

Emmett–Teller (BET) surface areas were determined by nitrogen (N2)

physical adsorption–desorption isotherms obtained at 77 K on a

Micromeritics Tristar II 3020 instrument. Prior to measurements, the

samples were activated at 120°C for 3 h. By using the BET method

the surface areas of the materials were calculated. The pore size

distributions were obtained by analysis of the desorption branch of

the isotherms using the Barrett–Joyner–Halenda (BJH) method.

Energy dispersive XRF measurements were performed using an in‐

house developed μXRF instrument (at Ghent University Analytical

Chemistry department).[26] The instrument has a monochromatic

microfocus source (XOS, East Greenbush, NY, USA) and an SDD

detector (e2v, Chelmsford, UK). The XRF spectra were analyzed

using an AXIL software package.[27] To calculate the relative presence

of the lanthanide elements (Eu, Tb) in the dppz‐vSilica@Eu,Tb

sample Monte–Carlo simulation aided quantification was used.[28]

Photoluminescence measurements were performed using an

Edinburgh Instruments FLSP920 UV‐vis‐NIR spectrometer setup. Solid

powdered samples were put between quartz plates (Starna cuvettes

for powdered samples, type 20/C/Q/0.2). A 450 W xenon lamp was

used as the steady state excitation source. Decay times were recorded

using a 60 W pulsed xenon lamp, operating at a frequency of 100 Hz.

To detect the emission signals in the near UV to visible range a

Hamamatsu R928P photomultiplier tube was used. Temperature‐

dependent luminescence measurements were performed using an

ARS closed cycle cryostat operating in the temperature range between

4 and 360 K. All excitation spectra are recorded observing at the stron-

gest f‐f emission peak. All emission spectra in the manuscript have

been corrected for detector response.
3 | RESULTS AND DISCUSSION

As described in our previous work the dppz‐vSilica@Ln materials were

obtained in a two‐step procedure.[16] First, dppz‐vSilica was obtained

through the Diels–Alder reaction between the double bonds of the

vSilica material and dppz ligand. In the next step the dppz‐vSilica was

functionalized with EuCl3, TbCl3 or a mixture of EuCl3/TbCl3

(Figure 1).

To characterize the materials (vSilica, dppz‐vSilica and dppz‐

vSilica@Ln), PXRD, carbon‐13 cross‐polarization magic angle spinning

nuclear magnetic resonance (13C CP/MAS NMR), N2 absorption–

desorption, and XRF were performed. PXRDs of the vSilica, dppz‐

vSilica and dppz‐vSilica@Ln (Ln = Eu3+, Tb3+, Eu3+/Tb3+) samples are

presented in Figure 2. The PXRDs show that the dppz‐vSilica and

dppz‐vSilica@Ln are very similar compared to the parent material –



FIGURE 1 Schematic representation of bonding between dppz‐vSilica
and Ln3+ (Ln = Eu3+, Tb3+)
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FIGURE 2 PXRD patterns of vSilica, dppz‐vSilica, dppz‐vSilica@Eu,
dppz‐vSilica@Tb, and dppz‐vSilica@Eu,Tb

FIGURE 3 Room temperature emission spectrum of dppz‐vSilica@Eu
when excited at 295.0 nm. A rainbow has been plotted under the
curve to show the different color components
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vSilica. This indicates that combining the vSilica with our organic

ligand, as well as further grafting Ln3+ ions does not influence the

structure of the parent material. In all of the diffractograms a strong

reflection (100) at low 2θ, as well as two very weak second‐order

reflection peaks (110) and (200) can be observed. The PXRD confirm

that the ordered hexagonal mesostructure (P6mm) is preserved after

the Diels–Alder reaction (to obtain dppz‐vSilica) as well as after post‐

functionalization with Ln3+ salts.[2]

The N2 adsorption–desorption isotherms of the vSilica and dppz‐

vSilica materials are shown in the Supporting Information Figure S1.

Both the vSilica material, as well as the dppz‐vSilica material, have type

IV isotherms with H1‐type hysteresis loops at relative pressures in the

range 0.5–0.8. This is typical for mesoporous materials with uniform

mesopores.[29,30] In Table 1 we have overviewed the BET surface area

(SBET), pore volume (V), pore diameter (D) and wall thickness (t) for the

vSilica and dppz‐vSilicamaterials. It can be concluded from these results

that the surface area, pore volume, and pore size are smaller for the
TABLE 1 Structural parameters of the materials

Sample d100 (nm) SBET(m
2 g‐1) V (cm3 g−1) D (nm)a t (nm)b

vSilica 9.4 805 0.92 6.4 4.4

dppz‐vSilica 8.1 176 0.25 5.1 4.2

Note: d100, (100) spacing; Brunauer–Emmett–Teller (BET) surface area; V,
pore volume; D, pore diameter; t, wall thickness.
aPore size by analysis of the desorption branch.
bCalculated from (a0 – Dp), where a0 = 2d100/√3.
dppz‐functionalized material. The SBET decreased from 805 m2 g−1

(for vSilica) to 176 m2 g−1 after dppz‐functionalization (dppz‐vSilica).

These results strongly suggest that the pores of the vSilicamaterial have

been combined with the Diels–Alder adduct. Similar observations have

been reported for this type of reaction for other diens.[31]

We have presented the solid‐state 13C CP/MAS NMR spectrum of

the vSilica/dppz‐vSilica materials in our previous work.[16] The lumi-

nescence properties of the dppz‐vSilica@Ln materials were investi-

gated. First, the room temperature luminescence properties of the

dppz‐vSilica@Eu and dppz‐vSilica@Tb were studied. The emission

spectra are presented in Figures 3 and 4, respectively.

The emission spectra were recorded when exciting the sample at

295.0 nm (into the dppz ligand band; see Figure S2) and they have

been plotted with a rainbow under the curve to show the different

color components. The dppz‐vSilica@Eu sample showed the character-

istic Eu3+ emission peaks: 5D0 →
7F0 (576.0 nm), 5D0 →

7F1 (586.0 nm),
5D0 → 7F2 (611.0 nm), 5D0 → 7F3 (650.0 nm), and 5D0 → 7F4

(699.0 nm).[32] For the dppz‐vSilica@Tb sample the characteristic

Tb3+ emission peaks were detected: 5D4 → 7F6 (487.0 nm), 5D4 →

7F5 (544.0 nm), 5D4 → 7F4 (582.0 nm), and 5D4 → 7F3 (620.0 nm)

(Figure 4).[33] A slight presence of the dppz ligand is noted in the lower

wavelength range of the spectrum of both samples, this adds a blue

color component to the materials.

The CIE color coordinates have been assessed for the dppz‐

vSilica@Eu and dppz‐vSilica@Tb materials and have been marked on

the CIE diagrams in Figures S3 and S4, respectively. Next, we
FIGURE 4 Room tempertaure emission spectrum of dppz‐vSilica@Tb
when excited at 295.0 nm. A rainbow has been plotted under the
curve to show the different color components
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investigated the decay times of the dppz‐vSilica@Eu and dppz‐

vSilica@Tb materials. Their decay curves are presented in Figure S5

and S6, respectively. For both materials the curves can only be well

fitted with a double‐exponential function indicating that the materials

have two luminescence lifetimes. The decay times of the dppz‐

vSilica@Eu material were calculated to be t1 = 252 μs and t2 = 18 μs

(average decay time determined to be 65 μs; Figure S5). The

decay times of the dppz‐vSilica@Tb material were calculated to be

t1 = 179 μs and t2 = 764 μs (average decay time determined to be

568 μs; Figure S6).

The luminescence properties of the dppz‐vSilica@Eu,Tb material

were investigated. At room temperature, when exciting the sample

into the UV (see Figure S2), the 5D4 →
7F6 (a) and

5D4 →
7F5 (b) peaks

of Tb3+ can be detected as well as the transition peaks of Eu3+: 5D0 →

7F0 (c),
5D0 →

7F1 (d),
5D0 →

7F2 (e),
5D0 →

7F3 (f), and
5D0 →

7F4 (g)

(Figure 5). When exciting the sample at 322 nm (into the maximum of

the broad ligand band) the same emission peaks are detected, but in a

different relative ratio. When exciting the material at room tempera-

ture the Tb3+ peaks are more intensive, giving rise to a yellow‐green

emission color (see Figure S7). Exciting the dppz‐vSilica@Eu,Tb sample

in UV was chosen for its better performance as a ratiometric lumines-

cence thermometer.

The decay times of the material have been recorded and are

presented in Table 2. As can be seen from Table 2 in the dppz‐

vSilica@Eu,Tb material the (average) decay time observed at

611.0 nm (Eu3+) is longer than for the dppz‐vSilica@Eu material

(Figure S8). However, the (average) decay time of the dppz‐

vSilica@Eu,Tb material (Figure S9) observed at 544.0 nm (Tb3+) is
FIGURE 5 Room temperature emission spectrum of dppz‐vSilica@Eu,
Tb when excited at 295.0 nm. A rainbow has been plotted under the
curve to show the different color components. The assignment of
letters a–g to appropriate transitions has been given in the text

TABLE 2 Luminescence decay times of Eu, Tb and Eu,Tb mesoporous
materials

Sample τ1 (μs)/% τ2 (μs)/% τav (μs)

dppz‐vSilica@Eu 18/98 292/2 65

dppz‐vSilica@Tb 179/68 764/32 568

dppz‐vSilica@Eu,Tb (observed Eu3+) 182/74 390/26 270

dppz‐vSilica@Eu,Tb (observed Tb3+) 118/74 490/26 340

Note: average decay time calculated according to equation S1 (see
Supporting Information).
shorter than that of the dppz‐vSilica@Tb material. This would indicate

that in the dppz‐vSilica@Eu,Tb material energy is transferred from the

ligand to Tb3+ and then to Eu3+.

Next, The temperature‐dependent luminescence properties of the

dppz‐vSilica@Eu,Tb material were studied so that its potential use as a

thermometer could be evaluated. Thermometers based on the inten-

sity ratio of two transitions (e.g. Eu3+ and Tb3+), so called ratiometric

thermometers, overcome certain drawbacks such as fluctuations

of the excitation source.[34] Here, we study the well‐known

Eu3+‐to‐Tb3+ emission ratio, but in a novel type of material –

namely in an organic‐functionalized MS.

To study dual‐center thermometers, such as in this case, the

commonly used conversion of intensity into temperature is made via

the thermometric parameter Δ (equations 1 and 2):

Δ ¼ I1
I2

(1)

Δ ¼ Δ0

1þ α exp −ΔEkBT

� � (2)

where I1 and I2 are the integrated intensities of the two transitions, Δ0

is the thermometric parameter at T = 0 K, α = W0/WR the ratio

between the non‐radiative (W0 at T = 0 K) and radiative (WR) rates,

and ΔE is the activation energy for the non‐radiative channel.[35]

The absolute (Sa) and relative (Sr) temperature sensitivity can be

determined using the following equations (equations 3 and 4)[36,37]:

Sa ¼ ∂Δ
∂T

����
���� (3)

Sr ¼ 100%×
1
Δ

∂Δ
∂T

����
���� (4)

The emission map of the dppz‐vSilica@Eu,Tb material measured

over a temperature range of 10 to 360 K (step size of 50 K) is

presented in Figure 6.

The emission spectra were not measured above 360 K as theTb3+

peaks were already very weak in intensity at this temperature range. In

the 10–360 K temperature range we see a general trend that with

temperature increase the emission intensity of Tb3+ decreases. Above

around 310 K we can observe that there is a more efficient energy

transfer between Tb3+‐Eu3+ as the Eu3+ peaks significantly increase

in intensity. Similar behavior in Tb3+‐Eu3+ compounds has previously

been reported in the literature.[38,39]

In the excitation spectrum we only observe a change in

intensity (and slight change of shape) of the broad ligand band with

temperature change (Figure S10). The emission color of the material

was also observed with temperature change. As can be seen from

Figure 7, at 10 K the emission color of the material is yellow, with

temperature increasing towards 310 to 360 K it changes to orange

and then red.

To evaluate the use of this material as a ratiometric temperature

sensor the I544/I611 ratio of the integrated areas calculated have been

plotted in Figure 8 (calculated integrated areas: 531–564 nm for Tb3+

and 602–638 nm for Eu3+). The data points were well fitted using

equation 2, yielding Δ0 = 1.749, α = 602.18, and ΔE = 1115 cm−1



FIGURE 6 Emission map of dppz‐vSilica@Eu,
Tb measured at varying temperatures (10–
360 K; step size 50 K)

FIGURE 7 CIE color diagram showing the x and y color coordinates of
the dppz‐vSilica@Eu,Tb material at different temperatures (see
Supporting Information Table S1 for exact x and y coordinates at
different temperatures)

FIGURE 8 Plot presenting the evolution with temperature of the
thermometric parameter for the dppz‐vSilca@Eu,Tb material. The
points depict the experimental parameter and the solid line
represents the calibration curve obtained by the best fit of the
experimental points
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(R2 = 0.988). In Figure 9 we have presented the absolute sensitivity Sa

values and the relative sensitivity Sr values, calculated for the different

temperatures. The maximum value of the Sa and Sr are 0.011 K−1

(210 K) and 1.32 %K−1 (260 K), respectively. In Table 3 we have

overviewed some recently reported thermometer materials (Sr values)

based on Eu‐Tb observed in a similar temperature range as our dppz‐

vSilica@Eu,Tb material to compare our result with those found in

the literature. Although other lanthanides and co‐doped lanthanide

(e.g. Er3+/Yb3+)[50,51] materials such as MOFs[52] are often reported,

our dppz‐vSilica@Eu,Tb material shows promising performance as a

ratiometric luminescence thermometer.[53]

In a last step we performed TG‐DTA on the thermometric sample

to confirm its stability in the temperature region it was tested (up to

360 K) (see Figure S11).
FIGURE 9 Top: plot presenting Sa values at different temperatures
(10–360 K) for dppz‐vSilica@Eu,Tb. Bottom: plot presenting Sr values
in the same temperature range. The solid lines are a guide for the eyes



TABLE 3 Overview of the relative sensitivity Sr (highest value) of some recently reported ratiometric thermometer materials (materials which have
been tested in a similar temperature range to our material are presented)

Material Temperature range (K) Maximum Sr (%K‐1) Temperature‐ dependent algorithm Reference

Tb0.957Eu0.043cpda 40–300 1.77 (250 K) ITb/IEu
[40]

Eu0.02Gd0.98(DSB) 20–300 4.75 (20 K) ITriplet/IEu
[41]

{Tb0.3Eu0.7 (D‐cam)(Himdc)2·(H2O)2}3 100–450 0.11 (450 K) ITb/IEu
[18,42]

[(Tb0.914Eu0.086)2(pda)3(H2O)]·2H2O 10–325 5.96 (25 K) ITb/IEu
[43]

Tb0.005Eu0.995@UiO‐67‐bpydc 100–300 3.01 (180 K) ITb/IEu
[44]

Tb0.9Eu0.1L 40–300 0.11 (300 K) ITb/IEu
[45]

Tb0.8Eu0.2L 40–300 0.15 (300 K) ITb/IEu
[45]

Tb0.7Eu0.3L 40–300 0.17 (300 K) ITb/IEu
[45]

Tb0.95Eu0.05HY 4–300 31 (4 K) IEu/ITb
[46]

Tb0.95Eu0.05(btb) 10–320 2.85 (14 K) ITb/IEu
[47]

Eu0.25Tb0.75(btfa)3 (MeOH)(bpeta)] 10–330 4.90 (150 K) ITb
2‐IEu

2 [48]

NaGdF4:Yb/Tm@Tb/Eu 125–300 0.49 (300 K) ITb/IEu
[49]

Na[(Gd0.8Eu0.1Tb0.1) SiO4] 12–450 2.00 (20 K) ITb/IEu
[35]

Eu0.102Tb0.898(notpH4)(NO3)(H2O)]·8H2O 18–300 3.90 (38 K) ITb/IEu
[23]

dppz‐vSilica@Eu,Tb 10–360 1.32 (260 K) ITb/IEu This work
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4 | CONCLUSION

In this work we show that Eu3+/Tb3+ grafted organic‐functionalized

MS can be employed successfully as a ratiometric temperature sensor.

The material shows monotonic behavior in the temperature range of

160 to 360 K. Above 360 K the peaks of Tb3+ are barely distinguish-

able from the background noise, and therefore it is not further consid-

ered as a sensor at higher temperatures. The emission color of the

sample changes gradually from yellow (10 K) to red (360 K). An abso-

lute sensitivity Sa of 0.011 K−1 (210 K) and relative sensitivity Sr of

1.32 %K−1 (260 K) were obtained showing good sensing capability of

the material. Here, we have presented a new class of materials, namely

Ln‐Ln′ (Eu3+‐Tb3+) decorated organic‐functionalized MS as a potential

ratiometric thermometer.
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