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Résuḿe –Le radar de pénétration du sol (GPR) est une technique de t´elédétection employée pour obtenir l’endroit et la réflectivité spatiaux
des objets enterrés. Puisque la plupart des antennes de GPRne sont pas directives, les signaux dispersés enregistrés par le radar se prolongent
au-dessus d’une grande ouverture latérale [1, 2]. Dans cette étude, des algorithmes de débruitage et de migration sont employés pour refocaliser
les signaux dispersés de nouveau à leur point d’origine. Les données ont été prises pour différents scénarios. Afin de réaliser la séparation
optimale de la signature de la cible de la réponse du soil, techniques de débruitage son utilisées sur les données 2D.La transformée de Hough
randomisé est employé pour extraire des informations importantes [3]. Ces informations sont incluses dans un algorithme de migration [4], et la
largeur aproximée de l’objet dans la direction du balayageest trouvée. Bien que les résultas sont pormetteurs, les algorithmes doivent toujours
être validés dans différentes conditions.

Abstract – Ground-penetrating radar (GPR) is a remote sensing technique used to obtain the spatial location and reflectivity of subsurface
objects. Since most GPR antennas have board beam widths, thescattered signals recorded by the radar extend over a large lateral aperture [1, 2].
In this study, denoising and migration algorithms are used to refocus the scattered signals back to their point of origin. The data were collected
for different scenarios. In order to achieve optimal separation of the target signatures from the background, denoising techniques are used to filter
the signal from the 2D data. The randomized Hough Transform is used to extract relevant features [3]. This extracted information is included in
migration algorithms [4], and the approximated width of thetarget in the scan direction is found. Although the results are promising, algorithms
still need to be validated under different conditions.

1 Introduction

Since the WWII, many military conflicts around the world
have left more than100 millions of antipersonnel mines (APM)
landed across the globe [5]. In Colombia, four decades of ci-
vil war have left more than 100 thousand antipersonnel (AP)
mines landed across 422 municipalities (40% of the national
territory). These mines cause approximately 150 deaths per
year, which a 31% are children [6]. These mines are American
and Belgian, as well as mines that were made for the National
Military Industry INDUMIL. However, a considerable amount
was made in an artisan way by the guerrillas (e.g., FARC and
ELN 1) . These last ones are called improvised explosive de-
vises (IEDs), and are the principal problem in Colombian de-
mining activities, due to their non-metallic content. In recent
years, serious efforts for developing technologies that can help
in landmine detection have been done [7]. Among these tech-
nologies, a great importance is given to the GPR because of
the ability to detect metallic and low-metallic AP landmines
by non-invasive subsurface sensing. Still, its main drawback is
the complex nature of its data, and then their interpretation is
usually limited in defining general ”areas of interest” instead of

1. Fuerzas Armadas Revolucionareias de Colombia - FARC, Ejercito de Li-
beracion Nacional - ELN

accurately determining the shape and position of the target.
In this study, two-dimensional data-sets (B-scans) from a

commercial time-domain GPR (800 MHz) are analyzed in or-
der to extract relevant information. These data-sets are collec-
ted in different scenarios. In Section II, a description of the tar-
gets and the measurements setup are given. In order to achieve
optimal separation of the target signatures from the background,
the problem is viewed as an image-processing one as the collec-
ted two-dimensional data-sets represent image segments. Sec-
tion III is devoted to the denoising techniques used to remove
unwanted reflections and to extract relevant pieces of informa-
tion as target position and depth, and the dielectric permittivity
(real part) of the soil. Migration theory is then applied forfocu-
sing the scattered signals back in their point of origin. TheStolt
migration is used and is introduced in Section IV. The analysis
of the migrated data is presented in Section V. Finally, Section
VI concludes our study.

2 Measurement Setup

The data are acquired at the test land of the Military School
of Engineering, Colombia, for sandy and loamy soils (see Fig.
1). In this study we focus on the signatures of two types of
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FIG. 1: Test land at the Military School of Engineering, Co-
lombia

AP mines: a Colombian AP mine and an improvised explosive
devise made by the guerrillas. In the remainder of this paper
these mine types will be referred to as APM A and B respecti-
vely. AP mine A has a plastic casing and low metallic content.
AP mine B has a plastic casing and non-metallic content. Their
dimensions, burial depths (from the top of the mine), and dis-
tance (from a reference point to the middle of the mine along
the scanning direction) are summarized in Table 1.

For the acquisition we used a monostatic radar system in the
time-domain developed by the Mala GeoScience Group2, with
a 800MHz antenna and a repetition frequency of 100kHz. All
data have been recorded using a 10 ns time window of 512
samples corresponding to a time sampling interval of approxi-
mately 20ps. The resolution of each sample point is 16 bit. The
data have been acquired along one surface direction and the
antenna system was positioned above the soil surface. The dis-
tance was measured by an incremental encoder connected to
the system and the antenna was moved whit a constant velocity.
In Fig. 2, the collected data for the loamy soil is represented in
function of the scanning distance and the time-of-flight of the
signal (time to reach the reflection point and to come back to
the receiver antenna) for the two types of mines.

TAB . 1: Target features*

Target Dimension (m) Depth (m) Distance (m)

APM A d:0.075, h:0.07 0.01 0.60 (l), 0.60 (s)

APM B d:0.120, h:0.07 0.10 0.60 (l), 0.60 (s)

* d: diameter, h: height, (l): loamy soil, (s): sandy soil

3 Ground Clutter Subtraction

To eliminate the clutter from an image we have first to de-
fine it. The electromagnetic waves transmitted by the radar are
propagated through the air and, of course, to the ground. At
any interface between any two media having different elec-
tromagnetic properties, part of the electromagnetic energy is
reflected backwards to the receiver and a part is transmitted
into the second media. The same phenomenon occurs when
the transmitted signal comes across a buried object (of which

2. http://www.malags.se

electromagnetic parameters differ from those of the ground)
and, unfortunately, across any other non-uniformities inside the
ground (stones, layers having different electromagnetic para-
meters, etc). All these reflections which are not related to the
object’s own scattered field are called clutter [8].

Two denoising methods are used to filter the ground clutter
level. These methods are implemented by convolving the image
with a horizontal high pass filter. The derivative of a Gaussian
represents such a filter. It is important to notice that the win-
dow width of the filter is crucial for the final result. The choice
of the filter length depends on the size and resolution of the
image. Several tests show that a too small window introduces
noise, and a large window minimizes the contrast of the image
[3]. We achieved the best results with a 10-pixels wide filter.
Every change in the image resolution or image size needs a
reevaluation of the ideal filter width. Note that a vertical noise
was introduced to the image (because horizontal filtering isa
derivative action). To reduce this effect, a vertical 1x5-pixels
filter was created by a Gaussian function. This filter is used to
average over 5 pixels in order to reduce the noise in the vertical
direction. Once the image is filtered, we can see the hyperbolic
response of the target. An algorithm to detect curves is applied
for extracting relevant information from the equation of the hy-
perbola. The Randomized Hough Transform is used [3]. RHT
randomly selectsn pixels from an image and fits them to a pa-
rameterized curve. If the pixels fit within a tolerance, theyare
added to an accumulator with a score. Once a specified num-
ber of pixel sets are selected, the curve with the best score is
selected from the accumulator and its parameters are used to
represent a curve in the image. In RHT, if a curve in the ac-
cumulator is similar to the curves being tested, the parameters
of the curves are averaged together and the new average curve
replaces the curve in the accumulator. The extracted informa-
tion form the hyperbola equation in included in the migration
algorithm.

4 Phase-shift Migration

Phase-shift migration was first applied for seismic imaging
by Stolt in 1978 [9]. The principle has been adopted for sa-
tellite SAR processing [10] and it has also been widely utilized
for processing of GPR data in two dimensions [11]. Phase-shift
migration is based on a transformation from the frequency do-
mainω to the wavenumber domaink. Consider the raw data set
b(x, z, t) collected from the radar,x being the B-scan distance,
z the depth, andt the time-of-flight. Applying a 2D Fourier
transform with respect to the spatial distancex and the timet
to spatial frequencykx, the result is an unfocused wavenumber
data set

B(kx, z, ω) =

∫ ∫
b(x, z, t)eikxx−iωtdxdt. (1)

The Fourier transformation along thex coordinate only makes
sense if the propagation velocity does not vary in this direction.
The method allows variations of the propagation velocity inthe
z direction. Defining the wavenumber vectork as the vector
sum ofkx andkz for one-way propagation, we have:

k = |k| =
√

k2
x

+ k2
z

=
ω

υ
=

2π

λ
, (2)
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FIG. 2: B-scans on loamy soil for APM A (a) and B (b).

whereυ is the propagation velocity of the ground (υ =
c/
√

εr, beingεr the relative dielectric permittivity, extracted
from the equation of the hyperbola) andλ is the wavelength
in the ground. The direction of thek-vector is identical to the
traveling direction of a plane wave propagating from the tar-
get to the antenna. Assuming only upward coming waves, and
by introducingkz from (2) in (1), the Fourier transform of the
wavefront at depthz is done by

B(kx, z, ω) = B(kx, 0, ω)e−ikzz. (3)

The migrated data will be the inverse Fourier transform of
(3) at timet=0:

b̂(x, z) = b(x, z, 0) =

∫ ∫
B(kx, 0, ω)e−i(kxx+kzz)dkxdω.

(4)
Equation (4) is the general representation of the phase-shift

migration. The implementation of this method is computatio-
nally intensive, because of the number of floating point opera-
tions needed for migration [2]. For the reduction of the calcu-
lation time, a variant of the phase-shift migration for a constant
propagation velocity is used. This variant was developed in[9].
In the special case whereυ(z) is constant, (4) can be further de-
veloped by changing the variable dω to dkz. By replacing dω
from (2), the data must be scaled by the Jacobian of the trans-
formation fromω to kz, kzυ

2

ω
. Hence, for the Stolt migration,

(4) becomes

b̂(x, z) = υ2

∫ ∫
kz

ω
B(kx, 0, ω)e−i(kxx+kzz)dkxdkz. (5)

5 Results and Discussions

In Fig 2, the B-scans on loamy soil for AP mine A and B
are shown. The reflection of the buried object is completely
drowned in the ground reflection (between 0.5 ns and 1.5 ns).
By applying denoising and segmentation techniques, relevant
information can be extracted for the data. It is summarized in
Table 2. It can be seen that the extracted values are quite close
to real ones. The differences between the real values and the
calculated ones are due to the three-dimensional form of the
APM. The depth and distance were measured respectively from

the top and from the middle of the mine. However, the backs-
cattered signal received by the antenna comes from different
points over the surface of the mine [2], and then different hy-
perbolas will be appear in the B-scan. By averaging these dif-
ferent hyperbolas, we will find a very good approximation of
the position of the mine, but not the exact one.

TAB . 2: Calculated depth and distance*

Target Depth (m) Distance (m)

APM A 0.0078 0.671 (l), 0.624 (s)

APM B 0.1056 0.652 (l), 0.636 (s)

* (l): loamy soil, (s): sandy soil

In Fig 3, results of applying the migration algorithm for the
denoised data are shown. From this figure, the shape of the tar-
get on the B-scan direction can be seen. For the APM A, it ap-
pears at 0.5 ns. This points out that the AP mine is placed at the
soil surface. For the AP mine B, it appears at 1.0 ns. This points
out that the mine is buried close to the surface (∼ 10 cm). Over
the scanning axis, the position of the target (the shape of the
target) appears quite close to the calculated and real position of
the target in the soil.

6 Conclusions

In this paper, denoising and migration methods have been
applied on real GPR data. The data are collected in two types of
soil and for conventional and non-conventional APM. Namely,
the major limit factor to detect APM with GPR is the ground
clutter. To reduce the ground clutter an horizontal filtering is
applied. Since the buried object signature on GPR 2D data are
represented by a hyperbolic shape, the RHT is applied for the
isolation of the object response. The relevant pieces of informa-
tion that have been extracted from the equation of the hyperbola
give us a very good approximation of the position of the buried
object. The size of the object can be deduced from the migrated
data. All this information can be used in data fusion architec-
tures, involving other sensor data. The performance of these
algorithms on real GPR data is encouraging. These algorithms
are not computationally intensive. However, it depends on the
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FIG. 3: Results of applying denoising and migration techniques for B-scans on loamy soil for APM A (a) and B (b).

size of the database. In order to make an objective analysis,the
overall processing still needs to be validated in differentcondi-
tions and for more than one object buried in the soil.
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Références

[1] N. Milisavljevic, “Analysis and fusion using belief func-
tions theory of multisensor data for close-range humanita-
rian mine detection,” Ph.D. dissertation, Ecole Nationale
Superieure des Telecommunications, France - Royal Mi-
litary Academy, Belgium, 2001.

[2] B. Scheers, “Ultra-wideband ground penetrating radar
with application to the detection of anti personnel land-
mines,” Ph.D. dissertation, Catholic University of Lou-
vain - Royal Military Academy, Belgium, 2001.

[3] O. Lopera, N. Milisavljevic, B. Macq, I. van den Bosch,
S. Lambot, and A. Gauthier, “Analysis of segmenta-
tion techniques for landmine signature extraction from
Ground Penetrating Radar 2D data,” ineProceedings
of the II International IEEE Andean Region Confe-
rence, ISBN 958-33-6534-3, IEEE, Ed., Bogota, Colom-
bia, 2004.

[4] O. Lopera, S. Lambot, N. Milisavljevic, B. Scheers, and
I. van den Bosch, “Background subtraction in the fre-
quency domain for focusing ground-penetrating radar

data,” Near Surface Geophysics, vol. Special Issue, p.
Submitted, 2005.

[5] GICHD, A guide to Mine Action. Geneva: GICHD.,
2003.

[6] Human Rights Watch,Landmine Monitor Report 2002,
Toward a Mine-free World. Whashington D.C.: ICBL,
2002.

[7] J. MacDonald, J. Loockwood, T. Altshuler, T. Broach,
L. Carin, R. Harmon, C. Rappaport, W. Scott, and R. Wea-
ver,Alternatives for Landmine Detection. USA: RAND,
2003.

[8] A. Yarovoy, V. Kovalenko, and A. Fogar, “Impact of clut-
ter on buried object detection by Ground Penetrating Ra-
dar,” in International Geoscience and Remote Sensing
Symposium, France, 2003.

[9] R. Stolt, “Migration by fourier transform,”Geophysics,
vol. 43, pp. 23–48, 1978.

[10] C. Cafforio, C. Prati, and E. Rocca, “SAR data focusing
using seismic migration techniques,”IEEE Trans. Aeroes-
pace and Electronic Systems, vol. 27, pp. 197–206, 1991.

[11] H. Yu, X. Ying, and Y. Shi, “The use of FK-techniques
in GPR processing,” in6th International Conference on
Ground Penetrating Radar, Sendai, Japan, 1996, pp. 595–
600.


