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a b s t r a c t

The analysis of the Quality of Service (QoS) level in a Cloud Computing environment becomes an attractive
research domain as the utilization rate is daily higher and higher. Its management has a huge impact on
the performance of both services and global Cloud infrastructures. Thus, in order to find a good trade-off,
a Cloud provider has to take into account many QoS objectives, and also the manner to optimize them
during the virtual machines allocation process. To tackle this complex challenge, this article proposed
a multiobjective optimization of four relevant Cloud QoS objectives, using two different optimization
methods: a Genetic Algorithm (GA) and a Mixed Integer Linear Programming (MILP) approach. The
complexity of the virtual machine allocation problem is increased by the modeling of Dynamic Voltage
and Frequency Scaling (DVFS) for energy saving on hosts. A global mixed-integer non linear programming
formulation is presented and a MILP formulation is derived by linearization. A heuristic decomposition
method, which uses the MILP to optimize intermediate objectives, is proposed. Numerous experimental
results show the complementarity of the two heuristics to obtain various trade-offs between the different
QoS objectives.

1. Introduction

Nowadays, the use of Cloud Computing services constantly
increases due to their intrinsic facilities proposed to the users. This
new paradigm allows a remote access to resources, and the users
are able to decide when and how to use these services, without
any issue regarding the management of the whole functioning.
The main goal of Cloud providers is to attract the maximum

number of users by an high level of Quality of Service (QoS), but
also to minimize as much as they can the management costs.
Indeed, from the perspective of a Cloud provider, the service QoS
level management is strongly linked to the users needs, leading
to the challenge of continuously providing a QoS level that fit
users’ expectations in terms of performance, sustainability or
dependability. These considerations force the service providers to
analyze the characteristics of their systems in order to manage
and improve them to find the best trade-off between their own
interests and the level of quality of service proposed to the users.
The analysis and themanagement of the global QoS level represent
a complex challenge for the provider. Each QoS objective has
its own influence on the global behavior of the services, and
also on the whole benefits of the providers. Also, the economic



aspect of Cloud Computing services not only leads to a financial
analysis of the rental cost of services, but also the study of
many QoS objectives, which have their influence on the overall
performance of the system. The level of quality of service of Cloud
Computing services is based on a contract, called SLA (Service Level
Agreement). This contract binds the provider of services to its users
and contains a set of clauses, which gives information on multiple
quality of service areas:

• Hardware performance
• Platform elasticity
• Availability
• Services rent cost, etc.

Cloud Computing quality of service objectives can be classi-
fied into distinct categories: performance, sustainability, security
& data and costs. Each contains different kinds of objectives which
have their own influence on the system behavior. The provider
must strive to maintain a level of service to first comply with the
terms of the SLA promised to users. If some of them are not en-
sured, it could mean that the providers’ platforms are not man-
agedwell enough, leading to somepotential instabilities during the
users utilization. In addition to these QoS objectives that influence
the use of the services, the provider has to insure the benefits that
he can take from this process. Indeed, the providers’ issue is to de-
crease as much as they can the energy consumption of their plat-
forms which is influenced by the usage of the set of clusters and
hosts in their Clouds.

The complexity to manage the level of quality of service relies
on the fact that the optimization of each QoS objective cannot give
an efficient global solution. For example, if the optimization pro-
cess is only focused on the resources performance, one easy solu-
tion is to use a large number of hosts to ensure the stability of the
whole clusters in case of any huge peak of load, but it will defi-
nitely lead to have a very high energy consumption, which is not
an interesting situation in long term for a Cloud provider. Qual-
ity of service trade-off are often studied as a conflict relationship
between the performance of a system (i.e. response time) and the
energy consumptionneeded to ensure this efficiency. This example
is a typical case of conflicting settings resulting in a trade-off be-
tween two commonQoS objectives. Knowing the level of quality of
service promised to the user, the Cloud provider has to be able to
take decisions, which do not excessively deteriorate QoS objectives
contained in the SLA, while being careful to keep attention on the
global yield (performance versus cost, for example) of its services.
The example above involves two QoS objectives and is already a
complex problem to solve.

Focusing the quality of service optimization only on these two
common objectives does not represent a relevant optimization
approach, regarding the actual SLA definitions and therefore how
a provider has to manage its resources. Taking into account more
than the response time and energy consumption metrics could
be an interesting approach to improve to the quality of service
analysis capabilities of a Cloud provider. Managing in a simple way
multiple metrics will be even more important in the near future.
In [1], authors evaluate the needs of particular metrics in order to
offer real-time characteristics for clouds. They show that adapted
metrics, such as the network distance between virtual machines of
a single application, are needed to guarantee these characteristics
for real-time applications.

In this article, fourQoS objectives are taken into account: energy
consumption, response time, robustness and dynamism, described
in Section 3.2. This set of objectives allows to address the quality of
service optimization issue in Cloud while taking into account dif-
ferent QoS categories: performance, dependability and cost. More-
over, most data center operators use simple algorithms such as
greedy one to manage their workload. The use of these two multi-
objective optimization approaches begets a real investment of the

operator to decide to give an overall quality of service level to pro-
vide better use conditions to users, while optimizing performance
or dependability QoS objectives or to save more energy in order to
increase their own benefits and take advantage of this Cloud ser-
vice rent process. This article proposes awide analyze of a common
heuristic, a Genetic Algorithm (GA), and a MILP based approach,
both dedicated to the Cloud Computing context of this article. The
elaboration of aMILP based approach is a challenging issue. Indeed,
the efficiency of an evolutionary heuristics for amultiobjective op-
timization is well known due to their fast convergence, even if they
do not ensure to return near optimal solutions. The analysis of the
MILP based approach compared to the GA allow to study the in-
sights of the two approaches and also to better optimize antagonist
Cloud QoS objectives.

The article is organized as follow: Section 2 proposes an
overview of quality of service and energy saving studies for Cloud
scheduling. Section 3 exposes the problem formulation including
the quality of service objectives selected, the modeling of the en-
vironment considered and a first mixed integer non-linear pro-
gramming (MINLP) formulation. Section 4 contains the details of
the three solution methods proposed in this article: a Mixed-
Integer Linear Program (MILP) obtained by linearizing theMINLP, a
MILP-based decompositionmethod and aGenetic Algorithm. Then,
Section 5 presents the experimentation methodology and the re-
sults comparison. Finally, conclusions include analyzes on solu-
tions given by the different proposed approaches.

2. Related work

Virtual machine assignment is one of the key issues in cloud
computing, in particular because it corresponds to an intractable
combinatorial optimization problem. As an illustration, Google or-
ganized in 2012 a challenge on a hard practical (virtual) machine
reassignment problem in collaboration with EURO/ROADEF oper-
ational research societies, for which 30 finalist international teams
proposed various optimizationmethods [2]. The reader can also re-
fer to a recent survey by [3] on virtual machine assignment. In this
article, we consider a variant of the virtual machine assignment
in which quality of service and energy considerations are put for-
ward. This section describes few previous works done in the field
of quality of service and energy efficiency for virtual machine as-
signment and scheduling in Clouds. More precisely, the following
topics have some similarities with part of our proposal:

• Importance of virtual machine allocation policies for QoS in
Clouds [4–7],

• Decentralized resource allocation approaches for QoS based on
negotiation and/or in game theory [8,9],

• Scheduling, reconfiguration and/or resources allocation algo-
rithms for energy savings under QoS constraints or objec-
tives [10–17],

• Multiobjective approaches [18–21],

• Benefits of using DVFS for energy savings in Clouds [22–24].

Concerning QoS related allocation policies, Islam et al. [4] have
developed an elasticity model for cloud instances. They have as-
sumed that each resource type (CPU,memory, network bandwidth,
etc.) can be allocated in units and the users are aware of the allo-
cated resources and the relevant QoS metrics for their requests,
as in the case of Amazon CloudWatch.1 Their proposed model
combines the cost of provisioned but underutilized resources and
the performance degradation cost due to under-provisioning. The

1 http://aws.amazon.com/fr/cloudwatch/.



consumer’s detriment in over-provisioning is the difference be-
tween chargeable supply and demand, while the cost of under-
provisioning is quantified through the percentage of rejected re-
quests. Authors have also assumed that the customers are able to
convert the latter into the estimated financial impact. In [5] the
authors introduce a modeling framework called ROAR (Resource
Optimization, Allocation and Recommendation System) to sim-
plify, optimize, and automate cloud resource allocation decisions
to meet QoS goals for web applications, including complex multi-
tier application distributed in different server groups. ROAR uses a
domain-specific language to describe the configuration of the web
application, the APIs to benchmark and the expected QoS require-
ments (e.g., throughput and latency), the resource optimization en-
gine uses model-based analysis and code generation to automati-
cally deploy and load tests are applied in multiple configurations
in order to derive a cost-optimal resource configuration thatmeets
QoS goals. In [6], Papagianni et al. provide a unified resource al-
location framework for networked Clouds. The authors formulate
the optimal networked Cloud mapping problem as a mixed inte-
ger programming (MIP) problem. Then, they indicate objectives re-
lated to cost efficiency of the resource mapping procedure while
abiding by user requests for QoS-aware virtual resources. The pro-
posedmethod for the efficient mapping of resources requests onto
a shared substrate interconnecting various islands of computing
resources, and adopt a heuristic methodology to address the prob-
lem. The efficiency of the proposed approach is illustrated in a sim-
ulation/emulation environment, that allows for a flexible, struc-
tured, and comparative performance evaluation. In [7], the authors
show the impact of the platform choice on the QoS objectives: cost
and makespan, that should depend on heterogeneous virtual ma-
chines characteristics and on the workload.

In [8] the authors describe a decentralized (P2P) trust model
for resource allocation in cloud markets. This model includes
mechanisms to allow participants to avoid dishonest behavior
from other peers: each client statistically analyses the external
reports about providers and updates the trustworthiness of the
peers. The trustworthiness values are used to negotiate prices in
later transactions. The trust model is then incorporated in the
Service-Level Agreement negotiation and enforcement processes,
prioritizing trusted clients over non-trusted clients to minimize
the consequences of lowQoS in relation to the trust of the provider,
and incentivize accurate trust reports from the clients. Finally,
the authors evaluate and discuss the validity of the trust model
under different attacks fromdishonest clients and providers. In [9],
the authors propose three contributions about QoS optimization
domain in a context of Clouds. The fuzzy sets theory is used to
express vagueness in the subjective preferences of the customers.
The service selection is resolved with the distributed application
of fuzzy inference or Dempster–Shafer theory of evidence. The
selection strategy is also complemented by the adoption of a game
theoretic approach for promoting truth-telling ones among service
providers. Experiments results are done through simulations.

Garg et al. [10] have modeled various energy characteristics,
such as energy cost, carbon emission rate, workload and CPU
power efficiency. Their model considers homogeneous CPUs, a
cooling system which depends on a coefficient of performance
(COP), and the use of the DVFS. Their performance evaluation in-
cludes many metrics and many objectives: average energy con-
sumption, average carbon emission, profit gained, urgency class
and arrival rate of applications and data transfer cost. Mi et al. [11]
have formulated the multi-constraint optimization problem of
finding the optimal virtual machine consolidation on hosts while
minimizing the power consumption. An application load predic-
tion is computed and they proposed a heuristic based on genetic
algorithms in order to find a near optimal reconfiguration policy.

The objective function (i.e. fitness) is composed of the power con-
sumption function and a penalty function to keep the CPU utiliza-
tion between two threshold values. Beloglazov et al. [12] propose
a resource management system for efficient power consumption
that reduces operating costs and provides quality of service. Energy
saving is achieved through the continued consolidation of virtual
machines according to resource utilization. The QoS is modeled by
the amount of resource needed in Millions Instructions Per Second
(MIPS) for the CPU, the amount of Memory (RAM), and by the net-
work bandwidth rate. An SLA violation occurs when a virtual ma-
chine cannot have the required three amounts. In the widely cited
paper [25], the authors propose multiple energy-aware resource
allocation heuristics. Duy et al. [13] design, implement, and eval-
uate a scheduling algorithm integrating a predictor of neural net-
works to optimize the power consumption of servers in a cloud.
The prediction of future workload is based on demand history. Ac-
cording to the prediction, the algorithm turns off unused servers
and restarts them tominimize the number of servers running, thus
also minimizing the energy consumption. Srikantaiah et al. [14]
study how to obtain consolidation of energy efficiency based on the
interrelationship among energy consumption, resource utilization,
and performance of consolidated workloads. It is shown that there
is an optimal point of operation among these objectives based on
the Bin Packing problem applied to the problem of consolidation.
Aroca et al. [15] provide a theoretical study of virtual machine al-
location problem to minimize the total power consumption on the
physical machines. They prove the NP-hardness of the offline vari-
ant andperforma competitive analysis of the online version. In [16]
the authors propose a framework which shows the capabilities of
using different kinds ofmulti-core CPU (slow/fast cores) for achiev-
ing a variety of performance objectives under a power budget and
workloads. Their study takes into account different performance
goals: large throughput oriented batch jobs and small interactive
response-time sensitive jobs. In [17] the authors propose a integer
programming based solution approach and a dedicated heuristic to
solve a resource constrained scheduling problem corresponding to
backup jobs. They consider a trade-off between QoS, performance,
and power.

In [18], an energy-aware allocation problem for hosting long-
term services or on-demand computing jobs in clusters is ad-
dressed. The authors consider two objectives: job performance and
energy. Linear programming bounds and polynomial heuristics are
proposed to solve this NP-hard problem. About other combinato-
rial optimization-related literature on the virtual machine alloca-
tion problems, the very recent survey [3] reveals that only a few
approach deals explicitly with multiobjective optimization in the
sense of Pareto front computation. A recent purely multiobjective
approach uses memetic algorithms [19]. Mezmaz et al. [20] pro-
pose a new bi-objective hybrid genetic algorithm optimizing two
criteria. The energy consumption and themakespan are considered
in their optimization process and their approach is based on the is-
land parallel model [26] and the multi-start parallel model. DVFS
is also used in their work. In [21], the authors propose to model a
data-center and optimize three problems: optimize performance
with a bounded power consumption, reduce power consumption
with a constraint on themaximum impact on performance or opti-
mize a linear combination of both energy and performance. While
this article provides an accurate description of these problems, it
is limited by the proposed optimization metrics compared to our
proposal.

Abdelsalam et al. [22] have analyzed the mathematical rela-
tionship between SLAs and the number of servers used. The en-
ergy consumption is also taken into account and their Cloudmodel
uses homogeneous hosts with DVFS enabled, allowing each phys-
ical machine to use different frequencies. Their study includes the
number of users and their needs, and the average response time of



users requests. In [23], Dasgupta et al. pose workload normaliza-
tion across heterogeneous systems, such as clouds, as a challenge
to be addressed. The main differences between the proposed al-
gorithm and other research works are the focus on heterogeneous
data-centers and energy benefits provided by active cooling con-
trol for unknown sized workload processing. This study takes into
account a Return On Investment (ROI) analysis, and also proposes
a dynamic power saving case study using the DVFS tools. More re-
cently Ding et al. [24], consider multicore physical machines with
DVFS enabled and solve a virtualmachine assignment and schedul-
ing problem with deadlines. They propose a scheduling algorithm
and give its performance onmetrics including energy consumption
performance-power ratio and execution time among others.

To compare the approach proposed in this article to those
describe above, specific and major characteristics of this work, in
terms of Cloud architecture, quality of service and optimization
methods are the following:

• The QoS objectives taken into account have been selected from
the detailed Cloud quality of service analysis presented in [27].

• The objectives allow to involve different QoS aspects defined in
SLA Cloud provider: performance, dependability and cost.

• The hosts have the same CPU andmemory capacities, but allow
the use of the DVFS [28].

• An heterogeneity of hosts power consumption has been
considered to approximate the power hosts of real data-center
which may be of different generations.

• The DVFS uses the Userspace governor, allowing to find
the lowest frequency regarding the virtual machines (VM)
allocation on physical machines (PM).

• The CPU capacity allocated to the virtual machines is flexible
(a decreasing is allowed compared to their maximum CPU
capacity).

• A Genetic Algorithm (GA) has been designed to fairly optimize
the four QoS objectives.

• A multiobjective decomposition heuristic based on iterative
solving of MILP formulations is proposed.

Research work presented in this article has several common as-
pects with the works cited above, but also ignores some others. An
important difference to note is that the notion of a strict violation
of SLA is not used in this article. Indeed, SLA violations considered
in the work cited above do not fit properly with the providers’ SLA
clauses. In many cases, they are considered as some performance
degradation (i.e. under provisioning of virtual machine) which is
not an exact definition of SLA violation. Moreover it implies to de-
fine arbitrary thresholds to bind the quality of service accepted
level, which is not always easy and relevant. This is why a study of
the simultaneous optimization of several QoS objectives was pre-
ferred. Themain objective of our paper is to assess the performance
of the GA and MILP approaches to obtain non-dominant solutions
in this above-described context.

3. Problem definition & formulation

Section 3.1 first details the considered Cloud architecture mod-
eling that leads to the definition of several parameters, decision
variables and constraints. Then, Section 3.2 defines precisely the
four QoS objectives, which are going to be optimized by our ap-
proaches. To obtain a more formal and unambiguous definition
of the underlying optimization problem to be solved, Section 3.3
presents a multiobjective mixed-integer non-linear programming
formulation.

3.1. Cloud architecture modeling

In this articlewe consider a simplified cloud architecturewhere,
only one data center, which contains only one cluster. The cluster

is composed of physical machines which can host any of the vir-
tualmachines. These physicalmachines are homogeneous in terms
of computing capacity but heterogeneous in terms of power con-
sumption. Let V denote the set of VM and let P denote the set of
physical machines. The elementary service running on each VM
v ∈ V is abstracted though an instantaneous maximal CPU capac-
ity requirement cv and a number of instructions τv . In themodelwe
consider, the actual CPU requirement of the virtual machine can be
partially controlled as it can take any value above a certain percent-
age of its maximum requirement. This is called the reconfiguration
process. Let ρv ∈ [R, 1] denote the applied decrease rate (to be
decided) where R ∈ (0, 1]. The VM actually requires rvρv of CPU
capacity on the allocated PM during τv

cvρv
time units. Furthermore,

each VM occupies a fixed memory amount denoted bymv .
Each PM p ∈ P has a maximal CPU capacity Cp and a maximum

memory capacityMp. There is a discrete set F of available processor
frequencies such that selecting frequency f yields a CPU capacity
of πf Cp, with a predefined πf ∈ [0, 1], for each f ∈ F . For a
selected frequency f ∈ F , the power consumed by the CPU of a
PM p varies proportionally to its utilization rate, with a minimum

power P
f

ξ(p),min for a CPU utilization rate of 0% while the power for

a full processor utilization if equal to P
f

ξ(p),max, where ξ(p) is the

type of the PM with ξ(p) ∈ T and T is the set of PM types where
|T | ≪ |P|. The PM can be switched off if no VM is assigned to it.

The problem we consider can be informally stated as follows.
Each VM has to be assigned one PM. Each PM must be assigned
one frequency. For each VM assigned to the same PM the same CPU
requirement decrease rate has to be selected (which amounts to
select a decrease rate for each PM). The total CPU requirement of
the VM assigned to a PM (modulated by the decrease rate) cannot
exceed its capacity (determined by the selected frequency). The
PM computing capacity is straight related to its frequency, which is
chosen among the set of available frequencies. This CPU frequency
management and the VM allocation are done only once time at
t = 0 and then do not change during until the end of the all
VM execution. This kind of CPU frequency management allows to
reproduce the Userspace DVFS governor behavior. Indeed, this is
a static approach which can be smartly implemented in the two
proposed methods of this article. Also, no decrease rate should be
applied to the VM assigned to a PM if the CPU capacity of the PM is
not exceeded. Similarly, the total memory requirement of the VM
assigned to a PM cannot exceed the PMmemory capacity.

3.2. QoS scheduling objectives

This section lists the four QoS objectives chosen to be optimized
during the virtual machine assignment process:

• Energy Consumption: The total energy consumption is the sum
of each physical machine energy consumption (E =

∑

p∈P Ep)

and its computation uses the following power formula P
f

ξ(p) =

α
(

P
f

ξ(p),max − P
f

ξ(p),min

)

+P
f

ξ(p),min which correspond to thewell

known affine power model [29], where f is the current CPU
frequency used and α is the CPU load. The energy consumption
of each host is computed proportionally to their power values
in time and their total execution time. This metric has to be
minimized to minimize the energy consumption.

• Response Time: The response time, denoted tmax, is considered
as the execution time of VM, knowing the MIPS capacity
of these VM and the number of instructions (in Million of
Instructions) they have to execute. It can be expressed (in
seconds) as follows: τv

cvρv
. Note that the response time metric

is here the execution total time the longest VM takes while
usually the literature uses this term as the end user response



time. This expression has been adopted for the response time
metric in this article as the Cloud model used for now is
going to be improved in future work with more complex Cloud
services representation like composition of several services,
DAG execution, etc. Indeed, the metric response time is
designed to be used both with simple and more complex
services modeling.

This metric has to be minimized to minimize the Response
Time.

• Robustness: The robustness, denoted Rob, is interpreted as how
many VM should be disposed if a host failure happens. In other
words, it is the average number of VMper used host. Thismetric
has to be minimized to maximize the Robustness.

• Dynamism: The dynamism (or Latent Capacity), denoted Dyn,
is the average amount of free MIPS on each powered ON host
that can be used in a case of a peak of request rate arrival.
It is expressed in free MIPS per Host. This metric has to be
maximized to maximize the Dynamism.

The aim of this multiobjective problem is to balance the
optimization without giving an advantage to one of these four QoS
objectives. As explained in each definition of these QoS objectives,
the energy consumption, the response time and the robustness
have to be minimized, contrarily to the dynamism that has to be
maximized. These objectives can be antagonist and, for instance,
the minimum energy consumption does not always yield the
shortest execution time. Moreover, it is very interesting to add
two uncommon QoS objectives (robustness and dynamism) in a
context of Cloud to common objectives already in conflict.

3.3. Multiobjective mixed-integer non-linear programming formula-
tion

Belowwegive amathematical formulation of the problemusing
binary assignment variables xvp for each v ∈ V and p ∈ P where
xvp = 1 if virtual machine v is assigned to physical machine p and
binary assignment variables ypf = 1 if frequency f is selected for
PM p. Continuous variable ρp gives the decrease rate for the CPU
requirement of all VM assigned to PM p. Auxiliary variables tp, for
each p ∈ P and tmax are used to represent the time to perform all
VM on PM p and the global response time, respectively. Auxiliary
variable zp indicates whether PM p is on or off.

min E =
∑

p∈P

∑

v∈V

∑

f∈F

(P
f

ξ(p),max − P
f

ξ(p),min)τv

πf C
xvp ypf

+
∑

p∈P

∑

f∈F

P
f

ξ(p),min ypf tp (1)

min tmax (2)

min Rob =
|V |
∑

p∈P

zp
(3)

max Dyn =
∑

p∈P

zp

(

Cp −
∑

v∈V

cv ρp xvp

)

∑

p∈P

zp
(4)

subject to
∑

p∈P

xvp = 1 ∀v ∈ V (5)

∑

f∈F

ypf = 1 ∀p ∈ P (6)

∑

v∈V

cv ρp xvp −
∑

f∈F

πf Cp ypf ≤ 0 ∀p ∈ P (7)

∑

v∈V

mv xvp − Mp ≤ 0 ∀p ∈ P (8)

tp −
xvp τv

cv ρp

≥ 0 ∀v ∈ V , p ∈ P (9)

tmax ≥ tp ∀p ∈ P (10)

zp ≤
∑

v∈V

xvp ∀p ∈ P (11)

zp ≥ xvp ∀p ∈ P, v ∈ V (12)

xvp ∈ {0, 1} ∀v ∈ V , p ∈ P (13)

ypf ∈ {0, 1} ∀p ∈ P, f ∈ F (14)

R ≤ ρp ≤ 1 ∀p ∈ P. (15)

There are three objective functions to beminimized: the energy

consumption (1), the response time (2) and the robustness (3)

given by the average number of VM assigned to the PM that are

switched on. There is one objective function to be maximized, the

dynamism (4), given by the average remaining CPU capacity on the

PM that are switched on.

Constraints (5) state that each VM has to be assigned to exactly

one PM. Constraints (6) state that a frequency has to be selected

for each PM. Capacity constraints (7) state that for a PM p, the

sum of the CPU requirement of each VM assigned to p must not

exceed the CPU capacity of PM p. Note that the first term is

non-linear as product ρp xvp appears. Constraints (8) express the

memory limitations. Constraints (9) set the utilization time of PM

p to be at least the processing time of each VM. The constraint is

nonlinear as the quotient xvp/ρp or alternatively the product tp ρp

is present. Constraints (10) set the response time to be at least the

utilization time of each PM. Constraints (11)–(12) express zp as the

0–1 indicator of whether PM p ∈ P is on or off.

We now explain how we obtain the expression of the energy
part of the objective function. We define the consumed energy E
as
∑

p∈P Ep where

Ep =
∑

f∈F

(P
f

ξ(p),max − P
f

ξ(p),min)ypf

πf Cp

∑

v∈V

xvp τv

+
∑

f∈F

P
f

ξ(p),min ypf tp (16)

is the energy consumed by PM p. The right term represents the
energy consumed just because the PM is switched-on during tp
time at the minimum power set by the selected frequency. The
term is nonlinear as tp is multiplied by ypf . The left term represents
the sum of the individual energy consumptions of the VM assigned
to p. The total power available for the VM on PM p at a given time
depends on the selected frequency and is given by term

Pp =
∑

f∈F

(P
f

ξ(p),max − P
f

ξ(p),min)ypf . (17)

The power used by a VM assigned to p is equal to Rvp Pp where

Rvp =
xvp cv ρp
∑

f∈F

πf Cp ypf
(18)

represents the percentage of the CPU capacity used by v on p.
Finally the energy consumed by VM v on PM p is Rvp Pp tv where

tv =
τv

ρp cv
(19)



is the time needed to complete v if it is assigned to p. Developing
this expression the factors ρp cv are eliminated, which yields

Ep =
∑

v∈V

xvp τv

∑

f∈F

(P
f

ξ(p),max − P
f

ξ(p),min)ypf

∑

f∈F

πf Cp ypf

+
∑

f∈F

P
f

ξ(p),min ypf tp (20)

we now observe that, as (14) and (6) hold, we have the following
additional simplification.

∑

f∈F

(P
f

ξ(p),max − P
f
min)ypf

∑

f∈F

πf Cp ypf
=
∑

f∈F

(P
f

ξ(p),max − P
f

ξ(p),min)ypf

πf Cp

(21)

which yields the desired expression.

This model (which is NP-hard as it contains a quadratic assign-
ment problem) is intractable for practical instances. Therefore we
propose amethod based on linearization and decomposition of the
MINLP and a metaheuristic (genetic algorithm).

4. Solution methods

4.1. Towards a mixed-integer linear program (MILP)

Standard linearization techniques can be applied to the MINLP
(1)–(15). We first perform a discretization of the reconfiguration
rate domain [R, 1], obtaining a discrete set of reconfiguration
values {αl}l∈L of index set L. A new binary variable zpl ∈ {0, 1} is
introduced, that takes value 1 when the reconfiguration rate αl is
applied to all the VM assigned to the PM p. We have to introduce a
constraint to select a unique reconfiguration rate for each PM
∑

l∈L

zpl = 1 ∀p ∈ P. (22)

With this new variable the non-linear constraint (7) can be
formulated as the following linear constraint:
∑

v∈V

∑

l∈L

cv αl wpvl −
∑

f∈F

πf Cp ypf ≤ 0 ∀p ∈ P (23)

wherewpvl is standardly set equal to the product of binary variables
zpl xvp with linearization constraints:

wpvl =

{

xvp + zpl ≤ wvpl + 1 ∀p ∈ P, v ∈ V , l ∈ L
wvpl ≤ xvp ∀p ∈ P, v ∈ V , l ∈ L
wvpl ≤ zpl ∀p ∈ P, v ∈ V , l ∈ L.

Another standard linearization process can be applied to constraint
(9).

tp −
xvp τv

cv ρp

≥ 0 ≡ tp cv
∑

l∈L

zpl αl ≥ xvp τv ∀v ∈ V , p ∈ P. (24)

Linearizing the product of a binary variable and a continuous
variable epl = zpl tp, we obtain the following constraints:
∑

l∈L

epl αl cv ≥ xvp τv ∀v ∈ V , p ∈ P (25)

tp + Tp(zpl − 1) ≤ epl ∀p ∈ P, l ∈ L (26)

epl ≤ Tpzpl ∀p ∈ P, l ∈ L (27)

epl ≤ tp ∀p ∈ P, l ∈ L (28)

where Tp is an upper bound on the time needed to complete all VM
on machine p.

For the objective functions, the linearization of xvpypf can be
achieved by introducing a new variable γvpf set equal to xvpypf by
the following linear constraints:

xvp + γvpf ≤ ypf ∀p ∈ P, f ∈ F (29)

γvpf ≤ xvp ∀p ∈ P, f ∈ F (30)

γvpf ≤ ypf ∀p ∈ P, f ∈ F . (31)

Similarly, the linearization of ypf tp needs variable θpf = ypf tp as
expressed by:

tp + Tp(ypf − 1) ≤ θpf ∀p ∈ P, f ∈ F (32)

θpf ≤ Tpypf ∀p ∈ P, f ∈ F (33)

θpf ≤ tp ∀p ∈ P, f ∈ F . (34)

This yields a linear expression of energy objective (1). For the ro-
bustness objective (3) a linear objective is obtained bymaximizing
the inverse of the quotient (max

∑

p∈P zp/|V |). The linearization of
the dynamism objective is more complex and we do not present
it for sake of concision and also as the MILP-based decomposition
method (presented in the next section) that is able to solve the re-
alistic instances does not need such linearization.

One of the specification of the problem is that the CPU capacity
of the physical machine πf Cp has to be saturated if a reconfigura-
tion rate is applied. The discretization, besides the fact that it may
yield a suboptimal solution, may also violate this constraint. Con-
sequentlywe apply a post-optimization procedure to adjust the re-
configuration rate to continuous values. Wewill describe the post-
optimization procedure in the next section as it is also part of the
proposed decomposition procedure.

4.2. MILP-based decomposition

Since the MILP described above is only able to solve small in-
stances, we present in this section a MILP-based decomposition
heuristic that consists of iteratively solving subproblems in which
some parts of the problem have been fixed. To simplify the so-
lution process and strengthen the MILP relaxation, we systemat-
ically work at fixed robustness. More precisely we heuristically fix
at each iteration the number of PM that are switched on in each
of the types ξ ∈ T . Let nξ the number of PM of type ξ ∈ T . At
each iteration, we enforce to switch nξ PM on with nξ ≤ nξ . As
all PM of the same types are equivalent (they have the same CPU
and memory capacities), this amounts to consider a reduced set of
PM for each type, as the PM that are fixed as switched off can be
arbitrarily selected and removed from the problem.

Initially, we set the number of switched on PM to |P| (i.e. nξ =

nξ , ∀ξ ∈ T ), we also fix the PM frequencies (to their maximum
values) and the reconfiguration rates (no reconfiguration).With all
these fixed parameters, we solved the VM/PMassignment problem
through a first MILP. Once the assignment problem is solved, we
fixed the obtained assignment and we solve a secondMILP to opti-
mize the discretized reconfiguration rates and the PM frequencies.
Then we solve a third MILP with fixed assignment and time to ad-
just the reconfiguration rate in the continuous domain and recom-
pute the PM frequencies (already mentioned post-optimization
phase). Then, we restart the process at the assignment phase with
the so-computed reconfiguration rates and frequencies. Globally
we perform the first q iterations with the maximum number of
switched on PM, thenwe decrease this number by ν percent for the
q subsequent iterations, and then we decrease again the number
of switched on PM by ν percent until a maximum number of iter-
ations is reached. We spread the global ν percent decrease evenly
over all PM types. Hence each q iterations the robustness level is
changed. We described below the three MILPS and the objective
functions that we implemented to tackle the other multiobjective
aspects.



For the assignment phase, weworkwith a fixed reconfiguration
rate ρp and a fixed frequency f p, ∀p ∈ P . It follows that, as already
mentioned, the robustness is fixed. Furthermore, the dynamism
criterion is now linear. We propose to minimize at each iteration
a weighted sum of the energy, time and dynamism objective. This
gives the following MILP, where wEN is the energy weight, wTI is
the time weight and wDY is the dynamism weight. We denote by
P ⊆ P the set of physical machines that are fixed as switched-on
at the current iteration, with

∑

ξ∈T
nξ = |P|. All other PM are not

included in the problem.

min wEN
(

∑

p∈P

∑

v∈V

1

πf p
Cp

(P
f p
ξ(p),max − P

f p
ξ(p),min)τv xvp

+
∑

p∈P

P
f p
ξ(p),mintp

)

+ wTI tmax − wDY
∑

p∈P

1

|P|

(

Cp −
∑

v∈V

cv ρp xvp

)

(35)

∑

p∈P

xvp = 1 ∀v ∈ V (36)

∑

v∈V

xvp ≥ 1 ∀p ∈ P (37)

∑

v∈V

cv ρp xvp − πf p
Cp ≤ 0 ∀p ∈ P (38)

∑

v∈V

mv xvp − Mp ≤ 0 ∀p ∈ P (39)

tp −
xvp τv

cv ρp

≥ 0 ∀v ∈ V , p ∈ P (40)

tmax ≥ tp ∀p ∈ P (41)

xvp ∈ {0, 1} ∀v ∈ V , p ∈ P. (42)

As all machines in P have to be switched on, we can add

constraint (37) that state that at least one VM has to be assigned

to each PM. With fixed reconfiguration rates and frequencies,

capacity constraints (38) become knapsack constraints just as

constraints (39). For the objective function, we have assignment

costs in the form ofmin sum for the variable part of the energy cost

and the dynamismcost but also in the formofminmax for the fixed

part of the energy cost and the time cost. Along the iterations, we

alternate four values for the weight vector. A first value is an equal

weight for the three objectives after normalization w.r.t. upper

bounds of the objective values. The three other values (1, 0, 0),

(0, 1, 0) and (0, 0, 1) correspond to successive optimization of

each criterion alone.

Once the assignment has been computed by the above-defined
MILP, a second MILP is set up to change the reconfiguration rates
and the frequencies, given a fixed assignment xvp. FromMINLP (1)–
(15), and the linearization techniques described above, we obtain
the following MILP. Let V (p) denote the set of VM assigned to PM
p.

min wEN
(

∑

p∈P

∑

v∈V (p)

∑

f∈F

1

πf Cp

(P
f

ξ(p),max − P
f

ξ(p),min)τv ypf

+
∑

p∈P

∑

f∈F

P
f

ξ(p),minθpf

)

+ wTI tmax − wDY
∑

p∈P

1

|P|



Cp −
∑

v∈V (p)

∑

l∈L

cvαl zpl



 (43)

∑

v∈V (p)

∑

l∈L

cv αl zpl −
∑

f∈F

πf Cp ypf ≤ 0 ∀p ∈ P (44)

∑

l∈L

epl αl cv ≥ τv ∀p ∈ P, v ∈ V (p), (45)

tp + Tp(zpl − 1) ≤ epl ∀p ∈ P, l ∈ L (46)

tmax ≥ tp ∀p ∈ P (47)

epl ≤ Tpzpl ∀p ∈ P, l ∈ L (48)

epl ≤ tp ∀p ∈ P, l ∈ L (49)

tp + Tp(ypf − 1) ≤ θpf ∀p ∈ P, f ∈ F (50)

θpf ≤ Tpypf ∀p ∈ P, f ∈ F (51)

θpf ≤ tp ∀p ∈ P, f ∈ F (52)

θpf ≥ 0 ∀p ∈ P, f ∈ F (53)

epl ≥ 0 ∀p ∈ P, l ∈ L (54)

tp ≥ 0 ∀p ∈ P (55)

tmax ≥ 0 (56)

ypf ∈ {0, 1} ∀p ∈ P, f ∈ F (57)

zpl ∈ {0, 1} ∀p ∈ P, l ∈ L. (58)

Note that as the assignment is fixed, the above-defined MILP
has a reasonable number of binary variables, provided that the set
of frequencies and the set of discretized configuration values are
not too large.

The last step is to perform the post-optimization phase to
obtain adjusted reconfiguration rates, so as to saturate PM
capacity whenever reconfiguration is applied. To reintroduce the
continuous variableρp, we keep the assignment variables xvp to the

values xvp, defining sets V (p), found by the previous MILP. We fix
time variable tp to the value found (tp). Note that the time objective
does not appear in the cost function as it is upper bounded
and that considering the time variable would yield a product of
continuous variables tpρp. Hence only the energy and dynamism
objectives could remain. However the dynamism objective would
tend to decrease the reconfiguration rate even if the capacity
constraint is not saturated, which is not permitted. We only keep
the energy objective and add a maximization objective on the
reconfiguration rate with a weightW setup in such a way that this
objective has less importance than the energy one. Observing the
obtained MILP shows that, as the capacity constraints are satisfied
by the assignment, the solution resorts to selecting the largest
reconfiguration value and the smallest πf satisfying the capacity
constraint, which naturally ensures that the capacity constraints
are saturated if the reconfiguration rate is strictly smaller than 1.

min wEN
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− W
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ρp (59)

∑

v∈V (p)

cv ρp −
∑

f∈F

πf Cp ypf ≤ 0 ∀p ∈ P (60)

∑

f∈F

ypf = 1 ∀p ∈ P (61)

ρp ≥
τv

tpcv
∀p ∈ P, v ∈ V (p) (62)

ypf ∈ {0, 1} ∀p ∈ P, f ∈ F (63)



Fig. 1. Chromosome solution representation.

Fig. 2. Two-point crossover operator.

R ≤ ρp ≤ 1 ∀p ∈ P. (64)

All parameters and decision variables used in the three
Sections 3.3, 4.1 and 4.2 are summarized through two tables in the
Appendix (Tables 9 and 10).

4.3. Genetic algorithm approach

The Genetic Algorithm [30] used and compared to the linear
programming approach in this article has been fully implemented
in C++ language. Details of the modeling, illustrated in Fig. 1, and
the use of the common operators of the GA dedicated to the VM
allocation problem and the Cloud QoS objective optimization have
already been presented in [27]. This is why this section is focused
on the most important characteristics of this GA and highlights
how to evaluate and compares the obtained solutions. Note that
other multiobjective heuristics with elitist and/or non-dominated
sorting could have been used such as NSGA-II [31].

4.3.1. Solution representation & basic characteristics

A virtual machine allocation solution on hosts is represented by
a chromosome, which is composed of a set of genes. The size of a
chromosome (i.e. the number of genes) indicates thenumber of vir-
tual machines. The value assigned to each gene is the index of the
hostwhere the virtualmachine (represented by the gene) has to be
allocated. Indeed, a complete solution is composed of a set of genes
associated to a value which represents the host where to each vir-
tual machine has to be executed (Fig. 1). Common operators of a
GA, mutation and crossover (illustration in Fig. 2) have been also
implemented. An important phase of the resolution process is to
verify the veracity of a such representation. It leads to check if
the whole allocation of all virtual machine do not violate the con-
straints in terms of CPU (depending on the chosen frequency) and
the memory capacities. This process takes into account that the
virtual machine CPU capacity allocated can be reduced up to 20%
(0%–20%). Indeed, the frequency chosen by theGA for each physical
machine is the lowest that yields the selected CPU virtual machine
reconfiguration. This important phase has be to done every time
before adding a chromosome into the current working population.

The basic characteristics used in this GA implementation are the
following:

• The initial population is composed of 1500 chromosomes

Table 1
Coefficient values of the 5 versions of the GA.

GA name Coefficients applied to metrics

Energy Response time Robustness Dynamism

GA_All 1 1 1 1

GA_Energy 1 0 0 0

GA_RespT 0 1 0 0

GA_Rob 0 0 1 0

GA_Dyn 0 0 0 1

• The working population uses 120 chromosomes
• 100 mutations and 100 crossovers are applied during each

generation
• The GA is stopped when 600 generations are done.

4.3.2. Objective function & chromosome evaluation

The objective function has been defined as follows:

Fobj = wEN × E + wTI × tmax + wRO × Rob − wDY × Dyn (65)

where wEN , wTI , wRO and wDY are the coefficients of the energy,
the response time, the robustness and the dynamism respectively.
These coefficients can be modified (one greater than the other
for example) to advantage the optimization of one or several QoS
objectives. The value given by this objective function is called the
fitness value and allows to evaluate the quality of the solution
obtained.

Eachmetric has its own real value. Indeed, eachmetric does not
have the same range of value, as so if the fitness value is computed
keeping these different ranges of value, the result obtained would
make no sense. The standardization (Eq. (66)) step of each metric
value, in order to compute a reliable chromosome fitness values
has been done with the ‘‘center and reduce’’ formula. This gives
a set of values with an average value of 0, a variance value of
1 and standard deviation value of 1. Then, all metric values are
comparable therebetween and the fitness value of a chromosome
can be computed.

vstd =
v − µ

σ
(66)

where, v is the value to standardize, µ the average and σ the
standard deviation.

4.3.3. Optimization configurations

Five versions of the genetic algorithm have been defined, so as
each of them uses different coefficient weights associated to the
metrics (Table 1). This leads to have five different kinds of QoS
metrics optimization. These five versions are described below:

• GA_Energy only optimizes the energy consumption metric,
• GA_RespT only optimizes the response time metric,
• GA_Rob only optimizes the robustness metric,
• GA_Dyn only optimizes the dynamism metric,
• GA_All fairly optimizes the four metrics.

4.3.4. Analysis and comparison of solutions quality

As explained in the previous section, the quality of an allocation
solution given by the GA is represented by its fitness value.
With these five different configurations of optimization, the aim
was to highlight the relevance to optimize these four metrics
simultaneously, and also to show the influence of the optimization
on each other. In order to estimate the efficiency of each version of
the GA, a comparison has been done using an increasing number of
virtual machines (50–400) to assign into a fix number of 110 hosts.
In the Fig. 3, these eight different size problems correspond to the
X axis values. The efficiency of each GA is represented by its fitness



Fig. 3. Comparison of fitness value results between the five GA.

value in the Y axis. The fitness values normalization have been
done using the range [min;max] of eachmetric of each run. Indeed,
the smaller the fitness value, the better the optimization potential
regarding the four QoS metrics. The usefulness of this figure is to
give relevant analyzes about the optimization quality of version
of the GA, in different virtual machines allocation conditions. In a
multi-criteria point of view, it is very interesting to note that the
GA_All version gives a nice trade-off between eachmetric, with the
best fitness value for each of the eight configurations.

The next section presents more detailed results and a compari-
son between the GA and the MILP-based approaches.

5. Computational experiments

In this Computational Experiments section, the first part
details the methodology adopted and the second one proposes an
extended analyzes of the whole results obtained.

5.1. Methodology

This section first exposes the methodology used for all the
computational experiments in terms of virtual machines and hosts
characteristics (numbers, capacities, power and heterogeneity),
and the manner of each optimization method has been exploited.

5.1.1. Hosts and virtual machines characteristics

In order to be able make this comparison in safe and relevant
conditions, the GA and the MILP-Based Decomposition have been
executed using the same input configuration of hosts and virtual
machines characteristics. First, five configurations of the allocation
problem have been defined:

• 5 hosts/15 virtual machines
• 25 hosts/90 virtual machines
• 55 hosts/200 virtual machines
• 80 hosts/300 virtual machines
• 110 hosts/400 virtual machines.

About the physicalmachines, the same CPU andmemory capac-
ities of 2000 MIPS and 2500 Mo have been used, respectively. One
host is supposed to have one CPU in which five different frequen-
cies are enable. TheCPU (inMIPS) andmemory (inMo) capacities of
the virtualmachines can both take one of the four following values:
[200, 400, 600, 800]. Regarding the hosts power characteristics,
the model of the physical machine of the Grid’5000 [32] Reims site
has been used. Measurements on this Grid’5000 cluster have been
done to have power values at idle and full states for the five CPU fre-
quencies. Details on available frequencies, and the corresponding

Table 2
Grid’5000 Reims site frequencies and power characteristics.

Grid’5000 Reims site

Available frequencies

(GHz)

0.8 1.0 1.2 1.5 1.7

Power (W)
Idle 140 146 153 159 167

Full 228 238 249 260 272

Table 3
Host heterogeneity.

Type 0 1 2 3 4

Heterogeneity (%) −20 −10 0 +10 +20

power values are resumed in the Table 2. Concerning the DVFS, it
has been used in Userspacemode (five modes exist). This mode is a
static mode and allows to choose one of the frequencies available.

Based on these real power values, five types [0 to 4] of hosts
have been defined in order to represent the variety of an actual
Cloud data-center in terms of hosts generation and their energy
consumption heterogeneity. Itmeans that an host can delivermore
or less power (for the same CPU capacity). Type 2 corresponds to
the real base model (0% of heterogeneity). The four other types
have an heterogeneity between −20% and +20% compared to the
type 2. The Table 3 summarizes this power heterogeneity of the
physical machines.

The VM CPU capacity reconfiguration concept is also used (Eq.
(15)). It allows to decrease the CPU capacity of a virtual machine.
This tool is used only when the sum of a VM set allocated on
physical machine exceed its current capacity (Eq. (7)). Then, the
reconfiguration value ρp is computed. The decreasing of the CPU
capacity of the VMs is applied only if the reconfiguration is lower
than 20% (ρp > 0.8). This threshold of 20% has been chosen to
have a more complex virtual machines allocation trade-off while
ensuring a fair CPU capacity.

5.1.2. Experiments setup

For each configuration size, ten instances of capacities of virtual
machines and hosts have been generated, whichmeans that: hosts
types, virtual machines memory and CPU sizes and the number of
instructions to execute are different between each instance. This
leads to 50 different instances (10 per configuration). Also, the GA
has been executed 10 times on each instancewhile theMILP,which
has a deterministic behavior, was executed once.

An initialMILP computes anupper boundof the energy and time
objectives to normalize the weights. At each iteration the assign-
ment MILP (phase 1) is the hardest to solve. The reconfiguration
and frequency change MILP (phase 2) is much easier, which is due
to the reduced number of variables as already mentioned. Then,
the post-optimization (phase 3) is solved immediately. To limit the
CPU time, a fixed time limit is set to the assignment MILP. Finally,
we experimentally observed that for energy minimization phase
(weight vector (1, 0, 0)) theminmax part of the objective function
(‘‘fixed’’ energy part) yielded poor LP relaxations and so poor fea-
sible solutions. Thus we only minimized the variable energy part,
which corresponds to a min sum assignment cost and gives much
better LP relaxations. The robustness is changed every q = 10 iter-
ations and the number of switched on PM is decreased each time
by ν = 12%. TheMILP-basedmethods were coded in C++ using the
IBM Cplex 12.5 MILP solver.

In order to keep a set of interesting solutions of these two
approaches, only the ‘‘non-dominated’’ solutions are kept, recalling
that a ‘‘non-dominated’’ solution is defined as follow:

Let X and Y be two solutions, X dominates Y if, for any criterion
j to minimize, we have: z j(X) ≤ z j(Y ), with at least one strict
inequality. The set of non-dominated points in the objective space
is called the Pareto frontier.



(a) 3D solution time illustration of the MILP-Decomposition. (b) 3D solution time illustration of the GA.

Fig. 4. Solution time comparison between the GA and the MILP-Decomposition.

5.2. Results comparison

The first comparison proposed, in Section 5.2.1, analyzes the
solution CPU time and the related optimization quality of the two
heuristics. The aim is not to highlight that the GA is faster than the
MILP but to analyze the evolution of the execution time and the
quality of the solutions found by the two heuristics while varying
someparameters. About theMILP-Decomposition, two parameters
can influence the computation time: the CPLEX TimeOut at each
iteration and the total number of iterations done (during the
execution). Indeed, a very useful step has been done to calibrate
the value of the CPLEX TimeOut in order to find the one which will
give the best ratio between the total execution time and the quality
of the solution obtained. Then another set of experiments has been
carried out by varying the number of iterations, which also allows
to find the most relevant values to use.

As a comparison metric, the normalized ‘‘Hypervolume Indi-
cator’’ [33,34] was used. This ‘‘Hypervolume Indicator’’ is a well
known metric in the multiobjective optimization domain, which
allows to make relevant comparison of the quality of the approx-
imated Pareto frontiers found by several heuristics. The solution
time study of the GA has been simply made by varying the number
of generations.

The second comparison uses this hypervolume value to analyze
the solutions’ quality given by the two heuristics. The comparison
of multiobjective results is not an easy task, especially when the
different approaches which do not use the same normalization
function and have also very different optimization behavior.
Summaries of results obtained are shown in tables and figures of
Section 5.2.2.

Finally, comparisons based on different lexicographic objective
orders have been made. This allows to highlight other insight’s
characteristics of the two heuristics presented in this article. Also,
the lexicographic order approach gives numerous results which
have been exploited to compare the behavior of the two heuristics
on each metric separately.

5.2.1. Solution time and quality

The solution times of the two heuristics have been compared by
varying the number of generations in the GA, and the CPLEX Time-
Out for the MILP-Decomposition. Seven number of generations
have been chosen for the GA [5, 50, 100, 200, 300, 400, 500], and
the values chosen for the CPLEX TimeOut (in second) are the follow-
ing [2, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50]. The evolution of the
solution time of the heuristics in function of these sets of values is
illustrated in Fig. 4(a) and (b). The twovolumeswhich compose this
figure correspond to the execution times of the GA and the MILP
(on instance 0). This figure has been generated with the values of

Fig. 5. Influence of the number of generations of the GA.

all experiments while testing the whole range of CPLEX TimeOut
values and also the seven number of generations values for the GA,
for the five configuration problem sizes and on the 10 instances of
each configuration. Fig. 4(b) highlights the linearity of the GAw.r.t.
to the number of the generation, and a more complex behavior for
MILP-Decomposition. This is why, studies on the CPLEX TimeOut
value and the number of iterations, presented below help to un-
derstand the MILP-Decomposition heuristic and its input values’
calibration.

The analysis of the relation between the total solution time and
the quality of the optimization, based on the hypervolume metric,
obtained is illustrated in Fig. 5 for the Genetic Algorithm and Figs. 6
and 7 for the MILP-Decomposition. Each of these figures displays
10 curves that correspond to the 10 instances for the configuration
of 100PM and 400VM.

For the GA, Fig. 5 gives the hypervolume value in function of the
number of generations. The hypervolume increases with number
of generations ans shows a stagnation after about 500 iterations.
Hence, this value has been chosen for further comparisons with
the MILP-Decomposition reported in the two following sections.
Indeed, this number of generation appears to be crucial to obtain
a nice trade-off between the solution time and the optimization
quality.

For the MILP-based method, Fig. 6 also shows either an
increasing hypervolume in function of the CPLEX time out value
with a stagnation (instances 1, 2, 3, 6, 8, 9) or a bell-shape
(instances 0, 4, 5, 7).

The main conclusion of this phase is to see that the best CPLEX
TimeOut to use is not the higher one, but the third or fourth one.
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Table 4
TimeOut characteristics comparison.

CPLEX TimeOut

Number 1 2 3 4 5 6 7 8 9 10

Value (s) 2 5 10 15 20 25 30 35 40 45

Nb best 6 4 8 8 1 3 4 1 1 4

Hyp. avg 4781195 5220331 5460928 5487397 5458801 5459400 5470382 5487366 5480528 5482471

Fig. 6. Influence of the CPLEX TimeOut (MILP-Decomposition).

Fig. 7. Influence of the number of iterations (MILP-Decomposition).

This shows that it is not necessary to over-optimize a subproblem

at a given iteration. A precise analysis of this parameter has been

done on each size of problem to determine the value which will

give the best optimization in average on all configurations (exclud-

ing the smallest one 5_15 because each value gave the same result)

and instances. This is summarized in Table 4. The hypervolume av-

erage and the number of times that each CPLEX TimeOut values
gives the best value (for each configuration and each instances) are

computed to find the best trade-off. For further computational ex-

periments the 4th value (10 s) has been chosen.

Let us now consider the number of iterations done during

the execution of the MILP-Decomposition. A set of 15 values

({1, . . . , 15}) has been tested. Fig. 7 displays the optimization re-

sults (with configuration 100_400) of these different number of
iterations to illustrate how exactly this parameter influences the

global optimization quality. This phase gives also useful informa-

tion about how to calibrate the MILP-Decomposition. A stagna-

tion of the optimization quality is clearly visible for each instance

since the number of iterations is equal or superior to 10. Hence,

Fig. 8. MILP-Decomposition solution time after calibration (on configuration

100_400).

to conduct the next computational experiments with the MILP-
Decomposition, the number of iterations has been set to 10.

These calibration phases allowed to improve the ratio ‘‘opti-
mization quality’’ versus ‘‘solution time’’ (i.e. lower solution time
gives the same solutions quality). Fig. 4(a) shows amaximum solv-
ing time lower than 400 s for the higher problem size. However,
after calibration, Fig. 8 shows that the solving time for each in-
stance of the five configurations is always lower than 170 s. Con-
sequently, the calibration phases of the CPLEX TimeOut and the
number of iterations have allowed to obtain an interesting perfor-
mance/optimization trade-off.

5.2.2. Hypervolume analysis

This section contains two tables (Tables 5 and 6) that give the
hypervolume values obtained (the higher the value, the better
the solution) with the MILP-based Decomposition and the GA, for
the three following configurations: 5_15, 55_200 and 110_400.
For each configuration, the ten different data instances have
been evaluated. The hypervolume values do not have a real
interest themselves, but the difference percentage between the
two approaches allows to see that the GA is not always but
most often better than the MILP-Decomposition approach on the
hypervolume criterion. In some configuration instances the MILP-
Decomposition can find a better optimization than the GA. This is
indicated when the percentage value is lower than 0.

To temper the conclusion suggested by the hypervolume
comparison, Table 6 gives the values of the four objective functions
of the non dominated solutions found by each method on a
particular instance. Although theMILP-Decomposition approach is
less efficient in terms of execution time, the table shows that this
approach is able to find very efficient solution in terms of response
time. For this criterion, theMILP finds strictly better solutions than
the GA on this instance, while the GA finds better values for the
other objectives. In terms of results consistency theGA seemsmore
stable with lower disparity between the found solutions.

A last question is to knowhow far the above-described heuristic
algorithms are far from the optimal Pareto frontier. Limiting
ourselves to the energy and response time criteria, we were
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Table 5
Hypervolume comparison.

Configuration Instance Hypervolume value Difference (%)

GA MILP

5_15

0 30492332 29879118 2.01

1 56567726 46304672 18.14

2 37589617 37732627 −0.38

3 48667527 42167724 13.35

4 50178041 44025920 12.26

5 52577203 46360942 11.82

6 38015084 37306438 1.86

7 40419177 35935952 11.09

8 54010278 55713842 −3.15

9 38993879 36769489 5.7

55_200

0 7997083 7465146 6.65

1 8540858 6901692 19.19

2 8630130 6317714 26.79

3 8194239 7088897 13.48

4 9254020 7793537 15.78

5 8415340 7170061 14.79

6 12389455 9526466 23.1

7 8085961 7485145 7.43

8 11293859 9097126 19.45

9 11082994 8952591 19.22

110_400

0 2882016 1835744 36.3

1 3177087 1664197 47.61

2 3807004 2561813 32.7

3 2067129 1056971 48.86

4 3144132 2992586 4.81

5 3051010 3071987 −0.68

6 3048988 1780271 41.61

7 4056095 2432604 40.02

8 3238128 2168932 33.01

9 2830638 1818614 35.75

able to obtain a lower bound of 112 for the weighted sum
objective (Energy + Response time) with the MILP obtained by
the linearization techniques described in Section 4.1. With these
parameters the GA find a solution of 124,88 (125.55 for the MILP)
which means that the gap is less than 12.1% from the optimum for
both algorithms for this instance.

As explained above, the use of the normalized hypervolume
value allows to compare the global optimization quality of
heuristics, but does not allow to highlight behavior’s insight
of the heuristics used on each criterion separately. About the
optimization quality, the different analyzes of hypervolume results
show the MILP can be close in average to the GA quality: 7.2% for
the 5_15 configuration, 16.5% for the 55_200 configuration and
about 31.9% for the biggest configuration. The fact that for some
instances the two heuristics are very close and that the MILP-
Decomposition is sometimes better than the GA, a further analysis
which brings out the behavior of these heuristics on each metric is
needed.

This is why, the next section presents the result obtained using
a lexicographic comparison.

5.2.3. Lexicographic analysis

The analyzes proposed in this section are based on a lexico-
graphic order comparison. This first leads to number each met-
ric: 1-Response Time, 2-Energy, 3-Robustness and 4-Dynamism. As
themulti-criteria problem studied in this article takes into account
four Cloud QoS parameters, the number of orders that can be ana-
lyzed is equal to 4! = 24. The idea is to see if one of the two heuris-
tics is better than the other on one or more criteria, and also, for
example, if it is always on the same criteria. An example of results
is given on Table 7. This table exposes the results on the 24 orders
for the five problem sizes for the instance 0.2 Each table contains

2 The others 9 instances have also been analyzed but only one is shown in the

article.

120 results (5 × 24), and a simple analysis allows to count how
many time each heuristic is the best for each order on each prob-
lem size. For example, the result of the instance 5 which is shown
through the Table 7 is the following: the MILP is 72 times the best,
and the GA is 48 times the best. If the same counting is done on the
other 9 tables (i.e. 9 other instances), the results can be sometimes
quite different. For example, the instance 6 gives theMILP 48 times
the best and 72 times for the GA. The instance 1 also gives a differ-
ent result with the same score for the two heuristics (60 times the
best for both).

Another analyzes have been done by taking into account the
metric which had the higher importance for a given order. For
the four QoS metrics of this article, it leads to determine which
heuristics is the best for each order. This has been done by dividing
each result table (for the 10 result tables, the orders are the
same as in Table 7) every six lines to extract the results for each
metric (1xxx, 2xxx, 3xxx and 4xxx). Thus, the computation for
each metric is done with 30 result values (for one instance). With
the ten instances, a result for a metric is computed with 300
values, and the whole analyzes are illustrated through histograms
of Fig. 9(a). Another result interpretation is given to show how the
two heuristics behave compared to the different problem sizes.
This analysis is illustrated in Fig. 9(b). Finally, Fig. 9(c) shows how
many times the GA and the MILP are the best on each instance.
This kind of analyzes highlights the importance of doing them on
several set of experiments and also that the approach proposed
with the decomposition of the MILP is indeed interesting and
relevant.

This lexicographic analysis enables to draw more precise
conclusions on the heuristic comparison compared with the single
hypervolume comparison. This result clearly shows that the GA is
better for the dynamism, the MILP-Decomposition is better for the
response time, and the two heuristics are very close on the two
other criteria (energy & robustness).

5.2.4. Radar graph & multiobjective comparisons

This section illustrates the differences between results obtained
with the GA and the MILP-Decomposition approaches, through
several radar graphs which allow to see the optimization behavior
of each approach on the four QoS metrics chosen. These radars
graphs are similar to a standard XY graph, except they allow to
represent optimization quality of the four metrics. The response
time is represented on the positive side of the X axis, the energy
on the positive side of the Y axis, the robustness on the negative
side of the X axis and the dynamism on the negative side of the
Y axis. In favor of the readability, each metric value has been
standardized (using the minimum and the maximum of each
instance for each configuration) leading to have values between
0 and 1. The solutions, of the two heuristics, that composed each
radar graph are the Non-Dominated (ND) solutions obtained for
each instance. Each solution is a quadrilateral having vertices on
the graph axes. This last analysis phase yields of 50 radar graphs,
with a number of ND solutions which varies between 3 and 13. In
order to not have toomuch plans in each figure, the instances with
the lowest number of ND solutions, of different configurations,
have been chosen.

This last analysis allows to see more precisely how the results
of an instance are composed. In each graph ND solutions of the GA
and the MILP-Decomposition are shown. It is noteworthy that the
GA gives a set of solutions (for one instance)which are very close in
terms of optimization quality. Indeed the behavior of aGA is known
to give good trade-off solutions, whether the number of generation
is enough large, despite its intrinsic random process. The MILP-
Decomposition gives solutions which can be more extreme (for
the same instance) while being a good optimization trade-off. The
plans (MILP0, MILP1 and MILP2) of Fig. 10(c) well illustrate this
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Table 6
Objective values of Non-Dominated solutions (Config 110/400, Instance 0).

Metrics Response time (s) Energy (Wh) Robustness ⊘ Dynamism (Free MILPS)

MILP

130.8 591.8 3.6 392

109 632.4 3.6 327

109 624.7 3.6 285

GA

123.7 540.3 3.6 403

129.7 547.3 3.6 424

123.7 540.7 3.6 414

122.5 540.8 3.6 414

120.4 541.6 3.6 408

(a) Number of times GA or MILP are the best for each metric. (b) Number of times GA or MILP are the best for each problem size.

(c) Number of times GA or MILP are the best on each instance.

Fig. 9. Histograms related to the lexicographic analysis.

(a) ND solutions of configuration 5_15, instance 1. (b) ND solutions of configuration 55_200, instance 3. (c) ND solutions of configuration 110_400, instance

5.

Fig. 10. Illustrations of ND solutions through three radar graphs on instances 5_15, 55_200 and 110_400.
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Table 7
Example of lexicographic order comparison.

Order Instance 5

5_15 25_90 55_200 80_300 110_400

1234 GA GA MILP MILP MILP

1243 GA GA MILP MILP MILP

1324 GA GA MILP MILP MILP

1342 GA GA MILP MILP MILP

1423 GA GA MILP MILP MILP

1432 GA GA MILP MILP MILP

2134 MILP MILP MILP GA MILP

2143 MILP MILP MILP GA MILP

2314 MILP MILP MILP GA MILP

2341 MILP MILP MILP GA MILP

2413 MILP MILP MILP GA MILP

2431 MILP MILP MILP GA MILP

3124 GA GA MILP MILP MILP

3142 GA GA MILP MILP MILP

3214 MILP MILP MILP GA MILP

3241 MILP MILP MILP GA MILP

3412 MILP MILP GA GA GA

3421 MILP MILP GA GA GA

4123 MILP MILP GA GA GA

4132 MILP MILP GA GA GA

4213 MILP MILP GA GA GA

4231 MILP MILP GA GA GA

4312 MILP MILP GA GA GA

4321 MILP MILP GA GA GA

observation. The solution MILP1 gives an interesting result for
the response time, the solution MILP2 is the best for the energy,
but they both do not give interesting result concerning the other
objectives, respectively. The solution MILP0 is the one that gives
the better trade-off with a robustness optimization very closed to
1, the best response time and the dynamism approximately equal
to 0.6. Results of this biggest configuration problem (110_400),
clearly show the difficulty for the MILP-Decomposition method to
give solutions with a fairly trade-off between the four objectives.
Indeed, the different ND solutions can be the best simultaneously
up to three metrics while giving worst optimization for the fourth
one. The MILP ND solutions of the configuration 55_200, shown
on Fig. 10(b), represent a mix of interesting trade-off between the
four metrics, and solutions with the same optimization disparity
as in Fig. 10(c). The MILP0, MILP2 and MILP3 ND solutions are
very good better than or equal to the GA on the energy, response-
time and robustness. The two other MILP ND solutions do not
give interesting trade-off, but are clearly the best on the energy
objective. The last figure (Fig. 10(a)) is composed of three GA

ND solutions and two of the MILP-Decomposition. This kind of
situation, on a small instance (here 5VM/15PM) allows to see that
when the GA finds several non-optimal solution but very close to
it, while the MILP is able to give solutions which are very close to
the GA on the four objectives.

Table 8 contains the results of a scoring process, of both
heuristics, related to different set of coefficient weights applied to
the metrics. The score given to each method has been computed
using the real result values of the ND solution of the each instance.
Then, the average (column AVG) of these scores are kept. Also
the minimum and maximum scores are shown in the columns
MIN and MAX, respectively. The computation of the score is done
with standardized metric values (using the [min;max]) range of
a whole configuration. The standardization applied leads to have
values between 0 and 1 (1 is the best). Then, for a ND solution,
the standardized metric values are multiplied by the weights and
finally multiply by 100 to obtain a score between 0 and 100
related to each weight combination. The more the score is closed
to 100 the better. As we can see in the Table 8, 19 different
weight combinations have been defined. The first four ones
represents a mono-objective optimization and the fifth represents
a fair multiobjective optimization. The values of the 14 other
combinations have been chosen in order to represent different
kinds of optimization which could represent the needs of a Cloud
provider. Indeed, these combinations mix the four objectives with
various weights. The last study lead to have five tables (related to
the five configurations) but only one is displayed here.

5.2.5. MILP/GA pros and cons

The proposed extended results comparisons have been done
in order to have a large and rich overview of the GA and MILP-
Decomposition behaviors. One of the main challenges of this
work was to propose a heuristic, based on a MILP approach, with
the intent to obtain interesting result in terms of multiobjective
optimization dedicated to a Cloud environment. It is well known
that a genetic algorithm is very efficient in terms of convergence
rates and solution times. The strength of a MILP-Decomposition
is to be able to give optimal intermediate optimization. Despite
the decomposition of the objectives optimization, the combination
of these phases can have disadvantage compared to the GA
for the above given reasons. As the problem studied in this
article has complex non-linear objectives, it is understandable
that the MILP-Decomposition is not good as the GA in terms of
solution time. Moreover, it was quite tricky to anticipate which

Table 8
Optimization average, min and max score: Config 110_400.

Coeff weights GA MILP

RT E ROB DYN MIN AVG MAX MIN AVG MAX

1 0 0 0 4.0 56.5 71.0 0 97.8 100.0

0 1 0 0 31.0 56.7 65.0 0 40.5 100.0

0 0 1 0 100.0 100.0 100.0 100.0 100.0 100.0

0 0 0 1 51.0 78.9 100.0 0 65.8 81.0

0.25 0.25 0.25 0.25 49.2 70.6 79.2 35.2 61.7 69.2

0.7 0.1 0.1 0.1 22.2 62.1 73.3 14.4 83.2 87.7

0.1 0.7 0.1 0.1 38.9 61.8 69.1 15.7 45.0 84.2

0.1 0.1 0.7 0.1 79.7 88.2 91.7 74.1 84.7 87.7

0.1 0.1 0.1 0.7 52.7 73.0 88.3 16.3 58.4 70.0

0.4 0.4 0.1 0.1 32.3 61.4 69.4 15.4 58.5 64.3

0.4 0.1 0.4 0.1 51.0 75.1 82.0 44.4 83.9 87.7

0.4 0.1 0.1 0.4 37.8 66.7 78.8 20.4 64.1 74.2

0.1 0.4 0.4 0.1 59.3 74.9 79.7 45.4 64.1 84.2

0.1 0.4 0.1 0.4 45.8 66.6 77.9 22.5 49.3 65.3

0.1 0.1 0.4 0.4 66.2 80.1 89.9 46.0 68.8 75.7

0.3 0.3 0.3 0.1 48.1 70.4 76.8 35.3 67.1 72.1

0.3 0.3 0.1 0.3 39.1 64.7 75.1 22.3 54.1 63.1

0.3 0.1 0.3 0.3 51.8 73.8 83.1 38.3 70.9 78.7

0.1 0.3 0.3 0.3 57.1 73.8 82.5 40.3 59.5 71.6
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objective will be the most difficult to optimize. The elaboration
of the MILP-Decomposition is the result of numerous experiments
and improvements phases to increasingly raise a good overall
optimization. There is a clear different behavior of the MILP-
Decomposition and the GA in terms of the obtained trade-offs
between the four objectives. In our setting, theMILP has the ability
to optimize one objective individually (especially response time
and energy) but may have difficulties in obtaining a smart trade-
off solution. This allowed to better understand the role and the
intrinsic properties of each Cloud QoS metric used.

6. Conclusions & perspectives

This article proposed a Cloud quality of service multiobjective
optimization, using two different optimization methods. As the
considered Cloud virtual machine allocation problem has a huge
complexity, even higher in this article due to the use of the DVFS
and the virtual machine reconfiguration process, the exact Mixed-
Integer Linear Program cannot be used on the tested instances.
Thus, an alternative MILP-Based Decomposition, which iteratively
solves sub-problems in order to give the best possible solution
for the global problem, has been presented. The comparison with
the GA allowed to highlight weaknesses and strengths of both
approaches. Also, the MILP-Decomposition has given interesting
informations about the complexity to solve the different sub-
problems and also about the optimization complexity of the Cloud
QoS metrics analyzed.

Another aspect of the results analyzes has been the comparison
of these two approaches, first using the ‘‘Hypervolume indicator’’
which allows to ignore how these methods optimize, normalize
and compute their solutions. It provides an aggregate view of
the quality of the solutions from a multiobjective aspect. Using
this hypervolume value, another interesting phase study was to
highlight how the heuristic proposed through the decomposition
of the MILP has been improved with the calibration of two
input parameters: the CPLEX TimeOut value, and the number of
iterations executed. This study showed the impact of these two
input parameters, and the importance to find the right values
before comparing thisMILP-Decompositionwith theGA. It allowed
to decrease the solution time of the MILP-Decomposition while
keeping solutions quality very close or equal to the solutions
obtainedwith a longer solution time. The GAmost often dominates
the MILP approach for the hypervolume criterion.

Then, the lexicographic order gave a very different point of view
of the results obtained as it allows to compare the two heuristics
through the optimization quality of each QoS objective. This
comparison approach has been chosen to propose an alternative
view of the whole the ten instances of each five problem sizes.
The analysis of the 24 orders have allowed to show different
characteristics of the two heuristics and mainly to highlight their
behavior and their global performance on eachQoSmetric (Fig. 9(a)
and (c)). This allowed to draw the conclusion that MILP is better
when priority is given to the response time, while the GA is better
when priority is given to dynamism.

The last method used to analyze the results allows to have
an overview of the whole Non-Dominated solutions of the two
heuristics. Indeed, this analysis uses radar graphs, allowing to show
the optimization quality for each metric, which was not possible
only with the Hypervolume and the lexicographic comparisons.
Finally, in order to be closer to the reality of QoS objectives
trade-off that a Cloud provider would want to have, the last
table proposes 19 different combinations of coefficient weights.
Thus, it gives an overview of the optimization behavior of both
heuristics, and also the correlation or the antagonism between the
metrics. As explained in the introduction, one of the challenges
of this article was to develop an heuristic based on a MILP and

Table 9
Parameters.

Notation Description

Sets

P Set of PM

V Set of VM

F Set of PM available frequencies

T Set of PM types

L Discretized set of VM CPU reconfiguration values

P Fixed set of switched on PM (in the decomposition)

V (p) Fixed set of VM allocated to PM p (in the decomposition)

Physical machine

Cp PM maximum CPU capacity

Mp PM Memory capacity

πf PM CPU capacity decrease rate when assigned frequency f

ξ(p) ∈ T PM type

P
f

ξ(p),min PM Minimum power for a frequency f

P
f

ξ(p),max PM Maximum power for a frequency f

Tp Upper bound on the PM response time

nξ Number of type ξ PM

nξ Enforced switched on PM of type ξ (in the decomposition)

ρp Fixed reconfiguration rate for all VM on p (in the decomposition)

f p PM fixed CPU frequency (in the decomposition)

tp PM fixed response time (in the decomposition)

Virtual machine

cv VM CPU capacity requirement

τv VM’s number of instructions to execute

rv VM CPU capacity

mv VM Memory capacity

R Minimum decrease rate value (ρv)

αl ∈ L lth VM discretized CPU reconfiguration value

Objective weights

wEN Energy objective weight

wTI Response time objective weight

wRO Robustness objective weight

wDY Dynamism objective weight

then to better understand how a multi-criteria approach, focusing
on the optimization, could be interesting in a Cloud Computing
context. The selectedQoS objectives, the experiments and analyzes
proposed in this article result on different conclusions and trade-
off given by the GA and the MILP-Decomposition.

Future work concerns both applicative and physical areas. It
includes the extension of the input parameters. This can concern
the jobs running on the virtual machines which could have
different quality of service needs. Moreover, each job can be
associated to a type which defines its priority or whether a job can
be delayed or stopped for a certain period of time. To implement
these new features and also to be able to deal with larger size of
instances, a detailed analysis of the scalability of both approaches
will be performed. Another perspective is to take into account
different kind of energy sources. Green and renewable energy
sources could be considered, each with their own productivity
rate. The management of these sources will lead to interesting
researches with the intention of increasing the use of clean energy
and improve the manner of how to use them as they could have a
limited lifetime.
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Table 10
Variables.

Notation Description

E Total energy consumption

Ep Energy consumption of PM p

tmax Maximum response time

Rob Robustness value

Dyn Dynamism value

xvp Binary assignment variable of VM v to PM p

ypf Binary assignment variable of frequency f to PM p

ρv Decrease rate applied on VM v

tp Response time of PM p

zp Binary switched on indicator of PM p

Pp Power of PM p

Rvp Percentage of CPU capacity used by VM v on PM p

tv Time needed to complete VM v

zpl Binary assignment variable of lth reconfiguration to PM p

wpvl Binary assignment variable of lth reconfiguration of VM v on PM p (product zplxvp)

epl Response time of PM p with the lth reconfiguration (product zpltp)

γvpf Binary assignment variable of frequency f to PM p which runs VM v (product xvpypf )

θpf Response time of PM p with frequency f (product ypf tp)
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