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Yeasts have been used for food and beverage fermentations for

thousands of years. Today, numerous different strains are

available for each specific fermentation process. However, the

nature and extent of the phenotypic and genetic diversity and

specific adaptations to industrial niches have only begun to be

elucidated recently. In Saccharomyces, domestication is most

pronounced in beer strains, likely because they continuously

live in their industrial niche, allowing only limited genetic

admixture with wild stocks and minimal contact with natural

environments. As a result, beer yeast genomes show complex

patterns of domestication and divergence, making both ale (S.

cerevisiae) and lager (S. pastorianus) producing strains ideal

models to study domestication and, more generally, genetic

mechanisms underlying swift adaptation to new niches.
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Introduction
‘Domestication’ is a term that refers to artificial selection

and breeding of wild species to obtain cultivated variants

with enhanced desirable features that thrive in man-made

environments, often at the cost of suboptimal fitness in

natural settings. Several genotypic and phenotypic
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signatures of domestication have been described in crops,

livestock and pets. These include genome decay, poly-

ploidy, chromosomal rearrangements, gene amplifications

and deletions, horizontal gene transfer and loss of genetic

diversity due to bottlenecking [1,2]. Interestingly, similar

phenomena are also observed in various microbial spe-

cies, both prokaryotic and eukaryotic, that are linked to

human food production.

Perhaps the most well studied model is the common

brewer’s and baker’s yeast, Saccharomyces cerevisiae, which

is the main driver in many industrial fermentations.

However, studies focusing on the evolution of industrial

Saccharomyces strains often use the terms ‘adaptive

evolution’ or ‘domestication’ too freely. For example,

both terms are commonly used to explain phenotypic

divergence from wild ancestors, overlooking alternative

explanations such as random genetic drift [3]. Only

recently, more elaborate studies have reported clear

genome-wide signatures of domestication as well as con-

vergent evolution of industrially relevant traits in separate

lineages. These observations provide conclusive evi-

dence that industrial yeast diversity is not solely shaped

by genetic drift caused by bottlenecking and small iso-

lated populations, but also as a result of selection and

niche adaptation. In wine yeasts for example, adaptive

horizontal gene transfer events [4,5,6�] and copy number

variations [7,8,9,10] have been described that increase

sugar and nitrogen metabolic activity, conferring compet-

itive advantages during grape must fermentation and

providing better tolerance to chemicals used in vineyards

(e.g. copper sulphate) and in wine [11] (e.g. sulphite) (For

a review see [7]). Interestingly however, the strongest

genetic and phenotypic signatures of domestication are

found in yeasts used for beer production. Several distinc-

tive features make traditional beer production an ideal

setting for microbial domestication. Firstly, beer yeasts

are harvested and re-used after the fermentation process

to initiate the next fermentation batch, a process called

‘backslopping’. This continuous growth in a very specific

industrial niche has resulted in continuous selection

imposed by the brewing environment. Secondly, beer

is produced year-round, causing a near-complete isolation

from wild isolates. In contrast, wine is seasonal and wine

yeasts spend most of the year in and around the vineyards

or in the guts of insects, where nutrient limitation can

trigger sexual cycles and hybridization with wild yeasts

[12]. Therefore, present-day beer yeasts can be consid-

ered the result of a centuries-long evolution experiment
www.sciencedirect.com
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in a highly selective niche. In this review, we will high-

light new insights into beer yeast evolution and domesti-

cation. We will discuss S. cerevisiae and S. pastorianus, both

involved in production of specific beer types, which

underwent a different route to domestication.

Domestication of Saccharomyces cerevisiae
ale beer yeasts
Saccharomyces cerevisiae is the main microbial workhorse

for the production of ale beers, which includes beer styles

such as stouts, pale ales, doubles, triples and quadruples.

As with all domesticated organisms, in S. cerevisiae the

phenotypes of domesticated strains are a combination of

enhanced selectable traits inherently present in S. cere-
visiae (e.g. adaptation to sugar-rich, oxygen-limited envir-

onments and high tolerance to ethanol), and traits

acquired during interaction with humans (e.g. efficient

maltotriose utilization). In this review, we will expound

on the latter aspect, and we refer to other review papers

for the former [13,14].

Phylogenetics and population structure

Many studies of S. cerevisiae population structure

focused on wine, wild and/or clinical strains, neglecting

the broad diversity of beer yeasts. However, two recent

studies, sequencing more than 100 ale beer strains,

have provided the first comprehensive insight into their

evolution and diversification [15��,16��]. Both studies

found that the majority of beer yeasts are genetically

distinct from known wild stocks, and cluster into two

independent lineages (Figure 1). It has been estimated

that the last common ancestor (LCA) of each lineage

occurred around 1600–1700AD, well after the first

reported beer production (3000–4000 BC), but before

the discovery of microbes in the 19th century. Interest-

ingly, the estimated period of occurrence of these LCAs

coincides with the gradual switch from domestic brew-

ing in private households, to more professional large-

scale brewing, first in pubs and monasteries, and later in

breweries. This suggests that true domestication of

yeast occurred far more recently than the first leverag-

ing of yeast for the production of fermented food and

beverages, which likely happened several thousand

years ago [17].

Genome structure

Variation in genome structure, including changes in

ploidy and large segmental duplications or copy number

variations (CNVs), have repeatedly been found in associ-

ation with adaptation to specific niches in experimentally

evolved microbes [18��,19]. Perhaps not surprisingly,

similar chromosomal changes are also a recurrent theme

in domestication of higher organisms, especially in crop

species, for which polyploidization promoted the proper

genetic circumstances to domestication [20]. Similarly, S.
cerevisiae beer yeasts show large-scale genome structure

variations. While most wild S. cerevisiae strains are clean
www.sciencedirect.com 
diploids with very few large segmental duplications, the

ploidy of the vast majority of beer strains exceeds 2n, with

most close to 4n (Figure 2a). However, most ale yeasts

also show aneuploidies, and are almost never perfectly

diploid or tetraploid (Figure 2b). Previous studies have

shown that aneuploidies and polyploidies can provide an

adaptive advantage under selection [18��], but that they

are often transient and are maintained until a more cost-

effective adaptive strategy has evolved [21]. It has also

been shown that small structural genome variations (e.g.

duplication, deletion, recombination, gene conversion

and rearrangement) are frequently located in telomeric

and subtelomeric regions, which are known hotspots for

evolution. These regions are functionally enriched for

genes involved in nitrogen and carbon metabolism, ion

transport and flocculation, and likely play a role in niche

adaptation [15��,22,23�].

Brewing phenotypes

The most obvious sign of adaptation to a specific indus-

trial niche is arguably the accentuation of traits desirable

for humans that are a burden for the organism in a natural

setting. Closer examination of the genetic underpinnings

of specific traits have provided strong evidence that

human selection indeed underlies certain industrially

relevant traits in beer yeasts.

A prime example of a domestication trait in beer yeast is

their ability to ferment maltotriose, an important carbon

source in beer wort, but not generally found in high

concentrations in natural yeast environments. Efficient

metabolism of maltotriose imposes a selective advantage

in brewing environments where it is present at high

concentrations because it opens the door to a previously

under- or poorly utilized energy source. This trait has

evolved independently and through different genetic

pathways in the two main beer lineages, suggesting strong

selection pressure [15��] (Figure 1a). In one of the beer

groups a homolog of the maltose transporter (called

AGT1) with an increased affinity for maltotriose is present

[24]. Interestingly, in the second beer group, the AGT1
allele is non-functional, but the majority of isolates are

able to efficiently ferment maltotriose, suggesting the

presence of a distinct, yet unknown mechanism for the

maltotriose uptake in this lineage. Another well-docu-

mented domestication trait is the selection against pro-

duction of 4-vinyl guaiacol (4VG), an unpleasant aroma-

active compound that is derived from ferulic acid, a cell

wall component of barley. Yeast requires two genes for

decarboxylation of ferulic acid to 4VG: PAD1 and

FDC1. Various independent nonsense mutations in these

genes have been found in many industrial (and especially

beer) yeasts, but not in biofuel or non-industrial isolates,

suggesting that the selection of 4VG-free fermentations

has favoured the spread of domesticated beer yeasts

unable to produce this specific off-flavour (Figure 1b)

[15��,16��].
Current Opinion in Biotechnology 2018, 49:148–155
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Genetic and phenotypic diversity of industrial S. cerevisiae strains. In each panel, a cladogram depicting genetic relationship and a heatmap

(surrounding the cladogram) depicting phenotypic behaviour of each strain is given on the left (data obtained from [15��]). On the right, a

schematic depiction of the phenotypic traits is given. (a) Maltotriose utilization: beer yeasts show a significantly higher capacity to metabolize
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Apart from human-driven selection for specific traits,

domestication is often also accompanied by relaxation

of selective constraints on traits that are not advantageous

or too costly in man-made environments. This relaxed

selection can result in gene loss or pseudogenisation of

genes that are no longer required for survival, a process

dubbed ‘genome decay’ [1]. In ale yeasts this is reflected

by their inability to survive environmental and nutrient

stress conditions not encountered during continuous

growth in the nutrient-rich wort medium [15��]. One

likely example of this phenomenon is represented by

the lack of a functional sexual cycle in most ale beer

isolates [15��] (Figure 1c), a trait with a crucial role in

speeding adaptation under new, harsh conditions, but

with limited added value in benign environments [25].

Domestication of Saccharomyces pastorianus
lager beer yeasts
With over 90% market share, lager beer is by far the most

popular beer style globally. The production process differs

in many ways form ale beer brewing, but arguably the most

profound distinction is that a different yeast species is

used. Lager is brewed using S. pastorianus, which origi-

nates from the interspecific hybridization between S.
cerevisiae and S. eubayanus, a closely related species that

is not typically associated with industrial fermentations

[26,27��,28�].

Phylogenetics and population structure

Lager strains are divided in two main distinct lineages,

most commonly referred to as ‘Saaz’ (Type 1) and

‘Frohberg’ (Type 2). Whereas the existence of these

two lineages suggests some degree of convergent domes-

tication, the precise ancestry and evolution of the two S.
pastorianus lineages is still controversial (for a review see

[29]). Three main hypotheses for the S. pastorianus origin

have been proposed, and different analyses have provided

support for each. The most widespread hypothesis

involves two completely independent hybridization

events, each involving a different domesticated ale-type

S. cerevisiae and a different wild S. eubayanus strain

(Figure 3a). This hypothesis is supported by phylogenetic

analysis, where the relative branch lengths for the S.

cerevisiae and the S. eubayanus subgenomes are signifi-

cantly different between the groups [27��], as well as by

the pattern of loss or retention of subtelomeric regions in

the cerevisiae part of the lager yeast genome, which are

very different in Saaz and Frohberg yeasts [30]. However,
(Figure 1 Legend Continued) maltotriose, a prominent carbon source in be

encodes for a permease with increased affinity to maltotriose compared to 

clade, but absent and/or non-functional in the Wine and the Beer 2 clade. (
compound, generally undesired in most fermented beverages. It is produce

compound found in many plant cell walls, by the FDC1-encoded decarboxy

by PAD1. FDC1 and PAD1 are clustered in the subtelomeric region of the r

yeast in the Beer 1 clade, acquired loss-of-function mutations in PAD1 and

(c) Sporulation efficiency: yeasts from the main beer lineages are generally 

strains from other clades.
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other studies have identified several S. eubayanus/S. cer-
evisiae translocations that share identical breakpoints

within the subgenomes of both Saaz and Frohberg

lineages [31,32] (Figure 3b). Although it has been argued

that identical breakpoints could have resulted from i)

independent events at recombination hotspots or fragile

sites in Saccharomyces chromosomes, or ii) events that

occurred in one of the parental strains prior to the hybrid-

ization [27��], they might also indicate a shared hybrid-

ization event prior the divergence in the distinct lager

lineages. A further hypothesis suggests a combination of

the two scenarios; a single hybridization event between a

haploid S. cerevisiae and a diploid S. eubayanus that led to

an ancestral Saaz-like hybrid, followed by a second

hybridization with a distinct haploid S. cerevisiae isolate

that led to a Frohberg-like ancestral hybrid [33�]
(Figure 3c).

Genome structure — interaction between subgenomes

Experiments where new interspecific hybrids are gener-

ated in the laboratory have shown that the genomes of

newly formed hybrids tend to be highly unstable and

undergo progressive genomic evolution until a more

stable karyotype is reached. Hybrid genomic instability

is probably due to an interplay between the relaxed

selection on regions of genetic redundancy introduced

by the hybridization event, selection acting on gene

dosage balance, the potential co-adaptation of genes from

the same parental genome and selection imposed by their

growth environment [34,35,36,37]. Genomic changes

include copy number variations [38] and partial or total

chromosome loss [38], but also rearrangements between

both subgenomes, resulting in chimaeric chromosomes

[32]. Many of these mechanisms have been shown to

allow adaptation in experimentally evolving interspecific

hybrids. For example, loss-of-heterozygosity in newly

developed interspecific hybrids is shown to be a repro-

ducible adaptive strategy in low-nutrient environments,

highlighting that hybrid genome resolution can be driven

by positive selection acting on existing heterozygosity

[39]. Chimaerism can be adaptive on the level of indi-

vidual genes, for example, new interspecific Saccharomyces
hybrids evolved in stringent nitrogen limitation recur-

rently evolve chimaeric MEP1 alleles [40]. In lager yeasts,

more than 20 chimaeric genes have been identified so far,

including chimaeric variants of ALD2 and TDH2, both

involved in ethanol metabolism [32].
er medium. AGT1, a homolog of the sugar transporter MAL11,

the wild type allele. AGT1 is present in the Beer 1 and the Mixed

b) Production of 4-vinyl guaiacol (4VG): 4VG is a spicy clove-like aroma

d by yeast by the decarboxylation of ferulic acid, an abundant phenolic

lase. This decarboxylase requires a flavin-derived cofactor produced

ight arm of chromosome IV. Many industrial yeasts, most notably the

/or FDC1, resulting in a loss of the ability to produce 4VG [15��,16��].
obligate asexual or show low sporulation efficiency compared to
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Figure 2
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Ploidy variation of industrial yeast genomes. (a) Box plots representing the estimated ploidy of S. cerevisiae strains grouped by niche of

isolation (beer, wine, saké, bioethanol, wild); colours indicate phylogenetic relationship (lineage) (cf. Figure 1-circular bands of the phylogenetic

tree); strains with admixed ancestries, not belonging to any specific clean lineage, are indicated as ‘mosaic’. Black lines represent median value

and box edges are the 25th and 75th percentiles. Data obtained from [15��]. (b) Genome-wide visualization of CNV profiles compared to the

reference strain S228C, aggregated across all strains originating from different niches; colours indicate amplification (red) and deletion (blue). Data

obtained from [15��].
Brewing phenotypes

The dominance of S. pastorianus in the lager brewing

industry suggests a strong selective advantage of the

interspecific hybrid over their respective parental species.

It has been argued that some parts of the S. eubayanus
genome confer enhanced cold-tolerance, while the S.
cerevisiae subgenome holds the advantage of other brew-

ing adaptations, such as efficient fermentation, including

the use of maltotriose. However, maltotriose transporters

from S. eubayanus and not S. cerevisiae enable maltotriose

utilization in some Saaz-type lager yeasts [41]. Con-

versely, certain S. cerevisiae strains show adaptation to
Current Opinion in Biotechnology 2018, 49:148–155 
cold environments [42], which implies that the cold-

tolerance does not necessarily originate from S. eubayanus,
and that the origin of lager yeasts may have a different

foundation. Recent papers suggest that increased fitness

of interspecific yeast hybrids can also be due to genetic

incompatibilities that perturb safeguard mechanisms that

would normally limit growth in the parental strains,

leading to hybrids that divide more (and thus have a

higher fitness) in stressful environments, such as beer

wort at low temperatures [43]. However, more research is

required to untangle the specific roles of lager yeast

subgenomes in the brewing environment.
www.sciencedirect.com
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Figure 3
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Current models for the origin of Frohberg and Saaz lineages. (a) Frohberg and Saaz groups originated from at least two independent

hybridization events between distinct diploid S. cerevisiae and diploid S. eubayanus parental strains. (b) Frohberg and Saaz groups originated from

a single hybridization event between a diploid S. cerevisiae and a diploid S. eubayanus. Translocations occurred in the ancestral hybrid prior to

the divergence of the Saaz and Frohberg lineages and are shared between the two groups. After hybridization, the Frohberg lineage experienced

loss of variation between intra-homologous chromosomes in the S. cerevisiae subgenome via loss of heterozygosity [33�] and the Saaz lineage

lost roughly half of the S. cerevisiae derived chromosomes. (c) Frohberg and Saaz groups originated from at least one shared hybridization event

between a haploid S. cerevisiae and a diploid S. eubayanus. The triploid ancestral hybrid further diverged into the Saaz lineage, and the Frohberg

lineage arose by another hybridization event with a distinct haploid S. cerevisiae [33�].
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Conclusions and outlook
Recent studies have demonstrated that beer yeasts have

been domesticated by enduring growth in man-made

fermentation environments. The strong selective pres-

sure imposed over many generations has contributed to

the emergence of desirable phenotypes, but has also

dramatically affected the genomic structure and genome

stability of the domesticates.

Interestingly, continuous ‘backslopping’ is not common

practice anymore in most of today’s commercial brewer-

ies. Instead, brewers dispose of their yeast culture after a

few consecutive fermentations to start a new brew with a

frozen stock culture. This continual reversion to the same

yeast stock ensures consistency of their product, but

prevents further evolution of the beer yeast. Therefore

evolution and domestication of beer yeasts within brew-

eries may have practically halted. However, the process

has now moved to specialized labs, where the expanding

experimental toolbox and the wealth of ‘omics’ data

available for Saccharomyces yeasts opens new avenues to

generate novel and superior industrial variants. Specifi-

cally, experimental evolution, similar to the process in

traditional brewing, can be used in conjunction with

techniques like crossing, marker-assisted breeding and

mutagenesis to effectively generate and test new pheno-

typic variants and combinations [44,45]. Thus, several

centuries after the dawn of beer yeast domestication by

commercial-scale brewing, a second revolution, sparked

by biotechnology, is now driving a new era of beer yeast

evolution and domestication.
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Johnston M, Gonç alves P, Sampaio JP: Microbe domestication
and the identification of the wild genetic stock of lager-
brewing yeast. Proc Natl Acad Sci U S A 2011, 108:14539-14544.

27.
��

Baker E, Wang B, Bellora N, Peris D, Hulfachor AB, Koshalek JA,
Adams M, Libkind D, Hittinger CT: The genome sequence of
Saccharomyces eubayanus and the domestication of lager-
brewing yeasts. Mol Biol Evol 2015, 32:2818-2831.

In this paper, the authors focused on the S. eubayanus subgenome of
lager yeast. They revealed that this subgenome has experienced
increased rates of evolution since hybridization, and underwent a spe-
cifically strong shift in selection regimes compared to the S. cerevisiae
subgenome, hinting towards a S. cerevisiae subgenome pre-adapted to
the beer environment. This is in line with the hypothesis that lager yeasts
originated in the beer-brewing environment.

28.
�

Peris D, Langdon QK, Moriarty RV, Sylvester K, Bontrager M,
Charron G, Leducq J-B, Landry CR, Libkind D, Hittinger CT:
Complex ancestries of lager-brewing hybrids were shaped by
standing variation in the wild yeast Saccharomyces
eubayanus. PLOS Genet 2016, 12:e1006155.

In this paper, the population structure of all currently available S. eubaya-
nus strains is investigated, and compared to the S. eubayanus subge-
nome of lager yeasts. The authors demonstrate that variation segregating
among wild S. eubayanus persists among the lager-brewing yeasts and
that the relationship between wild S. eubayanus and S. eubayanus lager-
subgenome is shaped by complex biogeographical and genetic patterns.

29. Monerawela C, Bond U: Brewing up a storm: the genomes of
lager yeasts and how they evolved. Biotechnol Adv 2017,
35:512-519.

30. Monerawela C, James TC, Wolfe KH, Bond U: Loss of lager
specific genes and subtelomeric regions define two different
Saccharomyces cerevisiae lineages for Saccharomyces
pastorianus Group I and II strains. FEMS Yeast Res 2015, 15 pii:
fou008.
www.sciencedirect.com 
31. Walther A, Hesselbart A, Wendland J: Genome sequence of
Saccharomyces carlsbergensis, the world’s first pure culture
lager yeast. G3 (Bethesda) 2014, 4:783-793.

32. Hewitt SK, Donaldson I, Lovell SC, Delneri D, Kingdom U:
Sequencing and characterisation of rearrangements in three
S. pastorianus strains reveals the presence of chimeric genes
and gives evidence of breakpoint reuse. PLOS ONE 2013, 9:
e92203.

33.
�

Okuno M, Kajitani R, Ryusui R, Morimoto H, Kodama Y, Itoh T:
Next-generation sequencing analysis of lager brewing yeast
strains reveals the evolutionary history of interspecies
hybridization. DNA Res 2016, 23:67-80.

This paper presents the whole-genome sequence of 10 S. pastorianus
strains, the largest genetic dataset of lager yeasts thus far. Comparative
genome analysis of these strains favours the hypothesis of an indepen-
dent origin of Saaz and Frohberg type lager yeasts, but with at least one
shared hybridization event.

34. Conant GC, Birchler JA, Pires JC: Dosage, duplication, and
diploidization: clarifying the interplay of multiple models for
duplicate gene evolution over time. Curr Opin Plant Biol 2014,
19:91-98.

35. Morales L, Dujon B: Evolutionary role of interspecies
hybridization and genetic exchanges in yeasts. Microbiol Mol
Biol Rev 2012, 76:721-739.

36. Albertin W, Marullo P: Polyploidy in fungi: evolution after whole-
genome duplication. Proc Biol Sci 2012, 279:2497-2509.

37. Sanchez MR, Miller AW, Liachko I, Sunshine AB, Lynch B,
Huang M, Alcantara E, DeSevo CG, Pai DA, Tucker CM et al.:
Differential paralog divergence modulates genome evolution
across yeast species. PLoS Genet 2017, 13:e1006585.

38. van den Broek M, Bolat I, Nijkamp JF, Ramos E, Luttik MAH,
Koopman F, Geertman JM, de Ridder D, Pronk JT, Daran JM:
Chromosomal copy number variation in Saccharomyces
pastorianus is evidence for extensive genome dynamics in
industrial lager brewing strains. Appl Environ Microbiol 2015,
81:6253-6267.

39. Smukowski Heil CS, DeSevo CG, Pai DA, Tucker CM, Hoang ML,
Dunham MJ: Loss of heterozygosity drives adaptation in hybrid
yeast. Mol Biol Evol 2017 http://dx.doi.org/10.1093/molbev/
msx098.

40. Dunn B, Paulish T, Stanbery A, Piotrowski J, Koniges G, Kroll E,
Louis EJ, Liti G, Sherlock G, Rosenzweig F: Recurrent
rearrangement during adaptive evolution in an interspecific
yeast hybrid suggests a model for rapid introgression. PLoS
Genet 2013, 9:e1003366.
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