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Highlights 

 PD patients showed no change in behaviour after an acute bout of aerobic exercise 

 Improvements in behaviour in the control condition demonstrated practice effects 

 Results do not support acute exercise as primer for cognitive rehabilitation in PD 

 

Abstract 

Background: Deficits in executive functions are highly prevalent in Parkinson’s disease (PD). 

Although chronic physical exercise has been shown to improve executive functions in PD, 

evidence of acute exercise effects is limited. This study aimed to evaluate the effects of an acute 

bout of exercise on cognitive processes underlying executive functions in PD. Methods: Twenty 

individuals with PD were assessed in both a Control and an Exercise conditions. In each 

condition, individuals started performing a simple and a choice reaction time (RT) task. 

Subsequently, participants were asked to sit on a cycle ergometer (Control) or cycle (Exercise) 

for 20 minutes in counterbalanced order. Participants were asked to repeat both reaction time 

tasks after 15-minute rest period in both conditions. Results: While no differences were found in 

simple RT, participants showed faster choice RT post Exercise as well as Control conditions 

(p=0.012). Participants had slower choice RT for target stimulus compared to non-target stimuli 

irrespective of time or experimental condition (p<0.001). There was no change in accuracy 

following experimental conditions.  Conclusions: Results suggest that individuals with PD may 

not respond behaviourally to a single bout of exercise. The lack of selective effects of exercise 

on cognition suggests that practice effects may have influenced previous research.  Future studies 
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should assess whether neurophysiological changes might occur after an acute bout of exercise in 

PD.   

 

Keywords: Parkinson’s disease, acute exercise, cognition, reaction time 

 

 

Introduction 

 Deficits in cognitive function have been reported as one of the main contributors to a 

decreased quality of life by individuals with Parkinson’s disease (PD) [1]. Specifically, studies 

have shown that many individuals with PD experience deficits in executive functions (EF) [2]. 

EF deficits found in individuals with PD have been attributed to the disruption of basal ganglia-

thalamo-cortical circuitries that loop through frontal lobe areas [3]. Yet, EF outcomes are 

variable in their response to dopaminergic treatment for nigrostriatal-related PD symptoms [4]. 

Therefore, complementary therapies to treat cognitive function have been investigated in PD.  

 A non-pharmacological therapy showing promising results in the treatment of EF deficits 

in PD is physical exercise. However, this growing body of literature is primarily focused on the 

chronic effects of exercise [5-7], while studies investigating the acute effects of exercise on 

cognition are almost non-existent in PD. Investigating the acute effects of exercise on cognition 

of individuals with PD may help understand the mechanisms underlying positive effects 

observed in chronic exercise interventions. Furthermore, it has been suggested that acute 

(transient) effects of exercise on neurophysiological markers and cognition could possibly be 
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used as a “primer” for subsequent rehabilitation strategies [8], for example cognitive training. 

Thus, determining whether acute effects of exercise on cognition exist in PD is an important step 

for establishing exercise as a complementary therapy in this population.  

The first study to evaluate the acute effects of exercise on cognition in PD showed 

improvements in EF after 30 minutes of passive cycling [9]. Yet, a limitation of this study was 

the lack of a control condition in which participants did not undergo the experimental 

manipulation. Thus, it remains unclear whether positive results were due to passive cycling or 

practice effects. It is also important to note that the mechanisms underlying the effects of passive 

exercise on cognition are not well understood. In contrast, studies investigating the mechanisms 

underlying acute effects of exercise on cognition in healthy individuals have mostly used active 

exercise.  In neurologically healthy young and older adults, behavioural effects following an 

acute bout of (active) exercise have been observed through decreases in reaction time (RT), 

especially in tasks requiring greater executive control [10, 11]. Importantly, improvements in 

behavioural response have been linked to changes electrophysiological measures (i.e. P300 

latency and amplitude) [12] as well as greater activation of prefrontal brain areas [10, 11].  Thus, 

it has been argued that an acute bout of exercise may influence EF through increased frontal lobe 

activation. In this context, it could be hypothesized that enhanced frontal lobe activity as a result 

of exercise could positively influence cognitive processing through fronto-striatal loops in PD.  

In the current study, three cognitive processes argued to underlie EF and be regionally 

organized within the frontal lobes were examined. These processes were defined as the abilities 

[i] to initiate and sustain a response (energization), [ii] to set a stimulus-response relationship 

(task-setting), and [iii] to monitor performance over time for quality control and adjustment of 

behaviour (monitoring) [13]. Deficits in these processes were found to contribute to impaired 
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performance in commonly used neuropsychological tests assessing EF such as phonemic verbal 

fluency, Stroop test, and the Wisconsin Card Sorting Test [14].  Most importantly, the frontal 

lobe areas found to be critical to each cognitive process (superior medial, left lateral, and right 

lateral, respectively) are known to anatomically and functionally linked to the basal ganglia [15]. 

Since the basal ganglia is the primary area affected in PD, it could be theorized that 

improvements in outcome measures representing each cognitive process could indicate enhanced 

information processing through fronto-striatal loops.  

Thus, the aim of the present study was to investigate the effects of a single bout of active 

aerobic exercise on energization, task-setting, monitoring in PD. Given that an acute bout of 

exercise may enhance activity in frontal areas known to modulate these processes and that are 

connected to the basal ganglia, it was hypothesized that exercise would positively influence 

energization, task-setting, and monitoring in PD. 

 

Methods 

This study was approved by University of Waterloo and Wilfrid Laurier University 

research ethics boards in accordance with the Declaration of Helsinki. Informed consent was 

obtained from all individuals prior to participation.  

Participants 

Participants included 20 male and female adults (age 66.55 (10.11)) diagnosed with PD, 

taking appropriate medication, and with medical clearance to exercise. Participants were 

recruited from the database of the Movement Disorders Research and Rehabilitation Centre at 

Wilfrid Laurier University (Waterloo, ON, Canada). Exclusion criteria were history of 
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neurological diseases other than PD, unstable medical condition, uncontrolled diabetes mellitus, 

uncontrolled hypertension (BP>140/90), history of heart disease, resting heart rate >100, history 

of stroke, history of chronic obstructive pulmonary disease, or uncorrected visual impairments.  

Participants completed three assessment sessions (baseline, Exercise, and Control), on 

three separate days, and while in their ON medication state (except for one drug naïve 

participant). For each participant, assessment sessions were scheduled at the same time of the 

day in order to control for the effect of symptoms fluctuation on participants’ performance. A 

cross-over design was implemented, where participants performed Exercise and Control 

conditions in a counterbalanced order and served as their own controls.   

Baseline evaluation 

  The Geriatric Depression Scale was used to assess participants’ depression signs, while 

the 15-item Waterloo Handedness Questionnaire evaluated their hand preference. PD motor 

symptoms were assessed using the motor subsection of the Unified Parkinson’s disease Rating 

Scale. Participants’ general cognitive status was examined using the Montreal Cognitive 

Assessment.  

In order to assess participants’ fitness levels, a submaximal graded exercise test was 

completed. In this test, participants started with a 2 minute warm up with no load on the cycle 

ergometer. Participants began the graded exercise test cycling with a workload of 30 watts at 50 

rotations per minute, then workload was increased every minute (15 watts/per increment unit) 

until participants achieved testing termination criteria. The protocol was terminated if two of the 

following criteria were achieved: participant’s heart rate reached 70% of the age-predicted 

maximal heart rate (age-predicted max HR=208-(0.7* age)), respiratory exchange ratio was 
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greater than 1.1, participant rate of perceived exertion (RPE) was greater than 16 on a scale from 

6 (no exertion) to 20 (maximal exertion) [16], or participant asked to stop. Gas exchange (levels 

of oxygen (O2) and carbon dioxide (CO2)) was recorded breath-by-breath using an Ergocard 

Cardiopulmonary Stress Test Metabolic Cart (Roxon medi-tech ltd. St-Leonard, Quebec, 

Canada). Heart rate was recorded at rest, continuously during, and after the test using a Polar HR 

monitor (Lachine, Quebec, Canada). VO2 values at test termination were recorded and used as a 

reference of participants’ fitness level. The influence of baseline fitness level on cognitive 

outcomes was examined as a confounding factor.  

Demographic, clinical, and fitness level information at baseline are presented in Table 1. 

 

Insert Table 1 here 

 

Exercise condition  

 Immediately following the pre-tests of simple and choice RT, participants exercised on a 

recumbent cycle ergometer (700 Excite + Recline, Technogym USA©, Seattle, Washington) for 

20 minutes at a set intensity of 50% heart rate reserve (HRR). Intensity prescription was defined 

based on the Karvonen method which was expressed in the equation Target HR = ([(HRmax - 

HRrest)* 0.5)]+HRrest) . Heart rate, workload, and rate of perceived exertion recordings from 

baseline graded exercise test were used as guidance to lead participants to the desired exercise 

intensity. Subsequently, participants rested for 15 minutes. After the resting period, they were 

invited to repeat the simple and choice RT tasks. The 15-minute delay period was chosen based 

on a meta-analysis by Chang and colleagues [17], which showed that time of test administration 
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following exercise significantly influenced studies’ effect sizes. Specifically, it was found that 

assessments completed within 0–10 minute delay resulted in negative effects, whereas the largest 

positive effects were identified after 11–20 minute delay and smaller positive effects after 20-

minute delay. Thus, a 15-minute delay was employed in this study as an intermediate value 

between minimum (11 minutes) and maximum (20 minutes) delays shown to reveal the largest 

positive effects on cognition after exercise. Exercise duration and intensity were also chosen 

based on this meta-analysis, where the largest effects of acute aerobic exercise on cognition were 

found after 20 minutes-long sessions of moderate intensity exercise (45% - 55% HRR; RPE 12-

13).   

Control condition  

 In the Control condition participants started with the simple and choice RT tasks and after 

the completion of these tests they were invited to sit on the same cycle ergometer in which the 

Exercise condition was performed for 20 minutes in the company of a trained volunteer. Later, 

participants sat on a chair for 15 minutes which corresponded to the resting period during the 

exercise session. Participants repeated both simple and choice RT tasks after the 15-minute 

delay. 

Reaction Time tasks  

Simple (SRT) and Complex Choice (CCRT) reaction time tasks from the Feature 

Integration Test [13] were used to assess the effects of exercise on energization, task-setting, and 

monitoring. The stimulus in these tasks was one of the four shapes: square, circle, triangle, or 

cross. The shapes were grey or coloured on a black background. For both tasks, stimuli were 

randomly presented at interstimulus intervals (ISI) varying between 3 s and 7 s. Each stimulus 
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stayed on the screen for 2 seconds or until a response was made. Each task was programed using 

MEL2 (Psychology Software Tools, Inc.), and responses were made on a Serial Response Box 

(Psychology Software Tools, Inc.) with five buttons (numbered 1-5 from left to right) aligned 

horizontally.  

In the SRT, the stimulus was a grey square presented 50 times after 5 practice trials. 

Participants were instructed to press button number 1 in the serial response box as fast as 

possible whenever they saw the square. In the CCRT task, all shapes (square, circle, triangle, and 

cross) were presented in random order 102 times (one shape at a time), preceded by 10 practice 

trials. Each shape was coloured (red, blue, green, or yellow) and filled with a different pattern of 

internal lines (vertical, horizontal, diagonals to the right, or diagonals to the left). Thus, each 

stimulus varied in a combination of shape, colour and internal line orientation. A pre-determined 

target stimulus was defined by a specific combination of these three features (shape, colour, 

internal lines), while the other combinations were non-targets. The target stimulus occurred 

randomly on 25% of the trials. Participants were asked to respond to the target stimulus by 

pressing button number 1 with their right index finger, while they were asked to respond to non-

target stimuli by pressing button 2 with their right middle finger on the serial response box. Four 

stimulus types existed in the CCRT task depending on the number of features shared with the 

target (0, 1, 2, or 3; where 3 was the actual target). 

The acute effects of exercise on energization were assessed through the outcome 

measures overall RT. Since energization deficits are characterized by slowness in RT, positive 

effects of exercise on energization would be characterized by faster RT. The acute effects of 

exercise on task-setting were assessed through the outcome measures RT by stimulus type (target 

vs non-target) and number of false positive errors. Since deficits in task-setting are characterized 
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by an inability to establish the criteria defining a target stimulus in order to promptly and 

accurately select the correct response, then improvements in task-setting would be characterized 

by faster RT for target stimulus and decrease in false positive errors. The acute effects of 

exercise on monitoring were assessed through the outcome measures RT by ISI and total number 

of errors. Given that monitoring deficits lead to inability to anticipate/predict time of stimulus 

onset and to note an error for appropriate adjustment of behaviour, then positive effects of 

exercise on monitoring would be characterized by faster RT for long ISI compared to short as 

well as decrease in the total number of errors. 

Statistical analysis 

Repeated measures analysis of variance (RM ANOVA) was used to test differences in 

RT and RT coefficient of variation before and after Exercise and Control conditions (2 

conditions (Exercise and Control) x 2 times (pre and post)). RM ANOVA was used to test 

differences in RT between experimental conditions for short and long ISI exclusively for SRT (2 

conditions (Exercise and Control) x 2 time (pre and post) x ISI (short and long). RT at short ISI 

was calculated based on the mean RT for 3 and 4 seconds ISIs, while RT at long ISI was 

calculated based on the mean RT for 6 and 7 seconds ISIs. In addition, RM ANOVA was used to 

compare RT between conditions for stimulus type (2 conditions (Exercise and Control) x 2 time 

(pre and post) x 4 stimulus type (F0, F1, F2, target)) exclusively for CCRT. RM ANOVA was 

used to compare the total number of errors and error type for CCRT (2 conditions (Exercise vs 

Control) x 2 time (pre vs post) x 2 error types (false positive vs false negative)). Tukey post-hoc 

was used to examine significant differences and alpha level was kept at p<0.05. Finally, Pearson 

correlations were used to test whether changes in RT and accuracy were associated with 

participants’ VO2 value at test termination.  
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Results  

Reaction time 

 The pre and post comparison of overall RT in each experimental condition revealed no 

differences in SRT following the Exercise or the Control session (Figure 1 - top). For CCRT, a 

main effect of assessment time (F(1,19)=7.64; p=0.012; 2
p =0.28) showed that participants had 

faster RT at post- compared to pre-test regardless of experimental condition (Figure 1 - bottom) 

(Pre M=638.04, 95% CI [605.07,671.01]; Post M=619.13, 95% CI [584.40,653.87]).   

 

Insert Figure 1 here 

  

RT variability did not change from pre to post in all experimental conditions for SRT and 

CCRT (see Supplementary Material).  

 The analysis of RT for short and long inter-stimulus intervals aimed to demonstrate 

whether exercise could improve the ability of participants to predict stimulus occurrence. This is 

characterized by a decrease in RT for long ISI compared to short ISI. Following the same 

procedures as previous research, this analysis was run for the SRT but not CCRT [13]. A main 

effect of ISI demonstrated that, overall, participants showed the expected reduction in RT for 

longer ISI compared to shorter (F(1,19)=96.86; p<0.001; 2
p =0.83) (Short ISI M=325.51, 95% 

CI [302.28,348.75]; Long ISI M=293.82, 95% CI [273.62,314.02]) (Figure 2). Importantly, these 

ACCEPTED M
ANUSCRIPT



12 
 

 
 

findings occurred across experimental conditions, revealing no specific effect of exercise in 

participants’ ability to predict stimulus occurrence. An interaction between assessment time and 

ISI was nearly significant (F(1,19)= 4.13; p=0.056; 2
p =0.17) .  

 

Insert Figure 2 here 

  Finally, RT was analyzed with respect to stimulus type for the CCRT task. A main effect 

of number of features was found (F(3,57)=96.67 p<0.001; 2
p =0.83), showing that across 

experimental conditions participants had faster RT for stimulus sharing none or one feature with 

the target compared to stimulus sharing two features with the target or the target itself 

(p<0.0001) (F0: M=563.78, 95% CI [532.00,595.56]; F1: M=583.36, 95% CI [551.46,615.26]; 

F2: M=659.23, 95% CI [627.68,690.77]; target: M=680.04, 95% CI [637.01,723.06]) (Figure 3). 

There was no selective effect of exercise on response to target and non-target stimuli or any 

effect of assessment time.  

 

Insert Figure 3 here 

 

Accuracy 

 An interaction between experimental condition and assessment time approached 

significance (F(1,19)=4.23; p=0.053; 2
p =0.18) for the error measures (Figure 4) (EX Pre 

ACCEPTED M
ANUSCRIPT



13 
 

 
 

M=0.95, 95% CI [0.45, 1.44]; EX Post M=1.22, 95% CI [0.75, 1.69]; CON Pre M=1.37, 95% CI 

[0.87,1.87]; CON Post M=1.05, 95% CI [0.66,1.43]).  

Association between cognitive outcomes and fitness level 

 There were no associations between RT or accuracy and VO2 values at test termination.  

Discussion 

 In this study the effects of a single bout of exercise on cognition of individuals with PD 

was examined using RT tasks with varying complexity levels. These tasks have been previously 

used to evaluate the effects of localized frontal lobe lesions on cognitive processes underlying 

EF. Most importantly, the frontal areas found to be critical to each cognitive process are known 

to be anatomically and functionally linked to the basal ganglia through the basal ganglia-

thalamo-cortical loops [13]. Given that previous studies with healthy young and older adults 

have found that a single bout of exercise leads to improvements in  RT outcomes (i.e. faster RT) 

which were associated with increased brain activity in frontal brain areas [10, 11], it was 

predicted that individuals with PD would show improvements in performance (i.e. faster RT) in 

the tasks used in the current study after exercise. Contrary to this hypothesis, there were no 

selective effects of exercise on performance.  

While no changes in RT were found in the simple RT task, faster RT was observed for 

the choice RT task in both Exercise and Control conditions. This latter result suggests that rather 

than a selective effect of exercise on cognition, participants were likely showing practice effects. 

These findings may have important implications to the interpretation of results from Ridgel et al. 

(2011), given that their study design lacked a Control condition and limited their ability to 

account for practice effects. The Control condition in the current study allowed us to demonstrate 
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that improvements in performance resulted from practice effects. Although these findings were 

not predicted, the absence of changes in behavioural measures following an acute bout of 

exercise has been previously reported in healthy individuals using different tasks [18]. Thus, one 

could suggest that task choice may have influenced the outcomes in the present study.  

  The tasks used in this study were carefully selected based on lesion studies that 

repeatedly showed the effects of localized frontal lobe lesions to each cognitive process. A recent 

meta-analysis has showed that the effects of an acute bout of exercise on cognition are small, but 

that this effect may increase depending on task complexity [17]. Thus, in the current study we 

had two tasks that were similar in structure, but that varied in complexity.  Two tasks commonly 

used in previous investigations were modified versions of the Flanker Task [12] and the Stroop 

Test [11]. A commonality between these tasks is their large reliance on inhibitory control for 

successful performance. The tasks used in the current study were not designed to assess 

individuals’ ability to inhibit pre-potent responses, therefore, it is possible that the effects of 

exercise on cognitive processes involved in EF are selective and may not have been captured by 

the tasks used in the present study.  However, it is important to note that the effects of exercise 

on behavioural measures (null in this case) may not fully reflect the effects of exercise at 

neurophysiological level. Previous studies have reported changes in neurophysiological measures 

underlying cognition which were not detected in behavioural measures [12, 18]. Therefore, the 

effects of an acute bout of exercise on neurophysiological measures needs to be investigated in 

order to confirm whether or not individuals with PD are responsive to the effects of a single bout 

of exercise.  

 Alternatively, one could argue that individuals with PD were actually not responsive to a 

single bout of exercise. Previous studies have suggested that the effects of a single bout of 
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exercise on cognition may result from changes in circulating catecholamine (including 

dopamine), leading to increased arousal levels.  While the depletion of dopaminergic activity is a 

hallmark of Parkinson’s disease, there is growing evidence that levels of other catecholamines 

such as  serotonin, noradrenaline and acetylcholine are also decreased in those with PD [19]. 

Thus, it could be argued that, from a neurotransmitter point of view, individuals with PD could 

have limited resources to acutely respond to the stress caused by exercise on brain activity. On 

the other hand, given that improvements in cognition have been found in individuals with PD in 

chronic exercise studies, it is possible that chronic exposure to exercise stimulation could lead to 

improvements in neurotransmitter activity. These improvements in neurotransmitter activity 

could result from increased activity of dopamine receptors [20] and neuroplastic effects driven 

by increased levels of neurotrophic factors [21].  Although highly speculative, this interpretation 

may help design future studies to investigate the acute effects of exercise on individuals with PD 

and potentially explain the underlying mechanisms of improvements found in chronic exercise 

studies in this population. 

 Limitations of this study include a small sample size considering the well-known inter-

individual variability found in PD.  Moreover, participants in this study had mild disease severity 

and relatively normal cognitive function. Therefore, the results of this study cannot be 

generalized to all individuals with PD. Although exercise intensity was set based on findings 

from a meta-analysis showing that larger effect sizes following moderate intensity exercise [17], 

evidence exists that high intensity exercise may be more beneficial than moderate exercise to 

elicit neurophysiological changes in the brain linked to improvements in cognition [22]. Finally, 

it is acknowledged that different theories exist regarding the role of frontal areas in cognitive 
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processing, thus results and interpretations from this study are focused on the investigation of 

one of these proposed models.   

In conclusion, this study showed that an acute bout of exercise did not influence 

cognitive processes underlying EF in individuals with PD at the behavioural level. Future 

research should examine the effect of an acute bout of exercise on neurophysiological measures 

in order to confirm whether individuals with PD are responsive or not to the immediate effects of 

exercise on cognition. In addition, future studies using neuroimaging techniques should examine 

whether an acute bout of exercise can influence activation in the frontal lobes as well as basal 

ganglia areas in individuals with PD. Finally, in order to define the underlying mechanisms of 

the presence or absence of response to exercise stimulation, the assessment of neurotransmitter 

activity is a promising direction.  
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Table 1 Participants’ demographic and clinical information  

Participants Age Sex Handedness Education  MoCA GDS 
Disease 
duration 

H&Y UPDRS III PD ON Fitness level 

 
PD (n=20) 

 
66.55 (10.11) 13M/7F 19R/1L 16.05 (3.61) 27.1 (2.46) 7.35 (5.33) 7.75 (6.04) 

I=4; II=14; 
III=2 

16.35 (5.89) 121.78 (62.00) 17.92 (4.55) 

 
Legend: MoCA – Montreal Cognitive Assessment; GDS – Geriatric Depression Scale; H&Y - Hohen & Yahr scale; Disease duration – years since diagnosis; UPDRS III– Unified 
Parkinson’s disease Rating Scale motor subsection; PD ON – minutes since medication intake; Fitness level – peak oxygen uptake at test termination (VO2/kg). Values denote 
mean and standard deviation values, except for the H&Y scale which represents the number of cases per stage.  
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Figure 1 Participants showed no change in simple RT following both experimental conditions 

(top). Conversely, they showed faster RT in the choice RT following both Exercise and Control 

conditions (bottom).  

 

Figure 2 Participants showed faster RT for long ISI compared to short ISI regardless of 

experimental condition.  

 

Figure 3 Participants responded faster to non-target stimuli sharing none or one feature with the 

target compared to stimuli sharing two features or the target itself, regardless of experimental 

condition or assessment time point.  
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