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Abstract

Path planning is a research domain very active and applied among others on autonomous
vehicle such as UAV. In recent years, a lot of progress has been made on path planning under
uncertainties issued by a vehicle navigation system, for example in localization or environment
mapping. However, such uncertainties are often treated by the path planner in a deterministic
way. That is, the navigation system’s performance is deterministically given in function of the
environment. This paper tackles a more complex problem of UAV safe path planning in an urbain
environment, in which UAV is at risks of GPS signal occusion and obstacle collision. The key
idea is to make a UAV path planning along with its navigation and guidance mode planning,
where each of such mode uses different set of sensors and whose availability and performance are
environment-dependent. A partial knowledge on the environment is supposed to be available, in
a form of probability maps of obstacles and sensor availabilities. To solve this problem the UAV
need to be well represented in the planner model and so do the associated uncertainty propagation.
This paper proposes a model based on Mixed Observability Markov Decision Process (MOMDP).
The proposed MOMDP model allows the planner to choose the best path-direction with the
adapted sensor set for an UAV to reach a mission goal efficiently and safely. This paper only
provides a MOMDP model for the planner, and the planning algorithm and preliminary results
will be expected in the final paper.

1 Introduction

These last years there has been a growing need for UAVs (Unmanned Aerial Vehicles) to accomplish
distant mission in cluttered environments (urban areas with high presence of building, . . . ). Such
missions can be done only if the safety conditions are gather, and especially the planned path must
be collision risk free. The safety of the UAV depends on its onboard navigation capabilities (including
onboard sensor performances) as well as on the environment. Moreover the sensors availability and
performance depends on the environment, for example GPS is particularly dependent of the quality
of the signal (occlusion / degradation) and especially in cluttered environment. All this parameter
affect the navigation performance and must be taking into account in path planning to ensure the
success of the mission.

Therefore, the community have proposed different frameworks and algorithms to solve path plan-
ning under uncertainty in cluttered and continuous environment. A method was proposed by [1] to
compute an efficient colision-free path for MAV (Micro Aerial Vehicles) while taking into account the
dynamic of the MAV. This vehicle has onboard camera to estimate its localization and the path is
computed based on the algorithm RRBT (Rapidly-exploring Random Belief Trees [6]) which allows
to consider position uncertainty during planning. The autonomous vehicles can have several onboard
sensors to ensure the safety of the vehicles and its passengers. Another path planning approach has
been proposed for autonomous vehicles in unknowned semi-structered environment [7] by using an
hybride-state A∗ search algorithm. Note that these previous frameworks compute a static path (a plan
and not a conditionnal plan or policy). When considering a dynamic path which is able to self-adapt
in function of the events, some frameworks were also proposed by the community. One could cite, the
work of [5] that propose a method based on POMDP (Partially observable Markov decision process)
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for autonomous vehicles in real situations. Thus this approach take into account other vehicles to take
its decisions (changing lane, break, . . . ).

All these works are based on various sensors to enable the vehicle to guide itself and compute the
best path. One limitation of these works, in the case of UAV (or MAV) is that they do not consider
path planning in urban environment. The number of onboard sensors are often relatively low and it
do not take into account the availability of the sensors as for example, their precision in function of
the environment and there is only one navigation mode (using all the sensors).

In this paper, it is proposed a path planner model that will ensure an efficient risk-free path. To
success, it will be take into account the dynamic of the UAV, and the availibility of sensors in the
environment through a set of availability map. The sensor availability maps are probability grids
which are in overlay of the environment map, which is not discretized (Figure 3b). Like the sensor
availability maps, the obstacles map is a grid in overlay of the environment map. The path computed
called a policy will allow at each instant the UAV to take the best action in function of the sensor’s
availability. Depending on the availability of the sensors, different navigation modes could be used,
resulting in different localization and execution error propagation. this point should be considered in
path computation. So, in this problem the UAV have an intertial navigation system (INS), a GPS,
an optical flow field measurement and a landmark pixel coordinate measurement to navigate. The
UAV have two guidance modes, the waypoint tracking whose precision depends on the navigation
mode used and the wall following mode. These sensors and the guidances modes allow the planner to
optimize the combination sensors/guidance mode for each event that can occur.

Navigate through an cluttered environment can be hard for an UAV due to the proximity of the
obstacle and the great variance on the availability of the sensors. Therefore the objective of this
works are to find a plan (or policy in MOMDP) that take into account the availability of the onboard
sensors to ensure the shortest collision-free path. The policy must take in entry the belief on the actual
state and return the best action to execute. The main idea is to combine the transition function of
the decision process to the error (localization and execution) propagation function, which depends
on the localisation and guidance mode for each part of the path. The advantage of this method
is to incorporate a priori knowledges on the disponibility of the sensor in the path planning, and
to propagate this informations on the futur path. This allows the algorithm to calculate a path to
guide the vehicule to the safest and shortest path. Taking account of the previous idea, and with our
uncertainty model, we have chosen to lean our model on the Markov Decision Process [3]. Given the
nature of our problem and the partially informations on the state of the system, we will use the MDP
extension : Mixed Observability Markov Decision Processes (MOMDP) [10].

The paper is organized as follows: in Section 2 it will be explained the problem including the
system architecture, the GNC’s transition model and details on the maps used. In Section 3 it will
be recalled the definition of the MOMDP and then it will be defined the MOMDP planning model.
Finaly, in Section 4 it will be given the perspectives of the future works and a conclusion.

2 Problem statement

2.1 System architecture and time differentiation

The architecture of the overall system considered in this problem combine the GNC’s transition model
which includes the vehicle motion model, onboard sensor model and flight control systems, and the
MOMDP planning model. The planner will consider GNC’s1 transitions, which are known to compute
the possible evolutions of the system’s state. The policy given by the MOMDP planner take as inputs
the probability distribution over the actual state bsc and a vector of boolean on sensors availability s′v.
And it will return an action, which will select the direction and the navigation and guidance modes
to perform during a certain amount of time, a new vector of sensor’s availability is observed, and a
belief state update is performed. Again this new belief state is used by the policy to define the next
action. During the following article, the diagram presented in Figure 1 will be referred to facilitate
understanding.

The formalisms such as the MDPs, in their majority and most of the variants, consider the actions
to accomplish instantly and not as a process during over the time. There is a variant, the semi-Markov
Decision Problems (SMDP), which applicate the MDP to the continuous time, where each actions have

1Guidance, Navigation and Control (GNC)
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Figure 1: Architecture diagram

a execution time [4]. However, in this case, the problem is not that actions are durative, but the state
of the UAV changes during an action. Our action include a navigation mode used to locate the UAV
during the entire movement in the direction d.

In this sense, it will be distinguished two unit of time due to the difference between the unit of
time of the GNC’s transition model and the time unit of the MOMDP planning model named epoch.
The MOMDP planning model works at a lower frequency that the system, thus an epoch is equivalent
to several unit of time of the system’s transition model. The reason is to lower the complexity of the
algorithm by reducing the total number of actions to complete the task.

To differentiate the unit of time, the GNC unit of time will be noted k and the epoch of the
MOMDP will be noted t (Figure 2).

∆ t . . . ∆ t+m

k k+1 k+2 . . . . . . . . . k+n

| | | |
Time

Figure 2: Difference between the units of time

2.2 GNC’s transition model

As stated earlier and shown in Figure 1, the system’s transition model consists of the vehicle motion
model, onboard sensor model, and the UAV flight guidance, navigation and control (GNC) system.
This section presents these models which construct a state transition model used in by the planning
model.

2.2.1 State transition model

The state x of the UAV is defined by its positon, its velocity and the accelerometer bias such as

x =
[
X T VT ba

]T
, where X ,V and ba are respectively the UAV position, the velocity and the

accelerometer bias. Then the state transition can be defined such as :

ẋ =

ẊV̇
ḃa

 =

Va
0

+

vxvv
va

 =

0 I 0
0 0 0
0 0 0

x+

0
I
0

 a+ v = Ax+Ba+ v (1)

where a is the acceleration and v ∼ N(0, Q̃) is the process noise. According to this model, the state
transition from x(tk) = xk to x(tk+1 = tk + ∆t) = xk+1 can be derived as:

xk+1 = Φxk +Bak + vk+1 (2)

where vk+1 ∼ N(0, Q) is the discretized process noise and

Φ =

I ∆tI 0
0 I 0
0 0 I

 , B =

∆t2

2 I
∆tI

0

 , Q ' ∆tQ̃
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2.2.2 State estimator

A true value of the vehicle state x is never accessible in reality, and so is estimated by the navigation
module by using sensor measurements available onboard (Figure 1). This problem supposes the state
estimator based on a EKF (Extended Kalman Filter [15]) which includes two steps :

i. the INS prediction

ii. the sensor measure (if available) used for correction

The INS measurement integration enables a high frequency state estimation, but it suffers from the
estimation drift due to the measurement bias. In order to limit or even correct such drift, other sensors
are fused with INS through the second step of Kalman filter. The most common and effective sensor
is GPS (or other similar satellite-based navigation system) which can provide an accurate absolute
position measurement of an UAV. But it is at a high risk of its performance degradation due to multi-
path effect or signal occlusion in a cluttered environment. Alternative approaches proposed by the
robotics community (particularly for indoor UAVs) are based on onboard vision information. Such
approaches include visual odometry and SLAM algorithms for motion estimation, or image matching
with geo-referenced map (e.g. image database, landmarks) for absolute localization. As an example,
we consider GPS and vision-based landmark detection as navigation sensors in this paper.

INS Prediction : The accelerometer measurement aIMUk
is used to propagate the estimated state.

It measures the biased, non-gravitational UAV body acceleration

aIMUk
= RBIk(ak − g) + bak + ξIMUk

(3)

where RBIk is a rotation matrix from the inertial to the UAV body frames (assumed to be known), g
is the gravity vector and ξIMU ∼ N(0, RIMU) is the IMU measurement error. According to the process
model (Eq 2), the estimated state x̂k is propagated to

x̂−k+1 = Φx̂k +B
(
RTBIk

(
aIMUk

− b̂ak
)

+ g
)

= Φx̂k +B
(
ak +RTBIk

(
b̃ak + ξIMUk

))
= xk+1 − Φx̃k − vk+1 +BRTBIk

(
b̃ak + ξIMUk

) (4)

Then the state prediction error is given by :

x̃−k+1 = xk+1 − x̂−k+1 = Φx̃k + vk+1 −BRTBIk
(
b̃ak + ξIMUk

)
= (Φ−∆Φak) x̃k + vk+1 −BRTBIkξIMUk

(5)

where ∆Φak = BRTBIk
[
0 0 I

]
. The associated error covariance is given by :

P−k+1 = (Φ−∆Φak)Pk (Φ−∆Φak)
T

+Q+ R̃IMUk
(6)

here R̃IMUk
= BRTBIkRIMURBIkB

T . For simplicity, we can consider the case of RIMU = σ2
IMUI and

hence R̃IMU = BRIMUB
T remains constant for all k.

GPS correction : When GPS is available at tk+1, the predicted state (Eq: 5) can be corrected
by using its position and velocity measurement zGPSk+1

.

zGPSk+1
=

[
I 0 0
0 I 0

]
xk+1 + ξGPSk+1

= HGPSxk+1 + ξGPSk+1

where ξGPS ∼ N(0, RGPS) is the GPS measurement error. Then, the GPS measurement is used to
correct the estimated state such as :

x̂k+1 = x̂−k+1 +KGPSk+1
HGPS

(
zGPSk+1

−HGPSx̂
−
k+1

)
= x̂−k+1 +KGPSk+1

HGPSx̃
−
k+1 +KGPSk+1

ξGPSk+1

= xk+1 −
(
I −KGPSk+1

HGPS

)
x̃k+1 +KGPSk+1

ξGPSk+1

(7)
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where KGPSk+1
= P−k+1H

T
GPS

(
HGPSP

−
k+1H

T
GPS +RGPS

)−1
is a Kalman gain. Then the error estimate

and its covariance are given by :

x̃k+1 = xk+1 − x̂k+1 =
(
I −KGPSk+1

HGPS

)
x̃k+1 −KGPSk+1

ξGPSk+1

Pk+1 =
(
I −KGPSk+1

HGPS

)
P−k+1

(8)

Landmark correction : When a landmark (whose position XLM is a-priori given) is visible and
detectable on an onboard camera image at tk+1, its pixel-coordinates information can be used to
correct the predicted state (Eq: 5). By assuming a pin-hole camera model, the pixel-coordinates
measurement is given by the following nonlinear measurement model.

zLMk+1
=

[
fx 0 cx
0 fy cy

]
XCLM
eT3 XCLM

+ ξLMk+1
= C

XCLMk+1

eT3 XCLMk+1

+ ξLMk+1
= hLM(xk+1) + ξLMk+1

(9)

where C is a known camera matrix, XCLMk+1
= RCBRBIk+1

(XLM−Xk+1) and ξLM ∼ N(0, RLM) is the
landmark image-detection error in pixels. The camera is assumed to be mounted at the c.g. of the
UAV with a known camera orientation RCB with respect to the UAV body. An extended Kalman
filter can be applied, and similary to (Eq: 8), the resulting estimation error and its covariance matrix
are given by :

x̃k+1 =
(
I −KLMk+1

HLMk+1

)
x̃k+1 −KLMk+1

ξLMk+1

Pk+1 =
(
I −KLMk+1

HLMk+1

)
P−k+1

(10)

where HLMk+1
is a Jacobian matrix of the nonlinear measurement function hLM(xk+1) evaluated at

xk+1 = x̂−k+1. It should be noted that HLMk+1
thus depends on the predicted state x̂−k+1, while HGPS

does not.

INS-only solution : If no correction is made with neither GPS nor Landmark detection, the state
estimate at tk+1 is given by the predicted one:

x̃k+1 = x̃−k+1

Pk+1 = P−k+1

(11)

2.2.3 Guidance laws

A set of actions will be defined in the planner model, such as each action is defined among oth-
ers as a desired direction of motion control. For example, as the exact definition will be given in
subsection 3.3.2, a set of four actions can be defined as : {”Move-to-North”, ”Move-to-East”, ”Move-
to-South”,”Move-to-West”}.

Given a direction and a reference speed Vref is desired velocity in the desired direction the following
linear guidance law can be applied to realize the action :

ak = KpVref −KdV̂k (12)

where Kp,Kd > O are the control gain and V̂k is the estimated UAV velocity at instant tk.
This paper considers two different guidance modes in terms of information sources used in the

guidance law (Eq 12) for V̂k. The first guidance mode uses the state estimation result from the
navigation module given in Section 2.2.2, while the second mode uses some sensor measurements
directly. The former mode corresponds to a conventional absolute guidance approach such as WP
tracking (Waypoint Tracking), and the latter to a sensor-based relative guidance approach such as
visual servoing to follow a wall. The advantage of the sensor-based relative guidance mode is that it
is independent from the navigation (i.e., localization) performance, but in return its applicability is
rather limited to a proximity of some known object (e.g. wall).
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Absolute guidance : In the absolute guidance mode, we have V̂k =
[
0 I 0

]
x̂k where x̂k is

the estimated state from Section 2.2.2. Then, xk+1 can be obtained by substituing this guidance law
(Eq 12) into the discretized process model (Eq 2) :

xk+1 = Φxk +B(KpVref −Kd

[
0 I 0

]
x̂k) + vk+1

= (Φ−∆ΦV)xk +BKpVref + ∆ΦV x̃k + vk+1

(13)

where ∆ΦV = BKd

[
0 I 0

]
. Hence, the state xk+1 follows the normal distribution as below.

xk+1 ∼ N((Φ−∆ΦV)xk +BKpVref ,∆ΦVPk∆ΦV
T

+Q) = N(x̄k+1|k, Q̃
a
k+1) (14)

where the covariance Q̃ak+1 is a function of the estimation error covariance Pk.

Sensor-based relative guidance : In the sensor-based relative guidance mode, V̂k in (Eq 12)
is directly given from some onboard sensors. For example, optical flow information from a video
sequence can be used in combination with a distance measurement. Let us assume the measurement
error Ṽk = (Vk − V̂k) ∼ N(0, RVk). Then, similarly to (Eq 13),

xk+1 = (Φ−∆ΦV)xk +BKpVref +BKdṼk + vk+1

∼ N(x̄k+1|k, BKdRVkK
T
d B

T +Q) = N(x̄k+1|k, Q̃
s
k+1)

(15)

where the covariance Q̃sk+1 is independent from Pk.

2.2.4 State probability density function

Given the initial state x(t0) = x0 and the initial estimation error covariance P0 which gives x̃0 ∼
N(0, P0). As defined later in Section 3.3.2, an action a in the planner model corresponds to a combi-
nation of the direction of desired motion (Vref), the navigation mode (GPS, Landmark or INS-only)
and the guidance mode (Absolute or Sensor-based). For a given action a, it is possible to obtain the
distribution of the next state x1 = x(t0 + ∆t) knowing x0.

fX(x1|x0) ∼ N
(
x̄1|0, Q̃1

)
(16)

where Q̃1 is either Q̃a1 in (Eq 14) or Q̃s1 in (Eq 15) depending on the selected guidance mode. At the
same time, the state estimation error covariance is updated to P1 by using the selected navigation
mode (Eqs 8, 10 or 11).

Now recall from Section 2.1 that the system’s transition model and the planning model do not
have the same time unit. Usually, the planning time step is much longer than that of the system’s
transition model. It means that a single state transition s = s0 to s′ = s1 with a selected action a
in the planner corresponds to several consecutive state transitions x0 to xn in the system’s transition
model. So we have to continue the state transition further up to n > 1 from Eq. 16 and P1 with
the same action a. The conditional state distribution at tk (k > 1) knowing x0 can be obtained
sequentially as follows.

fX(xk|x0) =

∫
fX(xk|xk−1)fX(xk−1|x0)dxk−1

where fX(xk|xk−1) ∼ N(x̄k|k−1, Q̃k). In parallel, the Kalman filtering process (of the selected navi-

gation mode) is repeated k times to obtain Pk. When Q̃k and Pk do not depend on the state xk−1,
the integration above will result in a normal distribution:

fX(xk|x0) ∼ N((Φ−∆ΦV)x̄k−1|0 +BKpVref , (Φ−∆ΦV)Σ̃k−1(Φ−∆ΦV)T + Q̃k)

= N(x̄k|0, Σ̃k), k > 1 (17)

where x̄1|0 = (Φ−∆ΦV)x0 +BKpVref and Σ̃1 = Q̃1. Q̃k is obtained by (Eq 14 or 15).
The derivation of the state distribution (Eq 17) becomes more complex in a case of having a

dependency of Q̃k and Pk on the state xk−1. In order to avoid this complication, the matrices Q̃k and
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Pk can be approximated by those evaluated at the expected state x̄k−1|0. Then, the state transition
function required in the planning model can be given by Eq. 18 when k = n. The decision of the couple
direction / navigation mode need that the navigation mode is available. The navigation and guidance
modes are necessary during the entire action a, however during the verification of the availability of a
mode it is very difficult to know if the sensor will be available for the entire action. It is necessary to
precise that in the case where a sensor will not be available during the entire movement, the navigation
mode will switch to INS −Only (the only navigation mode available permanently). To simplify our
decisional problem, we will suppose that if the sensor is available at the end of the action, the sensor
was available during the entire movement. This state transition function from the state s = s0 to
s′ = s1 can be re-wtitten with a notation fro the planning model as below.

fS(s′ = s1|s = s0) = fX(xn|x0) ∼ N(x̄n|0, Σ̃n) = N(s′,Σ′) (18)

It is worth emphasizing here that this equation will be the only link to the GNC’s transition model
with the MOMDP planning model (Section 3.3).

2.3 Environment Maps

The planner will use a-priori knowledge on the environment in which UAV will navigate. This knowl-
edge is provided as a set of maps including information on obstacles as well as on sensor availabil-
ities(Fig 3b). It is supposed that a 3D environment model of the UAV mission operation site is
available beforehand, either from some database, from data obtained from the past missions, or from
data acquired in a pre-mission flight at high and safe altitude. This 3D environment model can be
represented as a discretized 3D occupancy map, where the 3D space is divided into cells. Let us denote
the i-th cell of the map by ci. Then a probability that the cell ci is occupied, i.e., obstacle, is given
as p(Collision|ci).

Sensor availability maps are also given in the same form, as a set of probabilities that a sensor
is available at each cell ci. These maps can be generated by considering the corresponding sensor
characteristiques in relation with the environment (given by the occupancy map). For example, GPS
performance suffers from its signal occlusion or multi-path effect due to surrounding obstacles. It is
common to measure the performance of GPS by metrics called DOPs (Dilutions of Precision) which
corresponds to a standard deviation of the measured position error. Such DOPs can be predicted by
a GPS simulator for a specified geo-location, date and time, and environment (obstacles). Figure 3a
shows examples of GPS-PDOP (Position Dilution of Precision) map obtained by using OKTAL SE-
NAV simulator available at ONERA/DEMR (Dept. of Electro Magnetism and Radar). In this paper,
this PDOP map is transformed to GPS availability map by setting a maximum allowable position
error threshold ε. In short, GPS is considered to be available if its position error X̃GPS is inferior to
this threshold. From the corresponding PDOP value, a probability of GPS availability at each cell ci
is calculated by

p(GPS|ci) = p(X̃GPS(ci) < ε), XGPS(ci) ∼ N(0, PDOP (ci)).

Availability of the navigation mode using landmark detection at each cell is obtained in function
of the camera’s field-of-view and detection performance of the image processor. It is straightforward
from the pin-hole camera model (Eq 9) to judge whether a given landmark position lies within the
camera’s field-of-view from a given cell position. The image-detection rate might vary and modeled
in function of relative distance. These will give a probability map of availabilities of the navigation
mode with landmark detection: p(LM |ci). Likewise, availability of the sensor-based relative guidance
(e.g. wall following) is conditioned by a limited sensing range with respect to an object-of-interest
(wall). Its availability map as a set of probabilities p(Wall|ci) is supposed to be given.

These maps and probabilities will be used as a part of the state transition model in the MOMDP
planning model. They serve for determining a state transition probability as well for updating the
state distribution function conditioned by an observation made on the sensor availabilities.

3 Planning model

The goal is to propose a decision framework that will calculate the safest and the shortest path. To
achieve this goal, it is necessary to have a GNC system which give a good estimate of the state of the
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(a) Example of GPS-PDOP map
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Figure 3: Examples of maps

system. The state estimate is necessary to compute the optimal path, indeed for a specific state the
decision framework will evaluate for each action the possible results to select the more efficient. This
is why the model previously defined take into account the different sensors of the UAV to have the
possibility to compute a best approximation of the system state given possible states expectations.
This model detailled, it is possible to define the model of the planner.

3.1 Why MOMDP ?

This work is about the computing of a policy which give us at each epoch the action to execute.
Therefore, planning can be associated to decision-making. Decision-making is the cognitive process
of choosing which action execute confronted to a situation. Decision-making in real life problem is
often synonymous of uncertainty resulting of the stochastic dynamics of the agents (here an UAV)
and the environment. Thus this problem can be seen as a sequential decision problem, because these
problems are charactized by the enrolment of the problem over the time and that each decision lead
to uncertain consequences. POMDPs and variants provide several frameworks to model sequential
decision problem under uncertainty and partial observability. The idea behind the POMDPs is that
the state is not known but for each state several observations are possible with a specific probability.
And the agent when being in a state will receive an observation and update his belief on his state.
The Mixed Observability Markov Decision Process (MOMDP) is a variant of the POMDPs, where the
state can be factorized. Indeed the state is partially observable but some state variables are known
at each epoch. In this problem, the UAV always know the sensor available which can be considered
as part of the state, consequently MOMDP can be adapted to the problem.

3.2 Recall on MOMDPs

The MOMDP is an extension for the POMDP model recently proposed by [2] and [10], which explores
the particular structure where certain state variables are fully observable. This factored model leads to
a very significant time gain in policy computation, improving the efficiency of a point-based algorithm.

A MOMDP is a tuple (Sv,Sc, A,O, T,R, b0, γ), where:

� Sv is the bounded set of fully observable state variables;

� Sc is the bounded set of partially observable state variables;

� A is a bounded set of actions;

� Ω is a bounded set of observation;

� T (s, a, s′) = T (sv, sc, a, s
′
v, s
′
c)→ [0; 1] a transition function;
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� O(s′, a, o) → [0; 1] is an observation function such as O(s′, a, o) = O(s′v, s
′
c, a, ov, oc) where

p(ov, oc|a, s′v, s′c) = p(ov|a, s′v, s′c, oc)p(oc|a, s′v, s′c);

� R : Sv × Sc ×A→ R is a reward function associated with a state-action pair; and:

� b0 = (s0
v, bc,0), where bc,0 is the initial probability distribution over the partially observable

states, conditionned by s0
v, the fully observable initial states.

� γ ∈ [0, 1[ is the discount factor.

Note that, as the probability distribution over states concerns only the Sc set and the observation
set Oc, the belief state update is redefined as:

b
oc,a,s

′
v

c (s′c) = η
∑
sc∈Sc

p(oc|s′c, s′v, a)p(s′c|sv, sc, a, s′v)p(s′v|sv, sc, a)bc(sc) (19)

where, η is a normalization constant. The belief state b is now noted by the couple (sv, bc), and Bc is
the belief state space sc conditioned by sv : Bc(sv) = {(sv, bc), bc ∈ Bc}. Bc(sv) is a sub-space of B,
such that B =

⋃
sv∈Sv Bc(sv).

Solving MOMDPs consists in finding a set of policies πsv : Bc → A, which maximize the criterion
:

π∗sv ← arg max
πsv∈Π

Eπsv

[
∞∑
t=0

γtr((stv, b
t
c), π((stv, b

t
c)))

∣∣∣∣∣b0 = (s0
v, bc,0)

]
(20)

As for the POMDP, the value function at a time step n < ∞ can be also represented by a set of
α-vectors:

Vn(sv, bc) = max
α∈Γn

sv

(α · bc) (21)

where α is the hyperplan over the space Bc(sv). In this way, the value function over the complete
state space is parametrized by the set Γsc , i.e. Γ = {Γsv , sv ∈ S}. So, given a belief state (sv, bc) the
optimal action is defined by the action associated with the α-vector that maximizes maxα∈Γn

sv
(α · bc).

For more details about MOMDP algorithm resolution, please see [2].

3.3 MOMDP planning model

Considering the differences between the problem presented and a standard problem from the littera-
ture, we propose a model inspired by the MOMDP. Some modifications wills be made to the MOMDP
formalism (Figure : 4b). Moreover, the planner model will be based on the GNC model to create the
best policy possible.

Our model is defined as a tuple {Sv,Sc,A,Ω, T ,O, C, b0} :

� Sv : bounded set of totally observable states.

� Sc : bounded set of non observable states.

� A : bounded set of actions.

� Ω : bounded set of observations.

� T : The state transition function composed of two functions:

– TSc : Sc×Sv×A×Sc → [0; 1] a transition function such as : TSc(sc, sv, a, s
′
c) = p(s′c|sc, sv, a).

– TSv : Sv × Sc → [0; 1] a transition function such as : TSv (s′c, s
′
v) = p(s′v|s′c);

� O : Ω× Sc → [0; 1] : observation function such as :

O(o, a, s′c, s
′
v) = p(o|s′c, s′v, a) =

{
1 o = s′v
0 otherwise

� C : B × B ×A→ R : the cost function, where B, are the belief state space defined on S.

� b0 = (s0
v, b

0
Sc), où b0Sc ∈ Bc is the intiale probability distribution over the non observable states,

conditioned to s0
v ∈ Sv, the intiale totally observable state.
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Note : The set of observations Ω is equal to Sv and consequently the observation function O is
deterministic since p(o|s′c, s′v, a) = 1 regardless of s′c, s

′
v and a, since o = s′v. Moreover, the Bayesian

dependancy in our model changes from a MOMDP proposed in [2] such as s′v depends on s′c and s′c
depends on sv and sc, therefore it depends on the position of the vehicule in the environment.

at r(st, at)

st

svt

sct

st+1

svt+1

sct+1

ovt ovt+1

oct oct+1

(a) Transition model for a MOMDP

at

state
space S :
Sv × Sc

st

stv

stc

st+1

st+1
v

st+1
c

belief state
space B bt bt+1

C(bt, bt+1, at)

(b) MOMDP model modified, we do not explicit the
observations but the complete belief state space B.

Figure 4: Difference between the transition model

3.3.1 State space of the decisional problem

In our problem, a state s is composed of a set of state variables in two categories : the first being
the fully observables state variables sv and the second being the non observable state variables sc.
The state space S represent all the states such as |S| = |Sv| × |Sc|, where Sc represent all the value
possible of the state variables sc and Sv represent all the value possible of the state variables sv. It
must noted that for our model, it is the entire state space S : Sv × Sc that are partially observable
and we are choosing to factorise according to fully observable and non observable state variables.

More specifically, we define sc such as : sc =
[
X T VT ba

]T
. This is the same definition that

previously presented in the state transition model. It is necessary to keep the velocity and the bias
for the transition function (that will be presented after), because it contributes to compute the next

position. X T =
[
x y z

]T
is the vector corresponding to the vehicule position, that is defined on a

non observable continuous bounded space.

As well as sv =


GPS

Optical F low
Landmark

WallFollowing
Collision

P

 is the vector containing the totally observable boolean avail-

ability [0; 1] of the sensors and guidance modes, a boolean on the collision, as well as P the localization
error covariance matrix.

3.3.2 Action space of the decisional problem

In contrary to the position (x, y, z) that is in a continuous space, we define a discret action space.
This action space is composed by three action variables.

� d ∈ D : are the directions where the vehicule can move. Since we are in a continuous environment
with discrete actions, the actions are chosen arbitrarily. Assuming the UAV was in a 3D grid
composed of voxels, the UAV would have 26 adjacent voxels and thus |D| = 26 directions d
available. It will be considered |D| = 26 directions d available in our model even if the UAV is
in a continuous environment.

� mn ∈ Mn : designate the different navigation mode available on the vehicule. The navigation
mode determine the sensor set that will be used for the localization.

10



� mg ∈ Mg : designate the guidance mode available on the UAV. The guidance mode define the
guidance law that will be used for the movement.

We pose the hypothesis that the UAV possesses the following navigation mode :

Mn = {INS − only,GPS/INS,Optical flow/INS,Landmark/INS}
and the following guidance mode :

Mg = {Absolute Guidance,Relative Guidance}

Then we define the action a = (d,mn,mg) as a tuple containing a direction d, a navigation mode
mn ∈ Mn and a guidance mode mg ∈ Mg. According to the number of directions, navigation mode
and guidance mode there are at most 208 actions available. Note that the navigation and guidance
modes depend of the sensors currently available at a time t and consequently reduce the number of
action possible.

3.3.3 Observation space and observation function of the decision problem

As explained, the set of observation Ω is considered equal to Sv and consequently the observation
function is deterministic since p(o|s′c, s′v, a) = 1 regardless of s′c, s

′
v and a as o = s′v. In contrary to

the standard case of POMDP, where Ω is the set of all observation that the UAV could receive and
give it partial information about the state sc. In our case, the UAV do not receive any observation in
the classical meaning.

Note: Considering the navigation error propagation – by using a Kalman Filter –, the drone will
receive an inaccuracy measurement on the position due to the sensor. This measurement are used
to estimate the non observable state variables. Unfortunately, we can’t use this measurement as
observations, because it is hard to approach a probabilistic function allowing to anticipate the chance
to have this or that measure. In this sense, and in the decision problem, sc is considered as a non
observable state variable.

3.3.4 Transition function

Our transition function between our states is composed of two functions :

� TSc : Sc × Sv ×A× Sc → [0; 1] a transition function such as :

TSc(sc, sv, a, s
′
c) = fs′c|sc,sv,a(s′c|sc, sv, a) ∼ N(s̄′c, Σ̃

′(sv))

As previously develloped (Eq : 18) N(s̄′c, Σ̃
′(sv)) is a normal distribution, which designate the

probability of a predicted state s′c, is function of the previous state sc, of the action a and the
noise v (Eq: 2) due to the dynamic system. The next state s′c depends of the sensors because the
sensor-based relative guidance mode require informations from the onboard sensor used during
the transition (Eq 15). Moreover, this transition function correspond to process in the motion
model (Fig: 1).

� TSv : Sv × Sc → [0; 1] is a transition function such as:

TSv (s′c, s
′
v) = p(s′v|s′c)

The function TSv (s′c, s
′
v) = p(s′v|s′c) represent the transition to s′v. This transition function

depend of the sensor availability map (as indicated in figure 1) and therefore depends only on
the next state s′c. Concretely p(s′v|s′c) is a product of probability on the availability (or not) for

each sensor. Which give us p(s′v|s′c) =
|Sv\P |∏
i=1

p(s′v(i)|s′c) where |Sv \P | is the number of sensor on

the vehicule and s′v(i) is a sensor of the vehicule. Noting that P is not included in the calculation
of TSv (s′c, s

′
v) and in this particular case s′c represent only the position X .

Then we can tighten the belief state by the probability on the sensor availability. In this intention,
we define

T (sv, s
′
v, a, s

′
c, sc) = p(s′v, s

′
c|sv, sc, a) = p(s′v|s′c)fs′c|sc,sv,a(s′c|sc, sv, a)
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fs′c|sc,sv,a
s̄c
′

Σ̃′

(a) Propagation of s′c from sc with an action a

sc

fs′c|sc,sv,a
p(s′v, s

′
c|sv, sc, a)

s′v

(b) Reduction of the belief space in function of s′v

Figure 5: Example of a transition function

3.3.5 Belief state

The belief state condenses all the accumulated informations during the path of length N , which is the
complete information history h defined by :

h = {a0, o1, a1, o1, ..., aN−1, oN}

A belief state b can be seen as the probability density function over the possible states at each time
step t,(b(st) = fs(s = st),∀st ∈ S). This belief state can be updated after each action a done and at
each observation o perceived using the Bayes rule. Thereby, it respects the Markov propriety, since a
belief state at the instant t only depends in the belief state at the instant t−1, the action done at t−1
and the observation observed at t. Thus, we must define properly the belief update of our problem,
based on the transition and observation function defined before and the previous belief state.

In this approach, it is considered only the reachable belief from the original belief b0. The belief
state is a probability density function calculated from the prediction and updated with the sensor
available. The first belief state b0 is a confidence ellipse, based on a normal function with the average
state and the initial localization error, which has been updated with the sensor available sv. However
it is true only for the first belief, because due to the update with the sensor availability map of
our model, the belief will not remain a normal function and in our case, it will be represented by a
probability density function. By factoring the state space according to our model we obtain :

b = (sv, bsc), with bsc = fsc|sv (sc|sv) and b0sc = N(s̄c0 , P0)

3.3.6 Belief state update

After each action we must update the belief state. We join this update with the transition function
previously explained (Section: 3.3.4), which depend of an Extended Kalman Filter (EKF). This belief
update correspond to the architecture defined previously and respresented by the figure 1. The update
is done in two steps based on the transition function and consequently on the three sub-functions :

1. From a belief state bsc and an action a, we will use the state propagation to predict the futur
belief state named bs′c . To make the parallel with the diagram of the architecture, this step
correspond to the system’s dynamic model which take in inputs bsc and a and return a new
partial belief bs′c .

bs′c(s′c) = fs′c|b,a(s′c|b, a) =

∫
fs′c|sc,sv,a(s′c|sc, sv, a)bsc(sc)dsc

2. Then, we can calculate the probability to obtain s′v based on the belief bs′c :

12



p(s′v|b, a) =

∫
p(s′v|s′c)

∫
fs′c|sc,sv,a(s′c|sc, sv, a)bsc(sc)dscds

′
c

=

∫
p(s′v|s′c)fs′c|b,a(s′c|b, a)ds′c

=

|G|∑
i=0

p(s′v|s′c ∈ ci)
∫
ci

fs′c|b,a(s′c|b, a)ds′c

=

|G|∑
i=0

p(s′v|s′c ∈ ci)p(s′c ∈ ci|b, a)

(22)

where ci corresponding to a ith cell of the sensor availablity map and |G| is the number of cell
in the map.

3. The final belief update step correspond to the ”Belief state update” of the architecture (Fig: 1).

The final b
′s′v
s′c,a

is compute in function of s′v, the completly observable state. Remember that this
update depends on the real a priori information of the sensor availability map.

b
′s′v
s′c,a

(s′c) = fs′c|b,a,s′v (s′c|b, a, s′v) =
p(s′v|s′c)bs′c(s′c)

p(s′v|b, a)

=
p(s′v|s′c)bs′c(s′c)∫

p(s′v|s′c)
∫
fs′c|sc,sv,a(s′c|sc, sv, a)bsc(sc)dscds′c

=
p(s′v|s′c)bs′c(s′c)∫

p(s′v|s′c)fs′c|b,a(s′c|b, a)ds′c

=
p(s′v|s′c)fs′c|b,a(s′c|b, a)

|G|∑
i=0

p(s′v|s′c ∈ ci)p(s′c ∈ ci|b, a)

=
p(s′v|s′c)

∫
fs′c|sc,sv,a(s′c|sc, sv, a)bsc(sc)dsc

|G|∑
i=0

p(s′v|s′c ∈ ci)p(s′c ∈ ci|b, a)

Therefore the belief state updated is defined as b
′s′v
a and is derived as follow :

b
′s′v
a = (s′v, b

′s′v
s′c,a

) (23)

Note : When we write fs′c|b,a(s′c|b, a) it is a misuse of notation, indeed in this case b is a state
probability distribution. In POMDP, the belief state is a complete information state that gather all
actions performed and observations received and the intiale state distribution. Thus, when we write
in function of b, we write in function of all the past.

3.3.7 Cost function of the model

First cost function We must remember that the objective is to find the shortest and safest path.
To avoid prioritizing neither the safety nor the length in artificial way, the uncertainty corridor was
previously introduced in [16] and briefly described next. Intuitively the corridor is created by a
sequence of confidence ellipses. This way, more important is the uncertainty during the path, larger
the ellipses will be and consequently the volume of the corridor depends directly of the length of the
path and of the dispersion of the uncertainty. Our cost function will be based on this uncertainty
corridor between two state s = (sv, sc) and s′ = (s′v, s

′
c) knowing that the uncertainty is characterized

by P wich is contained in sv.
Formally, the cost between two state can be defined as :

C(s, s′) =
π

6
‖sc − s′c‖ ·

(
u2s′u3s + u2su3s′ + 2(u2su3s + u2s′u3s′)

)
(24)
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Where ‖s− s′‖ represent the euclidian length between the two ellipses, and u2,u3 are the vectors
of the ellipses complementary to u1 (direction from s to s′).

..
sc

u2s
u1s

P

..
s′c

u2s′
u1s′

P ′

Approximated error ellipsoid evolution

Figure 6: Example of a uncertainty corridor between two states (two dimensions)

Even if the cost function in MOMDPs is defined over S, we calculate the expected cost associated

with the transition from b to b
′s′v
a such as :

C(b, b′s
′
v

a ) = E
[
C(s, s′)|b, b′s

′
v

a

]
=

∫ ∫
C(s, s′)f(sc,s′c)|b,a,s′v (sc, s

′
c|b, a, s′v)ds′cdsc

=

∫ ∫
C(s, s′)

f(sc,s′c,s
′
v)|b,a(sc, s

′
c, s
′
v|b, a)

p(s′v|b, a)
ds′cdsc

=

∫ ∫
C(s, s′)

p(s′v|s′c)fs′c|sc,sv,a(s′c|sc, sv, a)fsc|sv (sc|sv)
p(s′v|b, a)

ds′cdsc

=
1

p(s′v|b, a)

∫ ∫
C(s, s′)p(s′v|s′c)fs′c|sc,sv,a(s′c|sc, sv, a)bscds

′
cdsc

=
1

p(s′v|b, a)

∑
i

p(s′v|s′c ∈ ci)
∫
bsc

∫
ci

C(s, s′)fs′c|sc,sv,a(s′c|sc, sv, a)ds′cdsc

(25)

This cost function is very different from the regular reward function of the POMDP. Classically, a
reward function corresponding to R : S ×A→ R, where R(s, a) depends directly of the current state
s and the action a done. This way, the function R(b, a) is the average of R(b, a) =

∑
s
R(s, a)b(s).

It is a linear average that approach the value function of the POMDP with α-vectors based on the
PWLC property of it. In our model, the expected cost is no longer a linear average and thus the value
function is no more PWLC.

Note This prevents us from using a significant part of the algorithm of the state of the art, such
as SARSOP [9], that exploits the piecewise linear and convex (PWLC) representation of the value
function to compute the policy.

The second cost function In the previous cost function, we calculate the expected cost (volume
of the uncertainty corridor) between two belief states. This expected cost is not easily computable
due to the double integral. Consequently we propose a second cost function wich is based on the
uncertainty corridor too. But in the contrary to the first function we calculate the cost between the
two belief states by computing the uncertainty corridor between the two averaged states.

The cost between two states do not change (see Eq: 24), but the cost between the belief changes :

C(b, b′s
′
v

a ) =
π

6
‖s̄c − s̄c′‖ ·

(
u2s̄′u3s̄ + u2s̄u3s̄′ + 2(u2s̄u3s̄ + u2s̄′u3s̄′)

)
= C(s̄, s̄′)

Same as before our function est defined by C : Sc×Sc → R. This cost function is easy to calculate
and can be considered as an approximation of the first cost function.

3.3.8 Value function

The goal of the agent (in our case an UAV) is to choose, depending on the situations, the actions which
will allow it to accomplish the mission. It is necessary to calculate the policy π(b), which is a function
that takes as input a belief state b and return the action a to be executed such as π(b) → a. This
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policy is said deterministic and Markovian because there is only one action to each b. We distinguish
two types of policies, those that have a finite horizon and those that have an infinite horizion. For the
finite horizon policies, we must define an horizon N , at which once the algorithm reaches the policies
will be return (that can be seen as a tree). In our case we are interested in the infinite horizon policies.
They must possess an horizon far enough such as the returned policies is stationnary (which mean
that the expected value do not change for a given ε) and that the expected value of the sum of the
rewards (or costs) be maximized (respectively minimized).

We define the value function V π(b) as being the expected total cost received from starting in b0
and following the policy π. Moreover we choose a discount factor γ, 0 ≤ γ < 1 that will weigth the
expected cost over the time, to ensure the convergence of our policies at an infinite horizon [12]. The
value function being based on a sum of costs we need to take into account the particularity of our
function that need the belief state at time t+1 (see section 3.3.7). As precised our cost do not directly
depend of the action. But the action have a great impact on it because the uncertainty of a state is
represented by a belief state, which depends especially of our navigation and guidance modes and so
the action. It is the reason, it is necessary to include in the value function the sensor availability on
the entire path. We can define the criterion we want to optimize and the associated optimal policy
such as :

V π
∗
(b) = min

π∈Π
E

[ ∞∑
t=0

γtE
[
C(st, st+1)|bt, b

st+1
v

t+1,a=π(bt)

]
|b0 = b

]
= min

a∈A
E
[
E
[
C(s0, s1)|b0, b

s1v
1,π(b0)

]
|b0
]

+ E

[
min
π∈Π

γE

[ ∞∑
t=0

γtE
[
C(st, st+1)|bt, b

st+1
v

t+1,π(bt)

]
|bt=0 = b1

]
| b0

]
= min

a∈A
E
[
C(b = b0, b

sv1
1,a ) + γV (b

sv1
1,a )

]
So, one can write

V π
∗
(b0) = min

a∈A

∑
sv1∈Sv

p(sv1 |b, a)(C(b, bsv11,a ) + γV (b
sv1
1,a )) (26)

We can see that the value function can integrate indifferently the two costs functions that we propose.
Indeed, regardless of the cost function used the entries are the same in our practical case.

4 Discussion and perspective

Having a value function which is PWLC is advantageous, there is an important state of art and the
theories behind it. Furthermore it allow to represent the policy by a set of vector which is easier and
more intuitive. Indeed in contrary to the representation of the policy by a set of all the reachable belief
b ∈ B, it allow to maintain the policy by keeping a set of vectors. Moreover the theorical work on the
POMDP [13] ensure that if the value function is PWLC then the value function could be approximate
by a PWLC function at each epoch. The algorithms based on this method used this particularity to
accelerate the computing of the optimum policy. Consequently, a major part of the algorithm of the
state of art are based on this representation. In futur work, the value function is not represented by
a set of α-vector.

The algorithm based on PWLC tend to approach the optimum policy, because the optimum is
often incomputable due to the curse of dimensionality. To approach and guide reasearch of the best
policy, some algorithms use lower and upper bound value functions such as HSVI and SARSOP [14, 9].
This bounds are computed for example using a MDP (in the case of upper bound) that the represent
the solution if problem was complety observable, or using other methods. In this work it is not possible
to use these algorithms. A solution is to use algorithms that are not based on PWLC value functions
like RTDP-bel [8] which do not work with α-vector, but keep an hash-table that maps beliefs to values.
This algorithm coincides with our problem, but the convergence are not proved. Consequently, the
next priority will be to research algorithm that could be adapted or find a new algorithm that can help
to solved the problem. Previously, we developed our model in the perspective to calculate a policy in
a continuous environment. The goal to work on continuous environment and thus continuous state
is to avoid approximation in the planning. In our model, we do not have continuous action which
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leads us to important constraints during the path planning. Therefore one important idea we want
to incorporate in the future in our model is the continuous actions, which will correspond more to a
real application. Continuous actions are not in our first model due to the complexity of the resolution
of MOMDP in continuous environment and the complexity induced by continuous actions. Indeed,
POMDP with continuous actions are solved with techniques such as particle filter this is why it will
be studied later [11].
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