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In this article, we present a systematic approach to bifurcation analysis of impulsive systems
with autonomous or periodic right-hand sides that may exhibit delayed impulse terms. Methods
include Lyapunov-Schmidt reduction and center manifold reduction. Both methods are presented
abstractly in the context of the stroboscopic map associated to a given impulsive system, and are
illustrated by way of two in-depth examples: the analysis of a SIR model of disease transmission
with seasonality and unevenly distributed moments of treatment, and a scalar logistic differential
equation with a delayed census impulsive harvesting effort. It is proven that in some special cases,
the logistic equation can exhibit a codimension 2 bifurcation at a 1:1 resonance point.
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1. Introduction

Impulsive differential equations see applications in numerous fields where the systems of study exhibit
rapid jumps in state. Such jumps may be intrinsic to the system, such as in the firing of a neuron in a
biological neural network, or synthetic, such as the application of an insecticide or antibiotic treatment in
a biological model. Arguably, one of the most common applications of the theory of impulsive differential
equations arises in the latter case, where a continuous autonomous system is perturbed by impulses in an
impulsive control setting. Specifically, there are many applications involving systems of the form

ẋ = F (x), t 6= kT (1)

∆x = G(x), t = kT, (2)

where (1) describes the continuous evolution of the system, and (2) the discontinuous impulsive control.
We will call such a system an impulsive system with autonomous right-hand side; see [Bachar, Raimann &
Kotanko, 2016; Church & Smith?, 2016; Rozins & Day, 2017; Xie et. al, 2017] for a few recent examples
in mathematical biology. Such systems can be studied by exploiting their inherent periodicity properties.
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Specifically, the study of local bifurcations of fixed points or periodic orbits of system (1)–(2) can be
reduced to a problem in discrete time.

Consider the parameter-dependent system

ẋ = F (t, x, p), t 6= τk(p) (3)

∆x = Gk(x, p), t = τk(p), (4)

for parameter p an element of a parameter space Π, where one has τk+c(p) = T (p) + τk for some c > 0
for all p ∈ Π, while F (·, x, p) is T (p)-periodic and Gk+c = Gk for all k. If one defines the stroboscopic
map S : X × Π → X as a Poincaré map transversal to the surface t = T (p) parameterized by the
parameter p in the periodic cylinder X × [0, T (p)), then the stroboscopic map transforms the problem
of identifying (parameter-dependent) periodic solutions of the piecewise-continuous system (3)–(4) with
that of identifying (parameter-dependent) fixed points x of the map S. The latter problem falls under the
heading of bifurcations of fixed points or bifurcation theory of discrete-time systems, and there are numerous
references devoted to this topic; for an introduction, see such elementary monographs as [Kuznetsov, 2004].

There is a very obvious difficulty with applying these techniques, however. The map S is almost
never explicitly available, since it is defined in terms of the solution of the (generally) nonlinear ordinary
differential equation (3). The partial derivatives of S at a given fixed point can be computed up to a given
order by sequentially solving systems of linear inhomogeneous impulsive differential eqations. This is the
approach that is taken in the majority of the literature; see [Church & Smith?, 2016; Pang, Shen & Zhao,
2016; Xie et. al, 2017] for a few recent applications of these techniques to biological systems. However, the
inherently cumbersome notation inevitably makes this process rather difficult in practice. Indeed, there
has been to our knowledge no systematic outline of how the process should be completed. The goal of
Section 2 and Section 3 is to remedy this problem by outlining how to perform an analysis of bifurcations
at a nonhyperbolic equilibrium or periodic orbit of an impulsive systems with autonomous or periodic
right-hand side.

Also of recent interest is the interaction between impulses and delays, such as in population dynamics,
neural networks and synchronization [Xia, 2011; Liu & Wang, 2008; Zhou, Xiang & Liu, 2007]. Insofar as
bifurcation theory of impulsive systems with delays is concerned, there is little in the way of established
techniques, despite numerical investigations of particular impulsive systems with delays suggesting at tra-
ditional Hopf and period-doubling bifurcation patterns, among others [Yu et. al, 2010; Zhao et. al, 2012].
In Section 4, we briefly demonstrate that parameter-dependent systems of the form

ẋ = F (t, x, p), t 6= τk(p)

∆x = Gk(x, x(t− r1(p)), . . . , x(t− rj(p)), p), t = τk(p),

can be transformed into a finite set of equivalent impulsive differential equations without delays, for which
the methods of Section 2 and Section 3 are applicable.

We conclude with two examples. Section 5 is an analysis of a transcritical bifurcation in the classical
SIR model of disease transmission with unevenly spaced impulsive treatment. In Section 6, a scalar logistic
equation with a census-delayed impulsive harvesting effort is considered, and a 1:1 resonance codimension
two bifurcation is studied.

2. Stroboscopic map: elementary properties

The goal of this section will be to present a unified approach to bifurcation theory of periodic impulsive
systems based on approximation of the stroboscopic (or Poincaré) map. One matter that we will consider
that is absent from the literature is how to deal with equations where the moments of impulse or the period
of the system depend on the parameter. In this section, our object of interest will be an impulsive system
of the form

ẋ = f(t, x, λ), t 6= τk(λ) (P1)

∆x = gk(x, λ), t = τk(λ), (P2)
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where all functions appearing above are smooth and one has

gk+c = gk, f(t, ·, λ) = f(t+ T (λ), ·, λ), τk+c(λ) = τk(λ) + T (λ). (P3)

The number T (λ) is the period of (P1)–(P3) for parameter λ. Note we do not allow c to depend on the
parameter; bifurcation phenomena involving such dependences are inherently nonsmooth and will not be
considered in this article.

2.1. Nonautonomous processes

For the impulsive differential equation (P1)–(P3) , let the partial map

φ : R× R× Ω×Π→ Ω

denote the associated nonautonomous process, dependent on the parameter λ ∈ Π. That is, φ satisfies the
following properties.

• φ(t, t, x, λ) = x for all t ∈ R, x ∈ Ω and λ ∈ Π.
• φ(t, v, φ(v, s, x, λ), λ) = φ(t, s, x, λ) for all s ≤ v ≤ t and x ∈ Ω, λ ∈ Π.
• For each s ∈ R, x ∈ Ω and λ ∈ Π, the function t 7→ φ(t, s, x, λ) is defined on some [s, α) and is a solution

of (P1)–(P2) .

It is known [Bainov & Simeonov, 1993] that if all functions defining (P1)–(P3) are k times continuously
differentiable except possibly at times t = τk where they are continuous from the right with left limits,
then φ is k+1 times continuously differentiable in a neighbourhod of (t, s, x, λ), provided t, s /∈ {τk(λ)}k∈Z.

2.2. Stroboscopic map

An important construction based on the process φ is the stroboscopic map. To begin, assume the following
additional hypotheses.

• All solutions of (P1)–(P3) are defined indefinitely forward in time.
• τ0(λ) = 0 for all λ ∈ Π.
• (P1)–(P3) is formally Ck; that is, f and Dk

(x,λ)f exist and are continuous, and gj is Ck for each j ∈ Z, and

τj is Ck for each j ∈ Z. This will be abbreviated with the symbol FCk.

The second condition can always be accomplished by a parameter-dependent change of time, and may
always be assumed without loss of generality. Define the function S : Ω×Π→ Ω by

S(x, λ) = φ(T (λ), 0, x, λ).

We call S the stroboscopic map for the impulsive differential equation (P1)–(P3) . We may occasionally
abuse notation and identify a periodic solution x∗ with its value at time t = 0. For example, if x∗ is a
periodic solution, we might write S(x∗, λ) := S(x∗(0), λ). Fundamental to our methodology is that the
stroboscopic map is as smooth as the impulsive differential equation and preserves stability properties.

Proposition 1. The stroboscopic map S : Ω×Π→ Ω is k times continuously differentiable.

Proposition 2. Let x∗ be a periodic orbit for (P1)–(P3) with parameter λ. Then, x∗(0) is a uniformly stable
(resp. uniformly asymptotically stable) fixed point of the discrete-time dynamical system xn+1 = S(xn, λ)
if and only if the periodic orbit x∗ is uniformly stable (resp. uniformly asymptotically stable) as a periodic
orbit of (P1)–(P3).

2.3. Derivatives of the stroboscopic map

The partial derivatives of the stroboscopic map at a given point are related to a hierarchy of impulsive
differential equations. Beginning with first-order terms, the system is linear, and the order n+ 1 terms can
be computed by solving a linear system that depends nonlinearly on the order n terms. For derivatives of
higher order than one in the parameter, the equations become intractable, in the sense that stating them
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in full generality is of little use. First, we will include a result that follows directly from a theorem from
the monograph of Bainov and Simeonov [Bainov & Simeonov, 1993].

Theorem 1 [Theorem 2.10, [Bainov & Simeonov, 1993]]. Consider the solution map x(t; ·, ·, ·) : R × Ω ×
Π → Ω of the FCk system (P1)–(P2). Denote x(t) = x(t; t0, x0, λ0), u = ∂x

∂x0
(t; t0, x0, λ0), v =

∂x
∂λ(t; t0, x0, λ0). If t0 /∈ {τk(λ) : k ∈ Z}, then u and v satisfy the following initial-value problems:

u̇ = Dxf(t, x(t), λ0)u, t 6= τk(λ0)

∆u = Dxgku, t = τk(λ0)

v̇ = Dxf(t, x(t), λ0)v +Dλf(t, x(t), λ0), t 6= τk(λ0)

∆v = Dxgkv +Dλgk − [f+ − f −Dxgkf ]Dλτk(λ0), t = τk(λ0)

u(0) = In×n,

v(0) = 0,

where Dxgk and Dλgk are evaluated at (x(τk), λ0), and f = f(τk, x(τk), λ0), f
+ = f(τk(λ0), x(τ+k ), λ0).

2.3.1. One derivative in the parameter

Due to the continuity of the map t0 7→ x(t; t0, x0, λ0) from the left, the requirement that t0 /∈ {τk(λ) : k ∈ Z}
of Theorem 1 can be dropped. This fact is the reason we are able to obtain the following theorem.

Theorem 2. Let x∗ be a T (λ∗)-periodic solution of the FCk system (P1)–(P3) for parameter λ∗. Let

m = (~xα, ~λβ) = (xα1
1 , . . . , xαnn , λβ11 , . . . , λ

βm
m ) denote a multiindex with |β| ∈ {0, 1} and |m| ≤ k. Then, one

has

∂~x
α
S(x∗, λ∗) = ∂~x

α
φ(T (λ∗), 0, x∗, λ∗), (5)

∂~x
αλiS(x∗, λ∗) = ∂~x

α
f(T (λ∗), φ(T, 0, x, λ∗), λ∗)

∣∣∣
x=x∗

∂λiT (λ∗) + lim
t→T−

∂~x
αλiφ(t, 0, x∗, λ∗) (6)

and the function vm(t) = ∂mφ(t, 0, x∗, λ∗) is differentiable at all times t 6= τk(λ) and satisfies the impulsive
differential equation

v̇m = Df(t, x∗, λ∗)vm + Fm(x∗, λ∗, vj : |j| < |m|), t 6= τk(λ
∗) (7)

∆vm = Dgk(x
∗, λ∗)vm +Gm(x∗, λ∗, vj : |j| < |m|), t = τk(λ

∗) (8)

v(0) =

{
ej ,m = xj
0 otherwise,

(9)

for some (generally) nonlinear functions Fm and Gm.

Proof. The correctness of the form of equation (7)–(8) follows by an inductive argument on the order of
the multiindex m, based on Theorem 1. To prove (5) apply Proposition 1. For (6), write

Sε(x, λ) = C(T (λ)− ε, τc−1(λ), φ(τc−1(λ)+, 0, x, λ))

where C denotes the continuous process associated to (P1). Then, DmS(x, λ) = limε→0+ D
mSε(x, λ).

Carefully taking appropriate partial derivatives and the limit produces the desired result. �

Remark 2.1. The term ∂~x
α
f(T, φ(T, 0, x, λ∗), λ∗)|x=x∗ with T = T (λ∗) must be computed by |α| iterations

of the chain rule in conjuction with the Leibniz law. For example, we have

∂x1x2x3f(T, φ(T, 0, x, λ∗)) = ∂x1x2 [Df(T, 0, φ, λ∗)∂x3φ]

= ∂x1
[
D2f(T, 0, φ, λ∗)[∂x2φ, ∂x3φ] +Df(T, 0, φ, λ)∂x2x3φ

]
= D3f(T, 0, φ, λ∗)[∂x3φ, ∂x2φ, ∂x1φ] +D2f(T, 0, φ, λ∗)[∂x1x2φ, ∂x3φ]

+D2f(T, 0, φ, λ∗)[∂x2φ, ∂x3x1φ] +D2f(T, 0, φ, λ∗)[∂x1φ, ∂x2x3φ]

+Df(T, 0, φ, λ∗)∂x1x2x3φ.
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The final correct result for ∂~x
α
f(T, φ(T, 0, x, λ∗), λ∗)|x=x∗ is then obtained by evaluating φ = φ(T, 0, x, λ)

and all its partial derivatives appearing above at x = x∗. If S(x∗, λ∗) = x∗, as is the case when one is
considering bifurcation of a periodic solution t 7→ φ(t, 0, x∗, λ∗), then the result is precisely

∂x1x2x3f(T, φ(T, 0, x, λ∗))|x=x∗ = D3f(T, 0, x∗, λ∗)[vx3 , vx2 , vx1 ] +D2f(T, 0, x∗, λ∗)[vx1x2 , vx3 ]

+D2f(T, 0, x∗, λ∗)[vx2 , vx3x1 ] +D2f(T, 0, x∗, λ∗)[vx1 , vx2x3 ]

+Df(T, 0, x∗, λ∗)vx1x2x3 ,

where each v~x
α

is evaluated at time t = T (λ). Similarly,

∂x1x2f(T, φ(T, 0, x, λ∗))|x=x∗ = D2f(T, 0, x∗, λ∗)[vx1 , vx2 ] +Df(T, 0, x∗, λ∗)vx1x2 ,

∂x1f(T, φ(T, 0, x, λ∗))|x=x∗ = Df(T, 0, x∗, λ∗)vx1 .

The differential equations of Theorem 2 are available explicitly in the form of Table 2.3.1. This table
together with equations (5)–(6) can be readily referenced to compute the partial derivatives of the stro-
boscopic map up to order three in state and order one in the parameter. The table includes terms of the
form Dkh(t, x∗, λ∗)[x1, x2, . . . , xm] for h a smooth function, t ∈ R, λ∗ ∈ Π and x∗, xi ∈ Rn. The action of
the symmetric k-linear map Dkh(t, x∗, λ∗) on the tuple [x1, . . . , xk] can be computed according to [Loomis
& Sternberg, 1968] as

Dkh[x1, . . . , xk] =

n∑
i1,...,ik=1

x1i1 · · ·x
k
ik

∂kh

∂xi1 · · · ∂xik
(t, x∗, λ∗). (10)

2.3.2. Several derivatives in the parameter

When the period T and impulse times τk are independent of the parameter, higher-order derivatives of
the stroboscopic map involving the parameter can be obtained by formally differentiating the appropriate
differential equations of Table 2.3.1 sufficiently many times, and solving the associated linear impulsive
equations. When the period and/or impulse times depend nontrivially on the parameter, this approach
does not work, and one must be careful in determining appropriate impulsive differential equations that
generate the derivatives.

For example, suppose one wishes to calculate ∂λ
2
S for scalar parameter λ, with state vector x ∈ Rn.

By a similar argument to the proof of Theorem 2, it follows that

∂λ
2
S = ∂tf · (∂λT )2 +Df · ∂λφ · ∂λT + ∂λf · ∂λT + lim

t→T−
∂λλφ,

where f and Df are evaluated at (T (λ∗), φ, λ∗), all instances of φ are evaluated at (T (λ∗), 0, x∗, λ∗), and
T is evaluated at λ∗. The function vλλ(t) = ∂λλφ(t, 0, x∗, λ∗) satisfies a particular impulsive differential
equation. To obtain this equation, one could apply row two of Table 2.3.1 to itself. The continuous part is

v̇λλ = Dx[Dxf · vλ +Dλf ] · vλ +Dλ[Dxf · vλ +Dλf ]

=
(
Dxxf · [Dxφ · vλ, vλ] +Dxf · [Dxvλ · vλ] +Dxλf · [Dxφ · vλ]

)
+
(
Dxxf · [Dλφ, vλ] +Dλxf · vλ +Dxf ·Dλvλ +Dλxf ·Dλφ+Dλλf

)
= Dxxf · [vxvλ, vλ] +Dxxf · [vλ, vλ] +Dxλf · vxvλ +Dλxf · vλ +Dλλf +Dxf · vxλvλ +Dxf · vλλ.

The impulsive part is much more complicated, and we do not provide it in its entirety here. Suffice it to
say, without expanding fully, it is given by

∆vλλ = Dx(vλ) · vλ +Dλ(∆vλ)− [v̇λ(τ+k )− v̇λ(τk)−Dx(∆vλ) · v̇λ(τk)]D
λτk(λ

∗).

The following Lemma will surely provide some use in those cases where the period of the system and
impulse times do not depend on the parameter. The proof is obvious and is omitted.
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Table 1. Explicit form of differential equations described in Theorem 2 for order at most three, with at most one
derivative with respect to the parameter. All function evaluations have been suppressed; f , gk and all differentials
are evaluated at (t, x∗(t), λ∗) in the continuous time-derivative equations (v̇m) and at (τk(λ∗), x∗(τk(λ∗), λ∗) in
the discrete difference (∆vm) equations, except for where otherwise noted. Also, f+ indicates that all time
arguments are evaluated in the limit as t→ τ+k . The kth-order differentials Dkh[x1, x2, . . . , xk] can be computed

as per equation (10). Note that, if x∗(t) is an equilibrium point, then one has f+ = f = 0, Df+ = Df , and many
terms in the ∆vxλj equations will cancel.

xi

v̇xi = Dxf · vxi ,

∆vxi = Dxgk · vxi ,

vxi(0) = ei.

λi

v̇λi = Dxf · vλi +Dλif ·,

∆vλi = Dxgk · vλi +Dλigk − [f+ − f −Dxgk · f ]Dλiτk(λ∗)

vλi(0) = 0

xixj

v̇xixj = Dxf · vxixj +Dxxf · [vxi , vxj ],

∆vxixj = Dxgk · vxixj +Dxxgk · [vxi , vxj ]

vxixj (0) = 0

xiλj

v̇xiλj = Dxf · vxiλj +Dxxf · [vxi , vλj ] +Dx(Dλjf) · vxi ,

∆vxiλj = Dxgk · vxiλj +Dxxgk · [vxi , vλj ] +Dx(Dλjgk) · vxi

− [Dxf+ · vxi(τ+k )−Dxf · vxi −Dxxgk · [f, vxi ]−Dxgk ·Dxf · vxi ]Dλj τk(λ∗)

vxiλj (0) = 0

xixjxm

v̇xixjxm = Dxf · vxixjxm +Dxxf · [vxi , vxjxm ] +Dxxf · [vxj , vxixm ] +Dxxf · [vxm , vxixj ]

+Dxxxf · [vxi , vxj , vxm ]

∆vxixjxm = Dxgk · vxixjxm +Dxxgk · [vxi , vxjxm ] +Dxxgk · [vxj , vxixm ] +Dxxgk · [vxm , vxixj ]

+Dxxxgk · [vxi , vxj , vxm ]

vxixjxm(0) = 0

xjxjλm

v̇xixjλm = Dxf · vxjxjλm +Dxxf · [vxi , vxjλm ] +Dxxf · [vxj , vxiλm ] +Dxxf · [vλm , vxixj ]

+Dxxxf · [vxi , vxj , vλm ] +Dxx(Dλmf) · [vxi , vxj ] +Dx(Dλmf) · vxixj

∆vxixjλm = Dxgk · vxixjλm +Dxxgk · [vxi , vxjλm ] +Dxxgk · [vxj , vxiλm ] +Dxxgk · [vλm , vxixj ]

+Dxxxgk · [vxi , vxj , vλm ] +Dxx(Dλmgk) · [vxi , vxj ] +Dx(Dλmgk) · vxixj

−
(
Dxxf+[vxi(τ+k ), vxj (τ+k )] +Dxf+ · vxixj (τ+k )−Dxxf · [vxi , vxj ]−Dxf · vxixj

−Dxxxgk · [f, vxi , vxj ]−Dxxgk · [Dxf · vxi , vxj ]−Dxxgk · [Dxf · vxj , vxi ]

−Dxxgk · [f, vxixj ]−Dxgk ·Dxxf · [vxi , vxj ]
)
Dλmτk(λ∗)

vxixjλm(0) = 0

Lemma 1. Suppose the sequence of impulse times (τk) and the period (T ) do not depend on λ. Then, the
stroboscopic map associated to (P1)–(P2) satisfies ∂αS(x∗, λ∗) = limt→T− ∂αφ(t, 0, x∗, λ∗) for all multi-
indices α such that t 7→ ∂αφ(t, 0, x∗, λ∗) is FC0.

3. Reduction methods for impulsive systems

In Section 2 we introduced the stroboscopic map associated to a periodic impulsive differential equation and
proved that its derivatives at a given reference solution or equilibrium point can be computed by solving
tiered systems of linear impulsive differential equations (Theorem 2). In this section, we will outline two
methods frequently used in the literature to analyze bifurcations of impulsive systems with autonomous
or periodic right-hand sides. Explicit examples will be provided to demonstrate the method as applied to
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traditional models in mathematical biology. The two methods that will be outlined are Lyapunov-Schmidt
reduction and center manifold reduction. These techniques yield similar information, although each has
its advantages and disadvantages. Broadly speaking, both methods reduce the dimension of the nonlinear
equation that must be studied to the number of critical eigenvalues – that is, the number of eigenvalues of
DxS(x∗, λ∗) that have unit modulus.

3.1. Lyapunov-Schmidt reduction

Let S : Rn×Λ→ Rn denote the stroboscopic map of the system (P1)–(P2), where S(x∗, λ∗) = x∗, so that x∗

corresponds to a T (λ∗)-periodic orbit (or equilibrium) of the system. Let the equilibrium be nonhyperbolic;
that is, there is at least one eigenvalue µ ∈ σ(DXS(x∗, λ∗)) with |µ| = 1. Let this eigenvalue satisfy µk = 1;
it follows that 1 is an eigenvalue of DxSk(x∗, λ∗). To be clear, Sk denotes k-fold composition in the variable
x;

Sk(x, λ) = S(·, λ) ◦ · · · ◦ S(·, λ) ◦ S(x, λ)

where there are k compositions. It follows that µ = ei2πθ and θ is rational, so this approach cannot be used
to study Neimark-Sacker bifurcations with irrational θ.

Define the function N : Rn × Λ→ Rn by N(x, λ) = Sk(x+ x∗, λ+ λ∗)− (x+ x∗). Zeroes (y, µ) of N
satisfy

N(y, µ) = 0 = Sk(y + x∗, µ+ λ∗)− (y + x∗)⇒ Sk(y + x∗, µ+ λ∗) = y + x∗,

and so uniquely determine fixed points of Sk and vice versa. This can be though of as a linear change of
coordinates:

x = y + x∗, λ = µ+ λ∗.

Notice that, for a multiindex m = (xα1
1 , . . . , xαnn , λβ11 , . . . , λ

βm
m ) with |α| ≥ 2 or |β| ≥ 1, we have

DmN(0, 0) = DmSk(x∗, λ∗). Therefore, each partial derivative of N can in principle be calculated by
first expressing S(x, λ) in a Taylor series expansion near (x∗, λ∗); if k = 1, the order α terms coincide with
those of N(x, λ). Computing DαS(x∗, λ∗) can be accomplished by Theorem 2 and application of Table
2.3.1, so we may assume that

N(x, λ) =
∑

0<|m|≤k

1

m!
DmN(0, λ∗) · (x, λ)m +O((x, λ)k+1),

where (x, λ)m = xα1
1 · · ·xαnn λβ11 · · ·λ

βm
m .

The rest of the reduction procedure follows by standard results of functional analysis, but we will
collect the main ideas here. By definition, N := DxN(0, 0) has at least one zero eigenvalue and the kernel
of N , denoted ker(N ), is at least one-dimensional. Let B = {v1, . . . , vnc} be an orthogonal basis of ker(N ),
and let y ∈ Rn be written in the direct sum decomposition y = y0 + ŷ with y0 ∈ ker(N ) and ŷ ∈ ker(N )⊥;
one has y0 = projBy and ŷ = y− y0. Let P be a projection onto the range r(N ) of N (that is, P is a linear
operator with P 2 = P whose range is r(N )).

Because P is a projection operator, we see that (x, λ) satisfies the equation N(x, λ) = 0 if and only
if both PN(x, λ) = 0 and (I − P )N(x, λ) = 0. The range of PN : Rn × Λ → Rn is a subset of r(N ). In
particular, due to the direct sum decomposition of Rn by the kernel of N , we can instead write

PN : (ker(N )× ker(N )⊥)× Λ→ r(N ),

and consider the solvability of the equation N1(y0, ŷ, λ) := PN(y0 + ŷ, λ) = 0. Clearly N1 is C1, and we
have that DŷN1(0, 0, 0) = PN = N . Since dim ker(N)⊥ = dim r(N ) and N is onto its range, it follows
that y 7→ DŷN2(0, 0, 0)y is an isomorphism, and is therefore invertible. By the implicit function theorem,
there exists a unique function ŷ = ŷ(y0, λ) with the property that

PN(y0 + ŷ(y0, λ), λ) = 0
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for all (y0, λ) sufficiently close to (0, 0). Therefore, our task has been simplified to solving the equation
(I − P )N(y0 + ŷ(y0, λ), λ) = 0 near (y0, λ) = (0, 0). Our goal will be to identify all possible branches of
solutions y0 = y0(λ) that satisfy the bifurcation equation

N2(y0, λ) := (I − P )N(y0(λ) + ŷ(y0(λ), λ), λ) = 0. (11)

The family of bifurcating kT (λ)-periodic solutions of the original impulsive differential equation will then
be determined by

y∗(λ) ∈ y0(λ) + ŷ(y0(λ), λ), (12)

for |λ| small, where we have written set inclusion because λ 7→ y0(λ) may be multivalued. Inverting the
change of variables, we can alternatively write

x∗(λ) ∈ x∗ + y0(λ− λ∗) + ŷ(y0(λ− λ∗), λ− λ∗) (13)

for |λ− λ∗| small.

3.2. Center manifold reduction

Center manifold reduction is a method of reducing the number of equations that must be studied to
determine the structure of bifurcations in a system of ordinary differential equations or a discrete-time
map. It is a dynamic method as opposed to a static method, such as Lyapunov-Schmidt reduction, since the
dynamics of the underlying system are preserved by the reduction, and therefore yields stability information
directly, making it more powerful than Lyapunov-Schmidt reduction. For additional information on center
manifold reduction, see Kuznetsov [Kuznetsov, 2004].

Let S(x, λ) be the stroboscopic map for the system (P1)–(P2), and let Sk(x∗, λ∗) = x∗; that is, x∗

corresponds to a kT (λ∗)-periodic solution of (P1)–(P2) for parameter λ∗. Let the periodic solution be
nonhyperbolic. More precisely, let DxSk(x∗, λ∗) have nc = n − nsu ≥ 1 eigenvalues on the complex unit
circle.

We will need to define a translated stroboscopic map. Define U(x, λ) = S(x + x∗, λ + λ∗) − x∗. The
parameter-augmented system (

xn+1

λn+1

)
= U(xn, λn) :=

(
Uk(xn, λn)

λn

)
has the fixed point (0, 0) and DU(0, 0) has nc + 1 eigenvalues on the unit circle. Using Theorem 2, one
can express U as a Taylor expansion up to order ` in (x, λ) near (0, 0). This is typically accomplished by
computing DαS(x∗, λ∗) for various multiindices α, and then using the chain rule numerous times to obtain
DmUk(0, 0). Thus, one considers the problem

xn+1 =
∑

0<|m|≤`

1

m!
DmUk(0, 0) · (x, λ)m +O((x, λ)`+1)

λn+1 = λn,

(14)

for multiindices m = (xmx , λmλ).
To perform the reduction, one now performs the typical center manifold reduction to the system (14).

The first step is to obtain the real Jordan decompositionDUk(0, 0) = PJP−1 where J = diag(E,C) ∈ Rn×n
is block diagonal, E is (n− nc)× (n− nc) has no eigenvalues on the unit circle and C is nc × nc and has
all its eigenvalues on the unit circle. The change of variables x = Jy transforms the above system into

yn+1 = Jy + P−1
∑

1<|m|≤`

1

m!
DmUk(0, 0)(Py, λ)m +O((yn, λn)`+1) (15)

λn+1 = λn.
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By writing y = [w z ]T with w ∈ Rn−nc and z ∈ Rnc , the above system can be equivalently written

wn+1 = Ewn + F1(wn, zn, λn) +O((wn, zn, λn)`+1) (16)

zn+1 = Czn + F2(wn, zn, λn) +O((wn, zn, λn)`+1) (17)

λn+1 = λn+1, (18)

where F = [F1 F2 ]T is the terms of degree 2 through ` of (15). The Center Manifold Theorem then implies
that there exists a function w = h(z, λ) that is invariant under (16)–(18) and tangent to the linearized
center subspace. By the invariance and tangency conditions, the function w must satisfy the functional
equation

Eh(z, λ) + F1(h(z, λ), z, λ) = h(Cz + F2(h(z, λ), z, λ), λ) +O((w, z, λ)`+1),

Dh(0, 0) = 0.
(19)

By classical results of bifurcation theory for maps, with an expansion h(z, λ) = h`(z, λ) + O((z, λ)`+1),
the transformed system (16)–(18) (and, by inverting the change of variables x = Py, the original iterated
parameter-augmented system (14)) is locally topoogically conjugate near the origin to the system

wn+1 = Ewn +O`+1

zn+1 = Czn + F2(h`(zn, λn), zn, λn) +O`+1 (20)

λn+1 = λn.

Since the equations are decoupled and the first one (for w) is hyperbolic, bifurcations can be studied by
considering only the equation (20), which is nc-dimensional, and defines the nonhyperbolic part. In general,
one must use of the normal form theory for maps to analyze the nonhyperbolic part and classify the type
of bifurcation. One may consult such references as [Kuznetsov, 2004; Wiggins, 2003] for additional details.

4. Elimination of delay from a class of impulsive delay differential equations

Consider now the n-dimensional impulsive delay differential equation depending on a parameter p ∈ Π,

ẋ = F (t, x, p), t 6= τk(p) (21)

∆x = Gk(x, x(t− r1(p)), . . . , x(t− rj(p)), p), t = τk(p), (22)

where as before, we assume the periodicity conditions F (t+ T (p), ·, p) = F (t, ·, p), τk+c(p) = τk(p) + T (p)
and Gk+c = Gk for all k ∈ Z and t ∈ R. Introduce piecewise-constant variables yi by the relation

yi(t) =
{
x(τk − ri), t ∈ [τk − ri, τk+1 − ri),

where we suppress the parameter p for clarity. Then, system (21)–(22) is equivalent to the following (n+j)-
dimensional impulsive systems without delays.

ẋ = F (t, x, p), t /∈ {τk(p), τk(p)− ri(p)}i=1,...,j (23)

ẏi = 0, t /∈ {τk(p), τk(p)− ri(p)}i=1,...,j (24)

∆x = Gk(x, y1, . . . , yj , p), t = τk(p) (25)

∆yi = x− yi, t = τk(p)− ri(p). (26)

Bifurcations can be studied in system (23)–(26) using the finite-dimensional methods described in Section 3.
The yi states can then be ignored to obtain analogous bifurcation results for the original system (21)–(22).

There is one subtlety worth mentioning. The period of the system (23)–(26) will be equal to T (p), but
the number of impulses per period, n(p), satisfies

n(p) = c+

j∑
i=1

#{k : τk(p)− ri(p) /∈ {τn(p) : n < k}} ≤ c+ jc.

Consequently, p 7→ n(p) is piecewise continuous and generally exhibits a discontinuity at p whenever there
is set (i, n, k) of integers with n < k and τk(p)− ri(p) = τn(p). As such, the methods of bifurcation theory
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of the previous sections cannot be applied at parameters where a delayed impulse time would coincide with
another impulse time. See Section 6, in which an example is considered that exhibits different bifurcation
diagrams depending on whether or not this delay-impulse coincidence occurs.

5. Transcritical bifurcation in a SIR model with unevently spaced impulsive
treatment times

Consider the following simplistic SIR model of infectious disease transmission with impusive treatment
leading to temporary immunity:

Ṡ = wR− β(t, S, I), t 6= τk, ∆S = 0, t = τk (SIR1)

İ = β(t, S, I)− rI t 6= τk, ∆I = −h(I), t = τk (SIR2)

Ṙ = −wR, t 6= τk ∆R = h(I), t = τk. (SIR3)

In the above equations, S, I and R represent susceptible, infected and temporarily immune individuals, β
is the time-periodic infection rate with period T , r is the rate at which individuals recover naturally and
gain temporary immunity, w is the rate at which temporary immunity is lost, 0 ≤ h(I) ≤ I is the number
of individuals treated given I infectives, and τk is a periodic sequence of times at which treatment occurs,
with τk+c = τk + T . Note that pulse vaccination is not considered here, but one could readily modify the
model to accomodate for this dynamic as well. Infectious disease model with pulse treatment have been
considered in [Liu & Stechlinskli, 2012], among others.

It is simple to verify that in the above model, the total population size is constant; that is, d
dt(S + I +

R) = 0 and ∆(S + I + R) = 0. Consequently, one can eliminate the variable R by setting R = p − S − I
for a parameter p representing the population size. One then obtains the simplified model

Ṡ = wp− w(S + I)− β(t, S, I), t 6= τk, ∆S = 0, t = τk

İ = β(t, S, I)− rI t 6= τk, ∆I = −h(I), t = τk.

We will now introduce some reasonable assumptions on the function β.

B.1 β is C1 in S and I, and continuous in t;
B.2 β(t, S, 0) = 0;
B.3 ∂Iβ(t, S, 0) > 0 for S 6= 0.

These conditions guarantee sufficient regularity to apply linearization and ensures that there is no net
influx of new infective individuals when the population is infection-free, while an influx of infectives at
nontrivial disease-free state will result in a higher infection rate. It follows that ∂Sβ(t, S, 0) = 0, and that
(S∗, I∗) = (p, 0) is an equilibrium point of the above impulsive system. The linearization at this equilibrium
point produces the linear system

ẏ =

[
−w −w − ∂Iβ(t, p, 0)
0 ∂Iβ(t, p, 0)− r

]
y, t 6= τk ∆y=

[
0 0
0 −h′(0)

]
y, t = τk.

Due to the upper triangular structure of the above linear system, its Cauchy matrix C(t, s) is also upper
triangular, and its diagonal entries are given by

Cii(t, s) =

{
e−w(t−s), i = 1

exp
(∫ t

s [∂Iβ(u, p, 0)− r]du
)∏

s≤τk<t(1− h
′(0)), i = 2.

The (1, 2) entry is more complicated and will not be needed at the moment. The monodromy matrix
for the linearized system is upper triangular, and its eigenvalues are precisely µ1 = C11(τ0 + T, τ0) and
µ2 = C22(τ0 + T, τ0). The first of these eigenvalues clearly satisfies |µ1| < 1, while for the second, it may
be possible to have |µ2| = 1. Specifically, we have the following theorem, whose proof follows by linearized
stability principles [Bainov & Simeonov, 1993].
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Theorem 3. Consider the SIR model (SIR1)–(SIR3) with seasonal infection rate of period T and periodic
treatment, with instants of treatment τk satisfying τk+c = τk + T ; that is, there are c instants of treatment
per cycle. Let conditions B.1–B.2 be satisfied. For a given population size p, define

µp2 = exp

(∫ T

0
∂I [β(t, p, 0)− r]dt

)
· (1− h′(0))c. (27)

The disease-free state is locally asymptotically stable if µp2 < 1 and unstable if µp2 > 1.

When µp2 = 1 for the Floquet multiplier appearing in equation (27), a fold-type bifurcation can occur.
Since the function h represents the strength of the treatment effort and µp2 depends on h′(0), it seems
reasonable that we take h′(0) as a bifurcation parameter.The assumption 0 ≤ h(I) ≤ I together smoothness
considerations and Taylor’s theorem suggest we pose that

h(I, λ) = λI +
1

2
h′′(0, λ)I2 +

1

6
h′′′(0, λ)I3 +O(I4),

near I = 0 for λ ∈ (0, 1), where prime denotes differentiation in the variable I. With this representation,
h′(0, λ) = λ, so we can identify h′(0) with the bifurcation parameter, as desired. The critical parameter
where µp2 is equal to one is therefore

λ∗ = 1− exp

(
−1

c

∫ T

0
[∂Iβ(t, p, 0)− r]dt

)
. (28)

We will henceforth assume λ∗ ∈ (0, 1).

5.1. Analysis of the case µP
2 = 1 by Lyapunov-Schmidt reduction

Define the time-varying matrix function

A(t) =

[
−w −w − ∂Iβ(t, p, 0)
0 ∂Iβ(t, p, 0)− r

]
.

Also, let Eij denote the standard basis vectors for the space of 2× 2 matrices, defined by [Eij ]k` = δikδj`.
Denoting X = (S, I), the first step in the Lyapunov-Schmidt reduction is to compute DXS((p, 0), λ∗). We
have DXS((p, 0), λ∗) = [vx(T ) vy(T )] where the functions vxi satisfy the appropriate impulsive differential
equations of Table 2.3.1. Specifically, written as a matrix, the function C(t) = [vx(t) vy(t)] satisfies the
linear impulsive differential equation

Ċ = A(t)C, t 6= τk

∆C = −λ∗E22C, t = τk

C(0) = I2×2.

The solution of the above initial-value problem satisfies, for t > 0 and t 6= τk,

C(t) =

[
e−wt −

∫ t
0 e
−w(t−u) [w + ∂Iβ(u, p, 0)] exp

(∫ u
0 [∂Iβ(v, p, 0)− r]dv

)
· (1− λ∗)#{τk∈[0,u)}du

0 exp
(∫ t

0 [∂Iβ(u, p, 0)− r]du
)
· (1− λ∗)#{τk∈[0,t)}

]

=

[
e−wt −

∫ t
0

d
du

[
exp

(
−w(t− u) +

∫ u
0 [∂Iβ(v, p, 0)− r]dv

)]
· (1− λ∗)#{τk∈[0,u)}du

0 exp
(∫ t

0 [∂Iβ(u, p, 0)− r]du
)
· (1− λ∗)#{τk∈[0,t)}

]
.

Therefore, evaluating at t = T , we obtain

DXS((p, 0), λ∗) =

[
e−wT κ

0 1

]
,

κ = −
∫ T

0
e−ru

d

du

(
exp

(
−w(T − u) +

∫ u

0
∂Iβ(s, p, 0)ds

))
· (1− λ∗)

∑c−1
k=0H(u−τk)du,

and H(u) is the Heaviside function.
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Now, define the operator N : R2 ×R→ R2 by N(X,λ) = S(x∗ +X,λ∗ + λ)− (x∗ +X), x∗ = (p, 0). It
follows that N(0, 0) = S(x∗, λ∗)− x∗ = 0 and

DXN(0, 0) := N =

[
e−wT − 1 κ

0 0

]
, r(N ) = span

[
1
0

]
ker(N ) = span

[
κ

1− e−wT
]
.

Consequently, a (orthogonal) projection onto the range of N is given by P = E11. This projection will be
useful later. This effective change of variables identifies λ = λ∗ with respect to the map S with λ = 0 with
respect to the N map; this distinction will be important later on.

Next, we compute DλS(x∗, λ∗). The function vλ(t) satisfies the differential equation

v̇λ = A(t)vλ, t 6= τk

∆vλ = −λ∗E22v
λ, t = τk

vλ(0) = 0.

Therefore, vλ(T ) = 0, which implies that DλS(x∗, λ∗) = vλ(T−) = 0 and, consequently, DλN(0, 0) = 0. In
fact, we can say more; if λ ∈ (0, 1) is given, then one has that λ 7→ S((p, 0), λ) is constant because İ = 0
and ∆I = 0 along the orbit through (p, 0). Therefore, DλnN(0, 0) = 0.

For the computation of DXλS(x∗, λ∗), we must solve the impulsive differential equation

v̇Xλ = A(t)vXλ, t 6= τk

∆vXλ = −λ∗E22v
Xλ − C22(τk)E22, t = τk

vXλ(0) = 0.

Note that the above equation follows by applying Table 2.3.1 to each column of DXλS(x∗, λ∗) and then
collecting the columns in a single matrix impulsive differential equation. The solution is given for t ∈
(0, T ) \ {τk} by

vXλ(t) = −C(t)
∑

0≤τk<t
C−1(τ+k )C22(τk)E22.

Therefore, we may calculate DXλN(0, 0) as

DXλN(0, 0) = vXλ(T−)

= −DXS(x∗, λ∗)

c−1∑
k=0

C−122 (τ+k )C−111 (τ+k )Adj(C(τ+k ))C22(τk)E22

= − 1

1− λ∗
DXS(x∗, λ∗)

c−1∑
k=0

ewτkAdj((C(τ+k ))E22

= − 1

1− λ∗
DXS(x∗, λ∗)

c−1∑
k=0

((−ewτkC12(τk))E12 + E22)

= − 1

1− λ∗

(
c−1∑
k=0

κ− ew(τk−T )C11(τk)

)
E12 +

c

1− λ∗
E22

= −c(κ− e
−wT )

1− λ∗
E12 −

c

1− λ∗
E22

which implies that

DSλN(0, 0) = 0, DIλN(0, 0) = − c

1− λ∗

[
κ− e−wT

1

]
.
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The final partial derivatives are those of the form DxixjN(0, 0) for xi, xj ∈ {S, I}. Applying Table
2.3.1, we have

v̇xixj = A(t)vxixj + (vxi1 v
xj
2 + vxi2 v

x−j
1 )

[
−∂SIβ
∂SIβ

]
+ vxi2 v

xj
2

[
−∂IIβ
∂IIβ

]
, t 6= τk

∆vxixj = −λ∗E22v
xixj + vxi2 v

xj
2

[
0

−h′′(0, λ∗)

]
, t = τk

vxixj (0) = 0,

where all partial derivatives of β are evaluated at β(t, p, 0) and we have used the fact that ∂SSβ(t, p, 0) = 0.
Beginning with vSS , since vS2 (t) = 0 for all t, we see that vSS satisfies

v̇SS = A(t)vSS , t 6= τk

∆vSS = −λ∗E22v
SS , t = τk

vSS(0) = 0,

and consequently DSSN(0, 0) = vSS(T ) = 0. Next, we compute DSIN(0, 0). Solving the impulsive differ-
ential equation

v̇SI = A(t)vSI + ∂SIβ(t, p, 0)C11(t)C22(t)(−e1 + e2), t 6= τk

∆vSI = −λ∗E22v
SI , t = τk

vSI(0) = 0,

we obtain the representation

DSIN(0, 0) = DXS(x∗, λ∗)

∫ T

0
∂SIβ(s, p, 0)C11(s)C22(s)C

−1(s)(−e1 + e2)ds :=

[
cSI1
cSI2

]
(29)

Finally, to compute DIIN(0, 0), we solve

v̇II = A(t)vII + 2∂SIβ(t, p, 0)C12(t)C22(t)(−e1 + e2) + ∂IIβ(t, p, 0)C2
22(t)(−e1 + e2), t 6= τk

∆vII = −λ∗E22v
II − h′′(0, λ∗)C2

22(τk)e2 t = τk

vII(0) = 0,

thereby obtaining

DIIN(0, 0) =DXS(x∗, λ∗)

[∫ T

0

(
2∂SIβ(s, p, 0)C12(s)C22(s) + ∂IIβ(s, p, 0)C2

22(s)
)
C−1(s)(−e1 + e2)ds

− h′′(0, λ∗)

c−1∑
k=0

C2
22(τk)C

−1(τ+k )e2

]

:=

[
cII1
cII2

]
.

(30)

With all of the above calculations and notation in place, we see that the function N(x, λ) can be written

N(S, I, λ) =

[
e−wT − 1 κ

0 0

] [
S
I

]
+

c

1− λ∗

[
κ− e−wT

1

]
λI +

[
cSI1 SI +

cII1
2 I

2

cSI2 SI +
cII2
2 I

2

]
+O3(S, I, λ), (31)

κ = −
∫ T

0
e−ru

d

du

(
exp

(
−w(T − u) +

∫ u

0
∂Iβ(s, p, 0)ds

))
· (1− λ∗)

∑c−1
k=0H(u−τk)du, (32)

where Oq(Z) denotes terms of order q or higher in the variable Z and H(u) is the Heaviside function.
Notice that under assumption B.3, one has κ < 0. Applying the projection operator P = E11 to both sides
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of the equation N(S, I, λ) = 0, we obtain

(e−wT − 1)S + κI +
c(κ− e−wT )

1− λ∗
λI + cSI1 SI +

cII1
2
I2 +O3(S, I, λ) = 0, (33)

where the second component of the vector is identically zero and has been neglected. By the implicit
function theorem, there exists a unique smooth function S(I, λ) such that (S(I, λ), I, λ) solves equation
(33) for (λ, I) ≈ (0, 0), with the property that S(0, 0) = 0. Implicitly differentating both sides of (33) with
respect to the variable I and λ, we find that

∂IS(0, 0) =
κ

1− e−wT
, Sλ(0, 0) = 0. (34)

The bifurcation equation (11) is therefore

I

(
− c

1− λ∗
λ+ cSI2 S(I, λ) +

cII2
2
I +O2(λ, I)

)
= 0, (35)

where S does not appear explicitly in the higher-order terms because of the reduction S = S(I, λ). Notice
that we are able to bring the higher-order terms inside the parentheses because all higher-order terms
of the form rnλ

n vanish because we have proven that DλnN(0, 0) = 0. The structure of the term in the
parentheses determines the branches I = I(λ) of nontrivial periodic solutions of the SIR model. By the
implicit function theorem (applied to the parenthetical part), a nontrivial branch I = I(λ) exists near λ = 0
and, consequently, a unique nontrivial periodic solution bifurcates at λ = λ∗ in a transcritical bifurcation,
assuming the condition

ζ :=
κcSI2

1− e−wT
+
cII2
2
6= 0 (36)

holds. With slightly more analysis, we can prove the following.

Theorem 4. Under generic conditions (ζ 6= 0), the seasonal SIR model satisfying conditions B.1–B.2
with impulsive treatment and temporary immunity and smooth treatment function h(I, λ) = −λI + O(I2)
undergoes a transcritical bifurcation at the disease-free equilibrium when λ = λ∗, for the parameter λ∗

appearing in (28). If λ∗ < 1, the bifurcating periodic orbit is nonnegative for λ ≈ λ∗ only when (λ−λ∗)ζ > 0.

Proof. We first prove that the condition ζ 6= 0 is generic. Notice that cSI2 ∂IS(0, 0) as appearing in the
condition (36) is independent of h′′(0, λ∗) = ∂IIh(0, λ∗). The dependence of the cII2 on h′′(0, λ∗) will now
be investigated. Examining equation (30), it is readily verified that

cII2 = R− eT2DXS(x∗, λ∗)h′′(0, λ∗)
c−1∑
k=0

C2
22(τk)C

−1(τ+k )e2 := R−Rh

for some R independent of h′′(0, λ∗). To compute the other term (Rh), we begin by simplifying the sum-
mation. Note first that that C2

22(τk)C
−1(τk) = 1

1−λ∗C22(τk)e
wτkAdj(C(τk)). Then, we have

c−1∑
k=0

C2
22(τk)C

−1(τ+k ) =
1

1− λ∗
c−1∑
k=0

C22(τk)e
wτk

[
e−wT κ

0 1

] [
C22(τk) −C12(τk)

0 e−wτk

]

=
1

1− λ∗
c−1∑
k=0

C22(τk)

[
· ·
0 1

]
,

where the (1, 1) and (1, 2) entries will not be needed because we will be conjugating by e2, and only the
(2, 2) entry will remain. Then, Rh is given by

Rh =
h′′(0, λ∗)

1− λ∗
c−1∑
k=0

C22(τk) = h′′(0, λ∗)

c−1∑
k=0

(1− λ∗)k exp

(∫ τk

0
[∂Iβ(t, p, 0)− r]dt

)
.
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Since the terms inside the summation are strictly positive, it follows that Rh, and hence cII2 , depends
linearly and nontrivially on h′′(0, λ∗). Therefore, condition ζ 6= 0 of (35) is generic.

To prove the assertion concerning the sign of the periodic orbit, we note that the linear approximation
I(λ) = c

ζ(1−λ∗)λ+O(λ2) is with respect to zeroes of the map N , so that

I(λ) =
c

ζ(1− λ∗)
(λ− λ∗) +O((λ− λ∗)2) (37)

as a fixed point of the stroboscopic map, with the original coordinate system on the parameter. The sign
of I(λ) near λ∗ is therefore equivalent to that of (λ− λ∗)ζ, since it is assumed that λ∗ ∈ (0, 1). Therefore,
I(λ) > 0 near λ∗ only if (λ− λ∗)ζ > 0. The sign of S is positive regardless because

S(λ) = p+
κ

1− e−wT
I(λ) +O((λ− λ∗)2),

which implies S > 0 near λ = λ∗. �

The example of this section is noteworthy because, to our knowledge, there are no examples in the
literature of an impulsive model that is explictly proven to undergo a bifurcation in a case where the
impulse times are not evenly spaced. To determine the stability of the bifurcating periodic orbit, we must
either approximate the periodic orbit and compute its linearization or use center manifold reduction. To
approximate it, one may use the linear approximation described in the proof of Theorem 4. Alternatively, a
quicker way to infer stability in this case is to notice that since the bifurcation is transcritical, the stability
of the fixed point at the origin must be the opposite of that of the bifurcating fixed point. Thus, the
bifurcating (coexistence) periodic orbit is stable when λ < λ∗, and unstable when λ > λ∗.

5.2. Analysis of the case µP
2 = 1 by Center Manifold Reduction

Since we consider bifurcation from an equilibrium point, we are in the case of a periodic orbit of period
T (λ∗), so in the notation of Section 3.2, we have the case of an order k = 1 composition. Therefore,
U1(x, λ) = S(x+ x∗, λ+ λ∗)− x∗ = N(x, λ) + x, so the second-order terms and higher of U1, the function
for which we need to compute a Taylor expansion, will coincide with those of N(x, λ) from Section 5.1. Also,
since we already know that DλN(0, 0) = 0 from the aforementioned section, the third column of DU(0, 0)
will be precisely [ 0 0 1 ]T , where the 1 in the third component comes from the derivative of λ 7→ λ with
respect to λ. Therefore, the map (S, I, λ) 7→ U(S, I, λ) has the expansionSI

λ

 7→
e−wT κ 0

0 1 0
0 0 1

SI
λ

− c

1− λ∗

κ− e−wT1
0

λI +

 cSI1 SI +
cII1
2 I

2

cSI2 SI +
cII2
2 I

2

0

+O((S, I, λ)3),

where we have suppressed indices on S, I, λ and written the discrete-time ssytem with iterated map con-
vention. The Jordan normal form DU(0, 0) = PJP−1 is

DU(0, 0) =

1 κ 0
0 1− e−wT 0
0 0 1

diag(e−wT , 1, 1)

1 κ(1− e−wT )−1 0
0 −(1− e−wT )−1 0
0 0 1

 ,
and upon applying the transformation [S I λ ]T = P [y λ ]T , one obtains

y1 7→ e−wT y1 − c
(κ− e−wT )(1− e−wT )− κ

1− λ∗
λy2 +

(
cSI1

1− e−wT
− κcSI2

)
y1y2

+

(
cSI1 κ

1− e−wT
+
cII1 (1− e−wT )2

2
− cSI2 κ2 − κcII2 (1− e−wT )

2

)
y22

y2 7→ y2 −
c

1− λ∗
λy2 + cSI2 y1y2 +

(
cSI2 κ+

cII2
2(1− e−wT )

)
y22

λ 7→ λ.

(38)
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Let y1 = h(y2, λ) = h20y
2
2 + h11y2λ + h02λ

2 + O((y2, λ)3) be a quadratic approximation to the center
manifold. Substituting y1 = h(y2, λ) and the transformed equation (38) into the invariance condition (19)
and comparing quadratic terms on the left- and right-hand sides, we find

y22 : e−wTh20 +

(
cSI1 κ

1− e−wT
+
cII1 (1− e−wT )2

2
− cSI2 κ2 − κcII2 (1− e−wT )

2

)
= h20,

λy2 : e−wTh11 − c
(κ− e−wT )(1− e−wT )− κ

1− λ∗
= h11,

λ2 e−wTh02 = h02.

Since e−wT 6= 1, these equations are uniquely solvable for h20, h11 and h02. Leaving the coefficients as
implicit, the dynamics reduced to the center manifold are given by

y2 7→ y2 −
c

1− λ∗
λy2 + cSI2 (h20y

2
2 + h11y2λ+ h02λ

2)y2 +

(
cSI2 κ+

cII2
2(1− e−wT )

)
y22 +O((y2, λ)3).

By truncating the above map to order two and simplifying, we obtain

y2 7→ y2 −
c

1− λ∗
λy2 +

ζ

1− e−wT
y22 +O((y2, λ)3), (39)

and all of the coefficients hij vanish. A transcritical bifurcation occurs if the quadratic term is nonzero [Wig-
gins, 2003]. See the associated bifurcation diagram: Figure 5.2. This is in agreement with the condition ζ 6= 0
obtained by Lyapunov-Schmidt reduction: equation (36). However, we gain more information here because
the center manifold reduction maintains the dynamics and stability results, while the Lyapunov-Schmidt
reduction does not generally grant stability results directly. For equation (39), the critical parameter is
λ = 0 (in the original system, this corresponds to λ = λ∗; recall that we originally performed a linear
change of variables to translate λ∗ to the origin). We see that the fixed point y2 = 0 is stable when λ > 0
and unstable when λ < 0, while when λ = 0, the fixed point is stable from the −sgn(ζ) direction. As for
the bifurcating fixed point, y∗2, it follows by the implicit function theorem that

y∗2(λ) =
c(1− e−wT )

ζ(1− λ∗)
λ+O(λ2),

and one can then calculate directly (by linearizing (39) at y∗2(λ)) that the linearization at this fixed point
is

z 7→ λ

(
c

1− λ∗
+O(λ)

)
z.

Therefore, the y∗2(λ) is stable when λ < 0 and unstable when λ > 0. Also, from the expression for y∗2(λ),
we see once again that y∗2(λ) > 0 for λ small only if λζ > 0. To conclude, we have the following theorem,
which refines Theorem 4.

Theorem 5. Under generic conditions (ζ 6= 0), the seasonal SIR model with impulsive treatment and
temporary immunity with smooth treatment function h(I, λ) = −λI + O(I2) undergoes a transcritical
bifurcation at the disease-free equilibrium when λ = λ∗. Specifically, the following hold locally for |λ − λ∗|
small.

(1) If λ < λ∗, the disease-free equilibrium is unstable, while it is asymptotically stable if λ > λ∗.
(2) If ζ < 0, there is a (nonnegative) coexistence periodic orbit when λ < λ∗ that is asymptotically stable.

When λ > λ∗, there is a neighbourhood about the disease-free equilibrium in which there are no nontrivial
nonnegative periodic orbits.

(3) If ζ > 0, there is a (nonnegative) coexistence periodic orbit when λ > λ∗ that is unstable. When λ < λ∗,
there is a a neighbourhood about the disease-free equilibrium in which there are no nontrivial nonnegative
periodic orbits.
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Fig. 1. The (local) bifurcation diagram for the SIR model with irregularly-spaced impulsive treatment times at the disease-
free equilibrium, with illustrative parameters resulting in λ∗ = 0.8 and ζ < 0. The diagonal line corresponds to the nontrivial
branch of periodic solutions; specifically, it is the linear approximation to I(λ) as given in equation (37) at λ = λ∗. The
horizontal line is the disease-free equilibrium. The vertical axis represents the infected component I. Due to the change of
variables I = (1−e−wT )y2, the above diagram is identical (up to translation in λ and rescaling in I) to the bifurcation diagram
of the quadratic order approximation of the center manifold dynamics (39). Asymptotically stable states are indicated by solid
lines, with unstable states as dashed lines.

In the degenerate case where ζ = 0, a pitchfork bifurcation may occur, as can be verified by normal
form theory [Wiggins, 2003]. We do not indend on checking the nondegeneracy condition for the pitchfork
bifurcation because this would necessitate computing a higher-order approximation of the stroboscopic
map, and we have already shown that the condition ζ 6= 0 is generic; see Theorem 4

6. Logistic equation with delayed impulsive harvesting

The example of this section is inspired by the delayed logistic map, which can be shown to undergo a
Neimark-Sacker bifurcation [Kuznetsov, 2004]. We consider here a logistic differential equation that does
not exhibit delays, but for which a harvesting effort acts on the delayed population census. As such, it can
be considered a generalization of the model considered in [Zhang, Shuai and Wang, 2003], for example.
The model reads as follows.

ẋ = rx(1− x/N), t 6= kT (40)

∆x = −εx(t− ω), t = kT. (41)

r > 0 is the intrinsic growth rate, N > 0 the carrying capacity, T > 0 the harvesting period, ε ∈ (0, 1) the
harvesting effort, and ω ∈ (0, T ] the census delay, and k ∈ Z. Applying the method of Section 4, the above
is equivalent to the two-dimensional system without impulses:

ẋ = rx(1− x/N), t /∈ {kT, kT − ω} (42)

ẏ = 0, t /∈ {kT, kT − ω} (43)

∆x = −εy, t = kT (44)

∆y = x− y, t = kT − ω. (45)

Note that the sequence of impulses can be identified with τj = bj/2cT − [j+ 1]2ω. With this identification,

τj+2 =

⌊
j

2
+ 1

⌋
T − [j + 3]2ω = (1 + bj/2c)T − [j + 1]2ω = τj + T,

and the impulsive system (42)–(45) is periodic with period T and two impulses per period.
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6.1. The case ω 6= T

The extinction state, (x, y) = (0, 0), is an equilibrium point of (42)–(45). The linearization at this equilib-
rium produces the linear system

ż = rz, t /∈ {kT, kT − ω}
ẇ = 0, t /∈ {kT, kT − ω}

∆z = −εw, t = kT

∆w = z − w, t = kT − ω.

(46)

Note that the first two impulse times occur at time t = 0 and time t = T − ω. The monodromy matrix is

Mω(ε) =

[
erT −εerT

er(T−ω) −εer(T−ω)
]
.

Mω(ε) is not invertible, so the eigenvalues are precisely µ1 = 0 and µ2 = erT (1− εe−rω).
Treating ε as a parameter, we have µ2 = 1 when ε = ε∗:

ε∗ = erω(1− e−rT ). (47)

We expect a transcritical or pitchfork bifurcation to occur due to the stationary fixed point at the origin.
We will use the method of Lyapunov-Schmidt reduction, since it is computationally faster and we do not
require the more sophisticated center manifold reduction here because the critical Floquet multiplier is not
complex.

Using Table 2.3.1, we have that the differential equations for the function vX for X = (x, y) is simply
the variational equation (46) with initial condition vX(0) = I. For t ∈ (0, T ], we have

vX(t) =

[
ert −ε∗ert
er(T−ω)1(T−ω.T ] 1− (1 + ε∗er(T−ω))1(T−ω,T ]

]
= [vx(t) vy(t) ].

Also, one easily finds vε
k
(t) = 0 for all k ≥ 1 because the equilibrium at the origin is independent of the

parameter ε.
The second-order terms are somewhat more complicated. Table 2.3.1 yields the system

v̇αβ = rE11v
αβ − e1

2r

N
vαxv

β
x , t /∈ {kT, kT − ω}, αβ ∈ {xx, xy, yy, xε, yε}

∆vαβ = −ε∗E12v
αβ, t = kT, αβ ∈ {xx, xy, yy, xε}

∆vyε = −ε∗E12v
yε − E12v

y, t = kT

∆vαβ = (E21 − E22)v
αβ, t = kT − ω, αβ ∈ {xx, xy, yy, xε, yε, εε},

all with identical initial conditions vαβ(0) = 0. The complete solution is given for t ∈ (0, T ] as

vxx(t) =

[
− 2
N · e

rt(ert − 1)

−1(T−ω,T ]
2
N · e

r(T−ω)(er(T−ω) − 1)

]
, vyε(t) =

[
−ert

−1(T−ω,T ]e
r(T−ω)

]
,

vxy(t) = −ε∗vxx(t), vxε(t) = 0,

vyy(t) = (ε∗)2vxx(t)

Since the impulse times do not depend on the parameter, one can formally differentiate the appropriate
rows of Table 2.3.1 following Section 2.3.2 to obtain

v̇y
jεk = rE11v

yjεk , t /∈ {kT, kT − ω}

∆vy
jεk = −ε∗E12v

yjεk , t = kT

∆vy
jεk = (E21 − E22)v

yjεk , t = kT − ω,
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for any j + k ≥ 3. Since the initial conditions are all zero, we conclude that vy
jεk(t) = 0 for j + k ≥ 3.

Therefore, the map N = S − I, where S = S(x, y, ε) is the stroboscopic map, has near (x, y, ε) = (x, y, ε∗)
the approximation

N(x, y, ε) = (Mω(ε∗)− I)

[
x
y

]
+

[
1
2v

xx
x (T )x2 − ε∗vxxx (T )xy + (ε∗)2

2 vxxx y2 − erT yε
1
2v

xx
y (T )x2 − ε∗vxxy (T )xy + (ε∗)2

2 vxxy (T )y2 − er(T−ω)yε

]
+O(x3) + yO2(y, ε),

(48)

with ε = ε− ε∗. We could compute the projection onto the range of Mω(ε∗)− I and continue applying the
Lyapunov-Schmidt method verbatim, but this is not necessary here because by inspection, we note that
the second row is implicitly sovable for x = x(y, ε). Specifically, the second row of N(x, y, ε) = 0 is given
by

er(T−ω)x− erT y +
1

2
vxxy (T )x2 − ε∗vxxy (T )xy +

(ε∗)2

2
vxxy (T )y2 − er(T−ω)yε+O(x3) + yO2(y, ε) = 0.

As ∂xN2(0, 0, ε
∗) 6= 0, the implicit function theorem applies. In particular, by implicitly differentiating the

above equation, we can obtain the representation

x = x(y, ε) = y

(
erω + ε+ ε∗e−r(T−ω)vxxy (T )

[
erω +

ε∗

2

]
y

)
:= yF (y, ε),

which is correct to order yO2(y, ε). Substituting the above into the first row of (48) results in the equation

(erT − 1)F (y, ε)y − erω(erT − 1)y +
1

2
vxxx (T )F 2(y, ε)y2 − ε∗vxyx F (y, ε)y2 +

ε∗

2
vxxx y − erT εy + yO2(y, ε) = 0

If we seek nontrivial bifurcating solutions, we can factor out a y term. Then, one obtains

N(x(y, ε), y, ε)

y
= (erT − 1)F (y, ε)− erω(erT − 1) +

1

2
vxxx (T )F 2(y, ε)y − ε∗vxyx F (y, ε)y +

ε∗

2
vxxx − erT ε

= −ε+ y

(
(erT − 1)ε∗e−r(T−ω)

[
erω +

ε∗

2

]
vxxy (T ) +

(
e2rω

2
− ε∗erω +

(ε∗)2

2

)
vxxx (T )

)
:= −ε+ yY (ε∗)

plus terms of order O2(y, ε). The implicit function theorem implies that a unique, nontrivial branch of
periodic solutions bifurcates at ε = ε∗, and the nontrivial fixed point of the stroboscopic map is given to
linear order by the equation

(x, y) =

(
(erω + ε− ε∗)y, ε− ε

∗

Y (ε∗)

)
. (49)

Notice that Y (ε∗) is negative, so the nontrivial periodic orbit is is positive if ε < ε∗, while when ε > ε∗,
it is negative. To analyze stability, one may note that the nonzero eigenvalue of Mω(ε) has modulus less
than one when ε > ε∗, while it has modulus greater than one when ε < ε∗. Consequently, the bifurcating
periodic orbit is stable when ε < ε∗ and is unstable when ε > ε∗. To summarize, we state the following
theorem.

Theorem 6. If 0 < ω < T , the extinction state undergoes a transcritical bifurcation at parameter ε = ε∗,
as defined in equation (47). The bifurcating periodic orbit is biologically meaningful (positive) and stable,
and the extinction equilibrium is unstable when ε < ε∗. When ε > ε∗, the extinction equilibrium is stable
and the bifurcating periodic orbit loses biological relevance, becoming negative and unstable.
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6.2. The case ω = T

For ω = T , the linearization at the extinction state takes the modified form

ż = rz, t 6= kT

ẇ = 0, t 6= kT

∆z = −εw, t = kT

∆w = z − w, t = kT,

(50)

and the monodromy matrix is given by

MT =

[
erT −εerT
1 0

]
.

The Floquet multipliers take a very different form in this case. Namely, they are given by the pair

µ1,2 =
erT

2
±
√
e2rT

4
− εerT .

Consequently, when ε ≥ erT /4, the eigenvalues become complex conjugate with modulus |µ1,2| = εerT .
Defining εNS = e−rT , a Neimark-Sacker bifurcartion can therefore occur if εNS ≥ erT /4. Note that the
condition εNS ≥ erT /4 is equivalent to rT ≤ log 2. Biologically, this implies that a Neimark-Sacker bifur-
cation can only occur if the harvesting schedule is designed so that harvesting does not occur after small
populations would double in size. The case rT = log 2 yields a 1:1 resonance.

Other situations can also be explored. For example, when ε ≤ erT /4, both Floquet multipliers are real
and nonnegative. One of the multipliers has unit modulus at any ε for which the equation

±
√
e2rT

4
− εerT = 1− erT

2

has a solution. The (unique) critical parameter where this occurs is is εF = 1−e−rT . When ε = εF , exactly
one multiplier µ satisfies µ = 1, while the other is strictly greater or less than one in modulus, unless it
so happens that rT = log 2, resulting in the violation of a nondegeneracy condition. Notice also that it
is always the case that εF ≤ erT /4, with equality occuring when rT = log 2. Consequently, the potential
fold bifurcation point always persists, independent of the sign of rT − log 2, which is in contrast with the
Neimark-Sacker bifurcation point.

To conclude, there are three different cases that could be considered. If rT < log 2, then εNS < εF with
a potential Neimark-Sacker bifurcation at ε = εNS and a potential fold bifurcation at εF . If rT > log 2, a
potential fold bifurcation occurs when ε = εF . The boundary point, rT = log 2, results in a 1:1 resonance
at ε = εF = εNS . The analysis of the resonant case will yield the best qualitative picture of the dynamics,
so we will focus our attention there.

To simplify matters somewhat, we will rescale the time variable so that impulses occur at integer times.
Specifically, introduce the rescaled time s = t

T and rescaled growth rate η = rT , so that equation (42)–(45)
becomes

ẋ = ηx(1− x/N), t 6= k (51)

ẏ = 0, t 6= k (52)

∆x = −εy, t = k (53)

∆y = x− y, t = k. (54)

The linearization then takes the simple form

ż =

[
η 0
0 0

]
z, t 6= k (55)

∆z =

[
0 −ε
1 −1

]
z, t = k. (56)
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We will take (η, ε) as a bifurcation parameter. By the analysis earlier in this section, we know that the
point (η, ε) = (η∗, ε∗) with

(η∗, ε∗) =

(
log 2,

1

2

)
(57)

is a point at which the linearized system (55)–(56) has Floquet multipliers satisfying a 1:1 resonance
condition. The matrix solution vX = [vx vy ] of (55)–(56) is given for t ∈ (0, 1] by

vX(t) =

[
2t −2t−1

1 0

]
.

Similar to the previous case where ω 6= T , the quadratic terms in variables (x, y) are solutions of the
impulsive differential equations

v̇αβ = η∗E11v
αβ − e1

2η∗

N
vαxv

β
x , t 6= k, αβ ∈ {xx, xy, yy}

∆vαβ = (E21 − E22 − ε∗E12)v
αβ, t = k, αβ ∈ {xx, xy, yy}

(58)

with zero initial conditions. The solutions are easily computed for t ∈ (0, 1] as

vxx(t) =

[ −2
N 2t(2t − 1)

1

]
, vxy(t) =

[
1
N 2t(2t − 1)

1

]
, vyy(t) =

[ −1
2N 2t(2t − 1)

1

]
.

Therefore, the stroboscopic map evaluated at the critical parameter satisfies[
x
y

]
7→
[

2 −1
1 0

] [
x
y

]
+

[
− 2
N x

2 + 2
N xy −

1
2N y

2

1
2x

2 + xy + 1
2y

2

]
+O3(x, y) (59)

Performing a linear transformation to send the linear part to Jordan canonical form results in the map[
u1
u2

]
7→
[

1 1
0 1

] [
u1
u2

]
+

[
1
2

(
1− 1

N

)
u21 + 1

N u1u2 −
9
2N u

2
2

− 1
2N u

2
1 − 1

N u1u2 −
9
2N u

2
2

]
+O3(u1, u2).

By [Kuznetsov, 2004] p. 433, the nondegeneracy conditions of bifurcation at 1:1 resonance are satisfied
provided N 6= 1. In particular, it follows that the stroboscopic map associated to (51)–(54) can be approx-
imated up to order 2 by a time-1 flow whose governing system of ordinary differential equations exhibits
a Bogdanov-Takens bifurcation with normal form coefficient s = sgn(1 − N). In particular, the following
theorem holds.

Theorem 7. If ω = T and N 6= 1, a bifurcation at 1:1 resonance occurs at the point (η, ε) = (log 2, 1/2),
where η = rT . In particular, transcritical bifurcations occur along the curve (η, 1 − e−η) in a neighbour-
hood of (log 2, 1/2), and Neimark-Sacker bifurcations occur along the curve (η, e−η) in a neighbourhood of
(log 2, 1/2) in the half space defined by η ≤ log 2.

To produce the bifurcation diagram, we must first write (x, y) 7→ S(x, y, η, ε) as a Taylor expansion with
respect to (x, y). To compare, the map (59) is what one obtains when (η, ε) = (log 2, 1/2), but we now wish
to leave the parameters as arbitrary and (in principle) close to the critical parameters. Replacing η∗ with
η and ε∗ with ε in the differential equations for vαβ in (58) results in the expansion

x 7→ eηx− εeηy − 1

N
eη(eη − 1)x2 +

2

N
εeη(eη − 1)xy − 1

N
ε2eη(eη − 1)y2 +O(||(x, y)||3)

y 7→ x+
1

2
x2 + xy +

1

2
y2 +O(||(x, y)||3).

(60)

When (η, ε) = (log 2, 1/2), the above is equivalent to (59). Next, we could obtain the bifurcation diagram
analytically by computing the approximating flow for the above map. However, this is unnecessary for two
reasons. First, we already know the location of the 1:1 resonance and the geometry of the Neimark-Sacker
and fold curves, along with the sign of the asssociated Bogdanov-Takens normal form; they are given by
Theorem 7 and the preceding discussion. Second, we can just as easily use bifurcation continuation software
such as MATCONTM [Dhooge et. al, 2008] to produce the bifurcation diagram; see Figure 6.2.
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Fig. 2. The bifurcation diagram for the 1:1 resonance case of the logistic model with census delay and ω = T . Fold bifurcations
occur along the solid line (ε = 1 − e−η), while Neimark-Sacker bifurcations occur along the dashed line (ε = e−η). Their
intersection at the black square is a 1:1 resonance point. The vetical dotted line delineates a stability-instability boundary
associated to the fold bifurcation curve, while the oblique dash-dot line (ε = eη/4) indicates where the multipliers of the
extinction equilibrium pass from real to complex-conjugate. Note that only the bifurcation curves described in Theorem
7 were searched for in MATCONTM; the other curves appearing in the diagram were manually added, since they do not
correspond to true bifurcation curves.

6.2.1. Discussion of the bifurcation diagram

Referring to Figure 6.2, we will descrbe the following decomposition of the parameter space close to the
1:1 resonance point. We will say that a fixed point or periodic orbit is conditionally stable if one of its
multipliers lies within the complex unit disc, while the other lies outside. Also, such a point is oscillatory
if its eigenvalues have nonzero imaginary part.

The dynamics in region A and B differ depending on the normal coefficient s = sign(1−N). If s = −1,
region A contains a time-varying closed curve that is stable and invariant under the impulsive dynamics,
oscillating from positive to negative in sign, while the extinction equilibrium is conditionally stable and
oscillatory. Upon passing into region B, the invariant closed curve is destroyed by a Neimark-Sacker bifur-
cation. If s = 1, region A contains only the conditionally stable oscillatory extinction equilibrium, while
passing into region B produces an unstable time-varying curve through a Neimark-Sacker bifurcation. In
both cases, the extinction equilibrium is stable and oscillatory in region B.

Passing into region C, the eigenvalues become real and the trajectories are biologically meaningful.
Near the boundary to region D, there is a negative periodic orbit that is conditionally stable. A trans-
critical bifurcation occurs when crossing the boundary between region C and D, with the result being a
stable, positive periodic orbit. In region D, the extinction equilibrium is conditionally stable. The periodic
orbit becomes unstable in region E through some bifurcation that is not detectable because it is nonlocal
and the second-order truncation of (59) does not accurately capture such nonlocal effects. The extinction
equilibrium maintains its conditional stability in region E. Passing into region F, the final transcritical bi-
furcation takes place, with the periodic orbit becoming negative and conditionally stable and the extinction
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equilibrium becoming unstable. Passing into region G, the extinction equilibrium becomes oscillatory.
To conclude, the region of parameter space where small positive trajectories remain biologically relevant

is given by the union of regions C,D,E and F. The only local bifurcations at the extinction equilibrium in
this region are transcritical bifurcations. Due to this observation and the analysis of Section 6.1, we can
make the following corollary.

Corollary 6.1. Denote [ω]T the remainder of ω modulo T ; that is, [ω]T is defined by the equation ω =
nT+[ω]T for n ∈ N and [ω]T ∈ [0, T ). The logistic model with delayed census harvesting (40)–(41) undergoes
a transcritical bifurcation at the extinction equilibrium with critical parameter ε∗ = er[ω]T (1 − e−rT ). The
orbit structure is identical to the one described in Theorem 6 and if rT ≤ log 2, the stability conclusions
are also valid.

6.3. Conclusions

Section 2 reviewed some elementary properties of the stroboscopic map associated to an impulsive dif-
ferential equation. It was shown that the stroboscopic map is smooth (Proposition 1), and Theorem 2
demonstrated that the Taylor coefficients of the stroboscopic map at a given periodic orbit (identified with
a fixed point) can be computed up to a given order by solving a tiered system of linear impulsive differntial
equations. These results are applicable even if the period of the impulsive system or the impulse times
themselves vary with the parameter. In Section 3, we outlined the Lyapunov-Schmidt reduction (Section
3.1) and center manifold reduction (Section 3.2) methods as they apply to the stroboscopic map. Section
4 explained how a class of impulsive delay differential equations can be converted to a finite-dimensional
system of impulsive systems without delays, so that the aforementioned methods of bifurcation theory are
applicable.

Two examples were studied to illustrate the reduction methods. The SIR model with impulsive treat-
ment at irregular times was considered in Section 5. Both the Lyapunov-Schmidt reduction and the center
manifold reduction were used to prove the existence of a transcritical bifurcation, thereby comparing both
methods. Next, a logistic equation with delayed impulsive harvesting was considered in Section 6. Trans-
forming to the higher-dimensional system without delays according to the methods of Section 4, it was
shown that for most cases, a transcritical bifurcation occurs. However, in the situation where the delay
is perfectly synchronized with the harvesting (Section 6.2), Neimark-Sacker bifurcations are possible. In
particular, there is a 1:1 resonance point nearby which the system exhibits both transcritical and Neimark-
Sacker bifurcations (Theorem 7). The bifurcation diagram was given and the orbit structure and stability
was characterized in the seven regions of parameter space of interest near the resonance point.
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