
A Bio-inspired Agent-based System
For Controlling Robot Behaviour

Y. Yao∗†, G. Baele∗† and Y. Van de Peer∗†
∗Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium

†Bioinformatics and Evolutionary Genomics, Department of Molecular Genetics,
Ghent University, B-9052 Ghent, Belgium

Abstract—In this paper, we present an agent-based system to
control a single robot’s behaviour. We present an artificial genome
structure, based on gene regulatory networks, in which several
regions can be distinguished such as promoter regions, indicator
genes, transcription factor binding sites, regulatory genes and
expressed genes. We use agent-based modeling (ABM) to simulate
a bio-inspired system based on the artificial genome, with the
ultimate goal of providing phenotypic information for a simulated
robot. We show that the presence of a feedback loop in the agent-
based system, along with the corresponding agent replacements,
is essential to allow the robot to perform its tasks.

Index Terms—Bio-inspired Robot,Agent-based System,Gene Reg-
ulatory Networks(GRN)

I. INTRODUCTION

The field of evolutionary dynamic optimization deals with
the application of evolutionary algorithms to dynamic opti-
misation problems (DOP)[1]. In these problems, the environ-
ment changes frequently or is completely unknown and the
optimization methods need to adapt their proposed aim to
time-dependent contexts. Previous research has seen different
approaches to address such problems, such as a bio-inspired
agent-based framework, which can be adopted to a highly
changing environment with good scalability and flexibility
[16]. Other research has shown that degeneracy of solution
representation will improve the robustness and adaptiveness of
dynamic optimisation, aside from mentioning that degeneracy
is the main feature of bio-system in natural evolution [9]. In
short, these studies show that evolutionary algorithms (EA)
have the possibility to solve the DOP by introducing bio-
inspired principles. Further, the flexible agent-based structure
is inherently suitable to implement such bio-inspired system.
In this paper, we present a layered structure with a dynamic
feedback loop which are inherent properties of gene regulatory
networks (GRNs), in order to develop a practical framework
for achieving a self-adaptive robot in a simulated scenario.
By mimicing the principles and features of GRN in our
framework, we expect the agent-based system to efficiently
deal with a highly changeable or unknown environment.

II. AGENT-BASED MODELLING

Agent-based modeling (ABM), also termed individual-
based modeling (IBM), is a relatively new approach to mod-
eling systems comprised of autonomous, interacting agents.
Computational advances have led to a growing number of

agent-based applications in a variety of fields. For example,
agent-based models have been used to simulate the electric
power market designed to investigate market restructuring and
deregulation and to understand implications of a competitive
market on electricity prices, availability, and reliability [13].
Agent-based models have also been used to study biological
tissue patterning events, which have implications for both
physiological and pathological function, arise from a cascade
of complex processes and rely on interactions between cells,
genomic information, and intra-cellular signaling [15].

The benefits of agent-based modeling (ABM) over other
modeling techniques are threefold [3]: (1) ABM captures
emergent phenomena; (2) ABM provides a natural description
of a system; and (3) ABM is flexible. Essential to ABM is its
ability to capture emergent phenomena, which result from the
interactions of individual entities. By definition, they cannot be
reduced to the system’s parts: the whole is more than the sum
of its parts because of the interactions between those parts. An
emergent phenomenon can have properties that are decoupled
from the properties of the part. ABM is, by its very nature,
the canonical approach to modeling emergent phenomena: in
ABM, one models and simulates the behavior of the system’s
constituent units (the agents) and their interactions, capturing
emergence from the bottom up when the simulation is run.
Further, ABM provides a natural description of a system.
Finally, the flexibility of ABM can be observed along multiple
dimensions. For example, it is easy to add more agents to an
agent-based model. ABM also provides a natural framework
for tuning the complexity of the agents: behavior, degree of
rationality, ability to learn and evolve, and rules of interactions
[3].

Different modelers of agent-based systems have differ-
ing opinions on what constitutes an agent (see [10] for an
overview). Macal and North [10] consider agents to have
(amongst others) the following characteristics, which we adopt
in this paper:

∙ An agent is identifiable, a discrete individual with a set
of characteristics and rules governing its behaviors and
decision-making capability.

∙ Agents have protocols for interaction with other agents,
such as communication protocols, and the capability to
respond to the environment.

∙ An agent is flexible, and has the ability to learn and adapt
its behaviors over time based on experience.

978-1-61284-060-4/11/$26.00 ©2011 IEEE

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/154951789?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

III. GENE REGULATION

Gene regulation is a process in which a cell determines
which genes it will express and when. Regulation of genes is
a popular topic of interest, with respect to determining how
the process works and what happens when it goes wrong.
One of the easiest ways to illustrate gene regulation is to talk
about gene regulation in humans. Every cell in the human
body contains a complete copy of that person’s DNA, with
tens of thousands of potentially viable genes. Obviously, all
of these genes cannot be expressed at once. Hence, cells must
decide which genes to turn on and which genes to turn off.
For example, a skin cell turns on the genes which make it a
skin cell, while a bone cell would leave these genes turned
off. Neither of these cells would need the genes which allow
a cell to differentiate into a neuron, so these genes would be
left off as well.

In addition to being useful for cell differentiation, gene
regulation is also valuable for cell function. As a cell moves
through its life, it has different needs and functions, which
can be addressed with the use of gene regulation to determine
which genes are expressed and when. Likewise, cells can
adapt to environmental changes such as an injury which
requires repair by activating new genes. For the cell, gene
regulation can be accomplished in a number of different ways,
with one of the most common simply being regulation of
the rate at which RNA transcription occurs. Genes can also
be deactivated by changing the structure of the DNA in an
individual cell to turn them off or on.

Unicellular organisms also utilize gene regulation to regu-
late their functions and activity. These organisms must be able
to adapt genetic material quickly to adjust to changing circum-
stances and new environments. Failure to do so will cause not
only death of the cell, but death of the organism itself. Gene
regulation allows such organisms to do things which will allow
them to fit into hostile and extreme environments and to adapt
to changes such as the introduction of antibiotics into their
environment.

IV. GENE REGULATORY NETWORKS

A gene regulatory network or genetic regulatory network
(GRN) is a collection of DNA segments in a cell which interact
with each other (indirectly through their RNA and protein
expression products) and with other substances in the cell,
thereby governing the rates at which genes in the network are
transcribed into messenger RNA (mRNA). In general, each
mRNA molecule goes on to make a specific protein (or set of
proteins). In some cases this protein will be structural, and
will accumulate at the cell-wall or within the cell to give
it particular structural properties. In other cases the protein
will be an enzyme; a micro-machine that catalyses a certain
reaction, such as the breakdown of a food source or toxin.
Some proteins though serve only to activate other genes, and
these are the transcription factors that are the main players in
regulatory networks. By binding to the promoter region at the
start of other genes they turn them on, initiating the production

of another protein, and so on. Some transcription factors are
inhibitory.

Gene regulation (see section III) is an umbrella term for
molecular processes that conduct the cellular control of the
functional product of a gene, which may be an RNA or a
protein. A general assumption is that the amount of gene
product represents how active a gene is. The gene expression
underlies several control mechanisms, whereas the regulation
of the transcription machinery constitutes the most important
gene-regulatory mechanism. Regulators of transcription are
mainly proteins, called transcription factors (TFs). However,
the overall gene regulation is much more complex and includes
processes such as transcript degradation, translational control,
and post-translational modification of proteins. Thereby, apart
from proteins, also other molecules like RNAs and metabolites
participate in a regulatory manner. Finally, the genes, regula-
tors, and the regulatory connections between them form a gene
regulatory network.

In single-celled organisms regulatory networks respond to
the external environment, optimizing the cell at a given time
for survival in this environment. In multicellular animals the
same principle has been put in the service of gene cascades
that control body-shape. Each time a cell divides, this leads
to two cells which, although they contain the same genome,
can differ in which genes are turned on and making proteins.
Sometimes a ’self-sustaining feedback loop’ ensures that a cell
maintains its identity and passes it on.

A. Genetic Encoding

The goal for our research experiment is to develop a bio-
inspired artificial genome, based on current knowledge and
modeling approaches for gene regulatory networks. We have
been inspired by the model proposed by Torsten Reil [14]
to study gene interactions in order to develop an approach
fit for use in the field of evolutionary robotics. Reil [14]
presented a biologically plausible framework for studying gene
interactions and gene activity over time, where genes regulate
each other by binding to regulatory sequences.

At the core of Reil’s model is an artificial genome, which
consists of a string of digits (similar to DNA sequences which
are essentially a string of bases) which is randomly created.
Genes are not pre-specified but identified in the genome
after creation. The genome is searched for occurrences of
the sequence ’0101’, and on encountering one, the following
N digits are defined as a gene. In other words, the concept
of a standard promoter (’0101’) is used to define genes in
the genome, similar to the equivalent in eukaryotic genomes
of the so-called TATA box (a succession of ’TA’ nucleotide
pairs), which is the major component of every gene’s promoter
(allowing RNA polymerase to bind for transcription).

The product of a gene is yielded by a simple transformation
of the gene sequence, in that each digit is simply incremented
by 1, so that the gene sequence ’221133’ becomes a ’332244’
protein (if the alphabet that makes up a string of digits has to
be limited to a fixed amount of digits, the protein might as well
be ’332200’). For each existing gene product, all matching

regulatory sequences in the genome are identified and stored.
For example, for the gene ’221133’, these would be all occur-
rences of the sequence ’332244’ (or alternatively ’332200’),
each of which controls the gene immediately following it.

00 1 1 2 0 3 2

0 1 2 0

1 3

12 3 3
Transcription factor

Promoter Indicator

Regulatory gene

...

Transcription
factor binding

site

00 1 1
Promoter Indicator

023

...

2

Output

Gene expression

1 02332

Gene

23
GeneTranscription

factor binding
site

32

02

...

Fig. 1: Our proposed genetic encoding approach, based upon the approach
by Reil [14].

We have adapted the approach of Reil [14], as can be seen
in Figure 1, with the following modifications. Between the
promoter sequence and the actual gene, we have introduced an
indicator gene and a transcription factor binding site, to mimic
biological reality more closely. The encoding of the indicator
gene is aimed at providing information concerning the type
of gene that is being considered, i.e. either a regulatory or
an expressed gene, which has an effect on the type of agent
that has the handle the stored genetic information (see Section
IV-D). The transcription factor binding site is used in the
signal path layer (see Section IV-B) to specify which gene
corresponds to a particular combination of sensor values. The
other mechanisms of our genetic encoding are identical to the
approach of Reil [14].

B. A Layered Approach

In order to simplify the complexity of our agent-based mod-
elling approach, we distinguish three different layers in our
agent-based system, which are shown in Figure 2. Separating
the agent-based system into different layers results in agents
that only have connections with the other agents in the same
layer (not shown). This way, changes to a particular agent in
a given (sub)network will only affect that same (sub)network.
Further, interactions between agents in different layers can
then be replaced by interactions between different layers,
thereby simplifying the agent-based system’s design.

The following layers can be distinguished in our agent-based
system:

∙ Signal path layer: the main functions of this layer are
receiving the sensor values and transforming this sensory
information to usable values/signals for the agent-based
system. This layer can be regarded as a hardware abstrac-
tion layer, so that different types of robots (providing
sensor inputs of different magnitudes) can be used in

Signal paths

Transcription

Translation

path1 path2 path3

R1 R2 R3 R4 R5 R6

E1 E2 E3

A1 A2

Influence/Regulation

Message to change the parameters of agent
Message to change the parameters of actuator

Each path node means an individual
signal status in environment

Each A represent an Actuator in network

Each E node represent an expressed agent in network

Each R node means a regualtory agent

Fig. 2: The different layers in our developed agent-based system: the
signal path layer, transcription layer and translation layer.

the agent-based model. This layer is hence the bottom
layer which is connected to the actual sensor of the
robots. Each signal path consists of a combination of
sensory inputs, determined by a corresponding gene in the
artificial genome, and is allowed to evolve through time.
The loss of certain sensors (for example due to damaged
hardware) or other kinds of unexpected changes in the
sensory inputs will be taken care of by this layer.

∙ Transcription layer: this layer contains the agent-based
equivalent of a gene regulatory network (GRN) in that
it consists of a network of regulatory agents (see section
IV-D). This layer is the middle layer in our layered ap-
proach and does not directly interface with any hardware
components of the robots. The main tasks of this layer is
the optimization / emergence of the robot’s behavioral /
movement patterns, with the biological counterpart being
the production of novel functions and patterns for the
actuators.

∙ Translation layer: this layer is the top layer in our
system and interacts with the actuators of the robot. The
translation layer consists of expressed agents (see section
IV-D) that take their information from the network of
regulatory agents in the transcription layer. This layer
then provides values for the actuators of the robots (in
this case, the wheels of the robots). The main task in this
layer is finding suitable strategies for each actuator in
order to provide an adequate output pattern for the robot.

The essential aim of our agent-based system is to optimize
its structure to adapt with a changing environment. In order
to efficiently do so, we adopt a layered approach in our
agent-based system. While a layered approach has the same
components and relationships as a non-layered approach (not
shown), the layered structure has a better flexibility for coping
with changes than the non-layered structure, as it allows the

components in each layer to be adapted independently from
one another, without affecting the whole network at once.
This opens up various possible approaches to deal with the
information retrieved from the feedback loop, as it allows for
each layer to react to this information in a specific way.

C. Runtime Fitness In The Feedback Loop

In our experiment, we adopt an implicit fitness evaluation
on the feedback loop and use that feedback to adapt the
agents during runtime. This kind of feedback minimizes the
direct reference to the patterns of robot behaviour. The reason
for using such an evaluation is because the output of single
agent does not directly determine the behaviour of the robot.
Indeed, only through the cooperation of multiple agents can
each agent’s behaviour affect the robot’s behaviour. To evolve
every agent, the system can not reward any agent’s behaviour
without its context. On the other hand, the pattern of robot
behaviour also doesn’t depend on any single agent.

In this first version, the development is focused on the
agent-based system so we only have a quite simple implicit
fitness function here. The fitness will consider four variables.
The first variable is the movement distance between time
steps (represented as 𝑑), representing the efficiency of the
two actuators. The second variable is the exploration range of
the robot (represented as 𝑒), representing the robot’s general
performance. The third variable is the replacement ratio of
agents at every time step (represented as 𝑟), which represents
how quickly the inner environment changes with respect to a
single agent. The fourth variable is the current total number
of agents, which gives information on the current complexity
of the system (represented as 𝑛). To an agent, the better
the efficiency of movement, the broader the search range,
the smaller the replacement ratio and the simpler the system
complexity, the higher the chance for that agent to accumulate
a high fitness score. The following formula shows how we deal
with the fitness in our current system (𝑖 represents the current
time step, 𝑝 the weight parameters and 𝑇 the time):

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖 =
𝑑𝑖
𝑑𝑎𝑣𝑔

×𝑝𝑑+(
𝑒𝑖/𝑇𝑖

𝑒𝑖−1/𝑇𝑖−1
+(

𝑛𝑖−1

𝑛𝑖
−1))×𝑝𝑒− 𝑟𝑖

𝑛𝑖
×𝑝𝑟

As can be seen from the formula above, fitness in our
simulation reflects a comparative situation rather than an
absolute value. That means the fitness score will be compared
with its previous record at first and then the ratio will be
regarded as the final fitness. If there is no comparable record,
the fitness level will be kept neutral. The final fitness is
calculated by the following formulas:

𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑎𝑣𝑔 =

∑
𝐹𝑖𝑡𝑛𝑒𝑠𝑠0−𝑖

𝑖

𝐹 𝑖𝑡𝑛𝑒𝑠𝑠𝑓𝑖𝑛𝑎𝑙 =
𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑖
𝐹𝑖𝑡𝑛𝑒𝑠𝑠𝑎𝑣𝑔

.

D. Agent Simulation

Here we present the different types of agents that make up
our agent-based model.

1) Genome Agent: A genome agent reads the relevant genes
from the artificial genome. This artificial (fixed length) genome
consists of a sequence of randomly generated nucleotides (A,
C, G, T). The main functionalities of the genome agent are:

∙ Reading the artificial genome input file, if such a file
is provided.

∙ If an artificial genome is not provided, generate a
random genome.

∙ Look up a target gene in the genome when a binding
site is provided by the environment agent.

∙ Altering a particular region of the artificial genome
according to environmental conditions provided by the
environment agent (for example in order to enhance
gene expression).

∙ Mutating the artificial genome through random point
mutations.

∙ Provide a new (and possibly altered) copy of the
artificial genome at the end of a robot’s lifetime.

2) Environment Agent: An environment agent reads the
sensor inputs and establishes combinations of sensor values
in the robot. In other words, a single environment agent does
not correspond to a single sensor input (or a transformation
thereof), but to a combination (unweighted sum) of the differ-
ent sensor inputs. The resulting gathered sensory information
of the environment agent is then used as a binding site during
the scan of the genome in search of a fitting gene, one for each
combination of sensory inputs. When such a gene is found,
the indicator region of that gene is scanned to check whether
that gene is a regulatory gene or an expressed gene, for
which a fitting agent (i.e. either a regulatory or an expressed
agent) is then created by the environment agent. The main
functionalities of the environment agent are:

∙ Update (i.e. read) the sensory input values of the robot
at every time step.

∙ Every time step, the environment agent evaluates the
status of the robot (i.e. calculates the different combi-
nations of the sensory inputs) and calculates feedback
on the robot’s performance.

∙ If the sensory information of the robot has changed
(sufficiently), the environment agent will detect differ-
ent regions of the genome than in the previous cycle
and create new agents (either regulatory or expressed).
The old agents (of the previous cycle) are then consid-
ered at the end of their lifetime and are removed from
the system.

∙ Optimizing the combinations of the sensory inputs. The
environment agent will calculate the adaptation value
for each combination at each time step and will then try
to optimize those combinations. The general procedure
of this approach is as follows. This agent evaluates each
sensory input combination by its adaptation value (this
value is based on the feedback, the number of agents
and the importance of the output for the particular
combination) and checks if the combination can be
adapted to the current environment. The environment

agent will delete those combination that have a lower
adaptation value than a given threshold and produce a
new sensory input combination by randomly reading a
special-purpose gene.

∙ Monitoring the gene regulatory network and ensuring
the interactions of agents will not exceed the limitation.
The environment agent will check the number of agents
to avoid that too many of them are created. The
environment agent will also delete those combinations
of agents for which a corresponding gene cannot be
found or for which the output value is too low/high.

3) Regulatory Agent: A regulatory agent regulates, for
example enhances or represses, a particular gene and must
hence retrieve the gene it expresses. The main functionalities
of the regulatory agent are:

∙ Finding the regulatory gene from the genome based on
its corresponding signals. If there is an agent which
shares the same gene in the system, the concentration
degree of this existing agent will be increased. Other-
wise, a new agent will be created and the new one will
read the target gene to initialize itself.

∙ Identifying the target gene and sending an instruction to
the genome agent to change the gene status (repress or
enhance). When agents have been created, the position
of the target gene on the genome will be recorded by
its agent. All agents will have a limited life cycle in
the agent-based system. When the agent dies, every
agent will modify the adaptation value of its target gene
according to its own feedback. This way, an agent that
performs well will enhance the adaptation value of its
target gene. The higher the adaptation value of a gene,
the more chance this gene has to be read from the
genome at a future occasion.

∙ Evaluating its own importance and adaptation in the
system’s interactions. The agent needs to evaluate its
adaptive status in the system and needs to know the
influence of its outputs. If the agent has more outputs
than others, it will be regarded as more important in
interaction and it will also has more responsibility with
respect to the feedback. The adaptive status for an agent
indicates how good the performance of the robot is
when the agent is active. The adaptive status of an
agent will be used to affect the adaptation value of
its corresponding gene.

∙ Reading the artificial genome in order to find the gene,
either regulatory or expressed, it regulates.

∙ Upon retrieval of the expressed gene, creating the
expressed agent.

4) Expressed Agent: An expressed agent translates the
encoded information of its underlying gene to an actuator. The
main functionalities of the expressed agent are:

∙ Binding with the corresponding actuators and output
the value encoded in its underlying gene to an actuator.

∙ Identifying the target expressed gene and sending the
instruction to genome agent to change the gene status

(repress or enhance). The genome agent will change
the binding site of the expressed gene to increase or
decrease the probability that it will be read at a future
occasion.

∙ Evaluating its own importance and adaptation in the
system’s interactions. The importance (score) of an
expressed agent is the sum of its actuators multiplied by
the concentration degree of this agent. The adaptation
status of an agent is used to evaluate its performance.
For an agent that performs well, the agent-based system
will increase its concentration degree and life time. For
an agent that does not perform well, there will be a
tendency for deletion of this particular agent.

∙ When multiple expressed agents correspond to a single
robot actuator, the different values in the expressed
genes need to be aggregated into one output signal for
the actuator.

E. Agent And Pathway Replacment

During runtime all agents and simulated pathways interact
with their inner environment and connect to form an emerged
dynamic structure. The creation of new agents is triggered by
the constant input stimulations from the environemnt, while
the replacements are always conducted by the inner feedback
loop. A single agent replacement will be built up due to a
particular signal combination from the environment. Signal
pathways are initialized from the genome and are sensitive to
its inner environment. Environmental changes could lead to
a potential pathway being activated or the activated pathway
being repressed. Agents also have their own lifetime and
concentration value, something the pathways don’t have. Even
if the calculated fitness from the feedback loop is good, an
agent will still be replaced when it has run out of lifetime or
when its concentration value is too low. When this happens,
the replacement will be regarded as successful with respect
to the individual agent and the built up gene of that agent
will be enhanced in the genome. In other words, the gene will
become more competitive to be read in a certain input range.
The concentration value of an agent will hence increase or
decrease corresponding to fitness.

V. SIMULATIONS

All experiments were performed in the Player/Stage sim-
ulation environment [8]. Classes necessary to read, store and
manipulate robot genomes were written in C++ for cooperation
with the programming code in Player/Stage. The simulation
map consists of a rectangular area with several obstacles and
corners where the robot can become cornered or stuck. The
fitness of an individual robot is a function of the amount of
the environment the robot is able to explore (the more, the
better). Inherent to this requirement for a high fitness value is
the ability to perform obstacle avoidance. Simply calculating
a measure to perform obstacle avoidance has the property that
robots that simply turn in circles can also be regarded as
‘avoiding obstacles’, while it is not performing a useful task.
The combination with map exploration fixes this problem.

In our experiments, we have tested the developed agent-
based system using a randomly generated population consist-
ing of 50 robots. In other words, a (different) random genome
was generated automatically for each of the 50 individual
robots. The 50 robots were tested individually by placing
each of them in a separate copy of the environment. While
the starting position within the simulation map was set to
be identical for each robot, the starting orientation of the
robot was randomly selected to avoid that robots perform
well simply because they are oriented in a direction with no
obstacles.

We have used simulated e-puck robots in our experiments
[11]. These robots have eight infrared (IR) proximity sensors
(similar to the Khepera robots [12]) placed around the body
which can be used to measure the closeness of obstacles
and two stepper motors, controlling the movement of the two
wheels.

VI. EXPERIMENTS AND RESULTS

A. Resolving Collisions And Repetitive Motion

The simulations performed using our developed agent-based
system, based upon a large genome inspired by gene regulatory
networks, show evidence of self-adaptive abilities (i.e. the
ability to adapt itself depending on occurring problematic
situations). These situations can be considered to be getting
stuck in a corner, not being able to move away from a wall or
even just undesired behaviour in terms of achieving a decent
fitness level. In order to do this, the agent-based system was
provided with a feedback loop to signal potential problems
with the current environment of the robot. This feedback
loop ensures that the robot can adapt to new situations or
environments up to a certain level. This also means that as
long as the feedback loop does not signal any problems to the
agent-based system, the robot’s behaviour remains unchanged.
An example of this type of behaviour can be seen in Figure
3.

Fig. 3: Due to the agent-based system, the robot is able to resolve difficult
situations. Starting from a fixed position near the center of the area (close to
position 5), the robot encounters a series of problems, such as being stuck
against a wall (positions 3 and 4) and being stuck in a corner (position 6).

Figure 3 illustrates how the robot smoothly adapts its
behaviour during the runtime of the simulation. When the
robot hits an obstacle, it will adapt its behaviour slightly in
order to solve the problem. Should small changes in the robot’s

behaviour not be sufficient to resolve the current problem,
additional changes to its behaviour will be made by the agent-
based system until the robot is able to free itself. The more
problematic the situation, the longer it will take for the robot
to resolve the problem. This is an important aspect of the
agent-based system used here, as in other approaches (see e.g.
[2] for a neural network approach). The emergence of optimal
robot behaviour is obtained by removing robots that do not
perform well from the population, across a large number of
generations. This is a process which may end up taking a
huge amount of time, even though bio-inspired approaches
have been proposed to facilitate this process, i.e. to make the
population of robot reach adequate fitness level at a faster
pace. For example, Calabretta et al. have published a series
of papers on the advantages of modelling gene duplications
on the performance of a robot population [4], [5], [6], [7]. A
comparison between an approach with feedback enabled (such
as our agent-based system) and an approach without such a
feedback loop (for example, a simple artificial neural network)
can be seen in Figure 4.

Fig. 4: The feedback loop incorporated into the agent-based system also
allows the robot to detect when it performs repetitive movements, such as
just turning in circles, which may occur in the absence of such a feedback

loop.

The way in which each robot’s decision and sensing mech-
anisms works is encoded in its genome and is essentially the
responsability of the environment agent in the agent-based
system. Hence, when the robot gets stuck, the feeback loop
informs the appropriate environment agent of this, after which
the current sensory information combination will be removed
and a new sensory input combination will be proposed to
the system by reading and decoding different genes from the
genome.

B. Genome-dependent Behavior

Since the agent-based system relies upon an artificial
genome to create its various components, different artificial
genomes will lead to different types of behaviour (and hence

a difference in performance) for different robots. Figure 5
illustrates this diversity in the robot population.

Fig. 5: Depending on the genome of the robot, different behaviour can be
observed, with the feedback loop making sure that the robot does not get

permanently stuck. More complicated regions of the area (e.g. with only one
possible escape direction) show a more dense trail as it takes longer for the

robot to resolve the situation.

In Figure 5 it can clearly be seen that there are various
locations in the area which are difficult for the robots to
explore, such as the top-left corner (situation A), the bottom-
left corner (situation B; same goes for the top-right corner)
and the bottom-right corner (situation C). In none of these
situations does the robot remain stuck however, although it is
apparent that the bottom-left corner is the most difficult part of
the area to escape from, hence the large amount of time that the
robot spends there. Situations D and E in Figure 5 show robot
behaviour for two artificial genomes that allow the robot to
explore large portions of the area, with little time being spent
stuck in a corner or against a wall. Finally, situation F in Figure
5 shows robot behaviour for an artificial genome that allows
the robot to explore the entire area, visiting all the difficult
to reach (and escape) areas of the map. A given agent is able
to autonomously select better-suited genes in order to achieve
its goals. For example, if the behaviour of a given robot in
the current environment is rewarded, the corresponding agents
responsible for the robots behaviour will be automatically
rewarded as well and the gene(s) that set those agents will also
be slightly enhanced. Such enhancements can accumulate on
the genome and eventually render those genes easier to read
by agents, leading to next-generation agents that will tend to
select better-suited genes to achieve the robots goal(s).

C. Agent Dynamics And Robot’s Performance

The agents in our agent-based system can be replaced by
new ones during runtime. Such replacements may result in a

positive influence on the robot’s behaviour in terms of a robot’s
ability to adapt to its environment. In other words, a change
in environment can mean the transition from a problem-free
environment (when the robot does not encounter any obstacles
or other difficulties) to a problematic environment (i.e. being
stuck in a corner or against a wall). Agent replacements will
hence occur most in difficult environments, driven by the
data in the feedback loop, while there is no need for such
replacements in problem-free environments. This way, each
robot possesses a self-adaptive ability when confronting a new
environment. As an example, we show in Figures 6 and 7 an
example of a robot’s behaviour (i.e. its phenotype) and the
corresponding agent dynamics within the agent-based system
(i.e. its genotype). Figure 6 shows the movement trail of the
robot in the simulation map (with numbers indicating the dif-
ferent situations), whereas Figure 7 shows the corresponding
agent dynamics during those time steps. As can be seen from
Figure 6, the robot encounters four difficult situations during
its runtime (i.e. at situations 2, 3, 4 and 5), which results in
a temporary halt in the robot’s task to explore the simulation
map.

1
2

3

4

5

6
7

8

Fig. 6: The movement trail of the robot during 200 time steps (i.e.
input/output cycles). Numbers 1 through 8 indicate (in order) the various

situations the robot can be found in.

0 50 100 150

0
10

20
30

40
50

activity degree/replacement ratio

Time step

va
lue

Fig. 7: The replacement rates of agent and signal pathways are correlated
with the robot’s activity degree, which is the main measurement of fitness in

this simulation. The black curve represents the activity degree, while the
green curve represents the signal pathway replacment rate and the red curve

represents the agent replacement rate.

These problematic situations can be resolved through agent
and signal pathway replacements in order to change the robot’s
current behaviour, which will allow the robot to overcome the
problem rather than to remain stuck. This will result in an
increased performance of the robot, as otherwise the robot
would remain stuck (see Figure 6). For example, the difficult
situations the robot has to overcome occur after 50 time steps
(situation 2 in Figure 6), 90 time steps (situation 3 in Figure
6), 120 time steps (situation 4 in Figure 6) and 145 time steps
(situation 5 in Figure 6). Figure 7 shows a clear increase in
agent and signal pathway replacement rate corresponding to
these reported time steps. In other words, in order to resolve
the fact that the robot is stuck in a difficult environment,
agents and/or signal pathways are replaced in order to equip
the robot with a suitable behavioral pattern, fit to the changed
environment (i.e. corner or obstacle). Indeed, when a robot gets
stuck, its “activity degree” (i.e. its ability to explore the area)
drops to very low levels, indicating the need for a different
behaviour in order to be able to continue performing its task
adequately. Following this drop, both the replacement rates of
agents and signal pathways increase, after which the activity
degree of the robot is seen to increase again.

VII. DISCUSSION

In this paper we present a first version of our agent-based
system aimed at controlling robot behaviour. The main benefit
of this system is the robot’s ability to resolve problematic
situations at runtime, in its goal to explore as much of a
rectangular area, filled with obstacles, as possible. Currently,
the area in which the robot performs its task is static, i.e. does
not have any moving obstacles, and the robot’s task is not
overly complicated. The current set-up is however adequate
to test our developed agent-based system as we aim to add
more complexity to the robot’s tasks and the simulation area
as well. For example, it would be more realistic that a robot
has a limited lifetime, depending on battery power, a scenario
where the robot would not only have to explore a given area
but also make sure that it doesn’t run out of battery power.
This is the subject of ongoing work.

The structure of the artificial genome is currently a drastic
simplification of the real-life workings of gene regulatory
networks. Hence, the representation by the agent-based system
of the gene regulatory networks in the artificial genome are
oversimplified as well. The work presented in this paper
however serves as a proof of principle and we aim to increase
the complexity of our artificial genome to resemble biological
reality more closely in future work.

VIII. CONCLUSIONS

We have shown the adequate performance of our devel-
oped agent-based system, which uses a bio-inspired artificial
genome based upon current knowledge on the workings of
gene regulatory networks. Robots equipped with our agent-
based system are able to find their way out of difficult
situations, allowing them to continue performing their task.
This is specifically due to the presence of a feedback loop in

our agent-based system, which signals potential problems to
the system, allowing for a solution to be found. Further, the
desired behaviour of the simple task in this paper (exploring
a simulation map) is brought about without the need for an
evolutionary strategy. However, we expect that more difficult
simulation scenarios will require an evolutionary strategy in
order to yield adequate results.

ACKNOWLEDGMENT

The “SYMBRION” project is funded by the European
Commission within the work programme “Future and Emer-
gent Technologies Proactive” under the grant agreement no.
216342.

REFERENCES

[1] T. Blackwell, J. Branke, and X. Li. Particle Swarms for Dynamic
Optimization Problems. In Swarm Intelligence, pages 193-217, 2008.

[2] A. Berlanga, P. Isasi, A. Sanchis, and J. M. Molina. Neural networks
robot controller trained with evolution strategies. In Proc. of the 1999
IEEE Congress on Evolutionary Computation (IEEE CEC-1999), pages
413–419. IEEE Press, 1999.

[3] E. Bonabeau. Agent-based modeling: Methods and techniques for
simulating human systems. PNAS, 99:7280–7287, 2002.

[4] R. Calabretta, R. Galbiati, S. Nolfi, and D. Parisi. Two is better than
one: a diploid genotype for neural networks. Neural Processing Letters,
4(3):149–155, 1996.

[5] R. Calabretta, S. Nolfi, and D. Parisi. Investigating the role of diploidy
in simulated populations of evolving individuals. In P. Husbands and
I. Harvey, editors, Proc. of the Fourth European Conference on Artificial
Life, Brighton, UK, 1997. The MIT Press.

[6] R. Calabretta, S. Nolfi, D. Parisi, and G. P. Wager. Duplication of
modules facilitates the evolution of functional specialization. Artificial
Life, 6:69–84, 2000.

[7] R. Calabretta, S. Nolfi, D. Parisi, and G.P. Wagner. A case study of
the evolution of modularity: towards a bridge between evolutionary
biology, artificial life, neuro-and cognitive science. In Ch. Adami, R.K.
Belew, H. Kitano, and Ch. Taylor, editors, Proc. of the sixth international
conference on Artificial life, pages 275–284. The MIT Press, 1998.

[8] B.P. Gerkey, R.T. Vaughan, and A. Howard. The player/stage project:
Tools for multi-robot and distributed sensor systems. In Proc. of the 11th
International Conference on Advanced Robotics (ICAR-2003), pages
317–323, 2003.

[9] X. Yao J. M. Whitacre, P. Rohlfshagen and A. Bender. The role
of degenerate robustness in the evolvability of multi-agent systems
in dynamic environments. In Proceedings of the 11th International
Conference on Parallel Problem Solving from Nature, 2010.

[10] C. M. Macal and M. J. North. Tutorial on agent-based modeling and
simulation. In Proceedings of the 2005 Winter Simulation Conference,
2005.

[11] F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz,
S. Magnenat, J.-C. Zufferey, D. Floreano, and A. Martinoli. The e-
puck, a robot designed for education in engineering. In Proc. of the
9th Conference on Autonomous Robot Systems and Competitions, pages
59–65, 2009.

[12] F. Mondada, E. Franzi, and P. Ienne. Mobile robot miniaturization:
A tool for investigation in control algorithms. In Proc. of the Third
International Symposium on Simulation on Experimental Robots, pages
501–513, 1993.

[13] T. North, G. Conzelmann, V. Koritarov, C. Macal, P. Thimmapuram, and
T. Veselka. Elaboratories: agentbased modeling of electricity markets.
In American Power Conference, Chicago, IL, Apr. 15-17., 2002.

[14] T. Reil. Dynamics of gene expression in an artificial genome -
implications for biological and artificial ontogeny. In Proc. of the 5th
European Conference on Advances in Artificial Life, 1999.

[15] B. C. Thorne, A. M. Bailey, and S. M. Peirce. Combining experiments
with multi-cell agent-basedmodeling to study biological tissue pattern-
ing. Briefings in Bioinformatics, 8(4):245–257, 2007.

[16] K. Yeom. Bio-inspired self-organization for supporting dynamic recon-
figuration of modular agents. Mathematical and Computer Modelling,
2009.

