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Large-Scale Feature Selection With Gaussian

Mixture Models for the Classification of High

Dimensional Remote Sensing Images
Adrien Lagrange, Student Member, IEEE, Mathieu Fauvel, Senior Member, IEEE, and Manuel Grizonnet

Abstract—A large-scale feature selection wrapper is discussed
for the classification of high dimensional remote sensing. An effi-
cient implementation is proposed based on intrinsic properties of
Gaussian mixtures models and block matrix. The criterion func-
tion is split into two parts : one that is updated to test each feature
and one that needs to be updated only once per feature selection.
This split saved a lot of computation for each test. The algorithm
is implemented in C++ and integrated into the Orfeo Toolbox. It
has been compared to other classification algorithms on two high
dimension remote sensing images. Results show that the approach
provides good classification accuracies with low computation time.

Index Terms—Fast computing, feature selection, gaussian mix-
ture model, hyperspectral imaging, remote sensing.

I. INTRODUCTION

W
ITH the increasing number of remote sensing missions,

the quantity of available Earth observation data for a

given landscape becomes larger and larger. Satellite missions

produce a huge amount of data on a regular (daily) basis.

From 2018, the EnMAP (Environmental Mapping and Anal-

ysis Program) satellites managed by the German space agency

will produce images with 244 spectral bands, a spatial resolu-

tion of 30 × 30 m per pixel and with a frequency of revisit

of 4 days [1]. The Hyperspectral Infrared Imager (HyspIRI)

of NASA will also deliver images with 212 spectral bands.

Additionally to hyperspectral data, the amount of available hy-

pertemporal data increases a lot. For instance, the European

satellites Sentinel-2 were launched recently and 2 Terabytes of

data will be released every day [2]. The Landsat open archive

(http://landsat.usgs.gov/products_data_at_no_charge.php) has
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also released thousands of images. Such high volume of Earth

observation data provides accurate information of land state and

functions, and helps to improve the understanding of the planet

[3]. However, processing such data is more and more challeng-

ing because of statistical and computational issues.

In the spectral or temporal domain, a pixel is represented

by a vector for which each component corresponds to a spec-

tral/temporal measurement. The size of the vector is therefore

the number of spectral or temporal measurements. For hyper-

spectral images, this number is typically about several hundreds

while for the Sentinel-2 multitemporal images, the number of

spectro-temporal measurement for a given year is approximately

one thousand. When working in high dimensional spaces, sta-

tistical methods made for low or moderate dimensional spaces

do not adapt well. For instance, the rate of convergence of the

statistical estimation decreases when the dimension grows while

jointly the number of parameters to estimate increases, making

the estimation of the model parameters very difficult [4]. Con-

sequently, with a limited training set, beyond a certain limit,

the classification accuracy actually decreases as the number of

features increases [5]. For the purpose of classification, these

problems are related to the curse of dimensionality [4]. This is

a major drawback in many remote sensing applications since it

is difficult to collect a large and accurate ground-truth. An in-

tensive work has been performed in the remote sensing commu-

nity to build accurate classifiers for high dimensional images.

Bayesian models [6], feature extraction and feature reduction

techniques [6], [7], random forest [8], neural networks [9] and

kernel methods [10] have been investigated for the classification

of such images.

The volume of the data is increasing dramatically with respect

to the number of measurement per pixel. The data volume of an

hyperspectral image is typically several hundreds of Gigabytes

per acquisition (≈300 km2). Multitemporal data are now avail-

able freely from internet stream (see for instance the Copernicus

data hub https://cophub.copernicus.eu/). This very large volume

of data requires specific computing infrastructure. High perfor-

mance computing is actually investigated by the remote sensing

community [11], [12]. Main issues are related to the use of

parallel approaches (multi-core, GPU, clusters) to improve the

processing time, and to the use of streaming techniques when

data does not fit in memory. One popular open source soft-

ware solution is the Orfeo Toolbox, developed by the French



Space Agency (CNES) [13]. Streaming and parallel computing

are conveniently proposed to users/developers through several

“ready to use” modules.

A method to reduce both statistical and computational issues

is to perform a reduction of the dimension. In fact, with the curse

of dimensionality comes the blessing of the dimensionality [14]:

high dimensional data spaces exhibit interesting properties

for classification purpose. In particular, it is possible to get

a parsimonious representation of the data while maintaining

or increasing the classification accuracy [15]. For instance, in

land-cover classification, given a set of spatial, temporal and

spectral features, it is possible to extract those which are the

most discriminant for the purpose of classification [16]. In

hyperspectral data, from the hundreds of available spectral chan-

nels, it is possible to reduce the number of channels to make the

processing more efficient in terms of statistical complexity and

computational load. In short, by reducing the dimension, better

classification results are expected with a reduced computational

load.

There are two main strategies to reduce dimension [17, Ch. 1]:

feature extraction and feature selection. Feature extraction

means reformulate and summarize the information by creat-

ing new features in combining the existing ones, it is some-

times referred to as feature construction. Linear combination of

the initial features can be extracted using Principal Component

Analysis (PCA) [15] or Independent Component Analysis [18].

Supervised extraction method has also been investigated such

as Fischer discriminant analysis and decision boundary feature

extraction [6]. To the contrary, feature selection extracts a subset

of existing features identified as the most relevant by a given

criterion. This subset has the additional advantage to be much

more understandable for the end-user than those constructed by

a (non-)linear combination.

Feature selection/extraction algorithms can be divided into

three classes. The first class is called filter methods. They se-

lect features independently of the classifier. Features are ranked

according to some statistical measures, e.g., correlation or in-

dependence. For example, PCA is a typical unsupervised filter

method. Bruzzone et al.[19] develop a supervised filter method

based on Jeffries-Matusita distance to maximize the separabil-

ity of class distribution. Correlation between bands has been

explored for feature selection in hyperspectral data [20]. In gen-

eral, these methods are fast and do not depend on any classifier.

But they do not take into account the properties of the chosen

classifier and do not optimize directly the classification accuracy.

The second class are known as wrapper methods. They search

for the best subset of variables for a given learning model. Since

exhaustive searches are too expensive in terms of processing

time, several sub-optimal search strategies have been designed,

mainly iterative forward or backward search [21], [22] or a com-

bination of both [23]. The advantage of such methods compared

to filter methods is that they are dedicated to a particular model

and to a particular learning problem. On the other hand, as they

require the training of multiple models to test various set of

variables, they are more time consuming.

The third class corresponds to the embedded methods. They

do not separate the feature selection process from the learning

algorithm and allow interactions between the two processes. A

popular embedded method is the Random Forest. Embedded

methods also exist for other models, e.g. SVM [24]–[26].

Despite a large diversity of methods, feature selection algo-

rithms usually do not scale well with the number of pixels to be

processed [27]. The training computational load is too impor-

tant to compensate the reduced prediction computational load.

Hence, feature selection is not widely used in operational situ-

ations. However, methods based on Gaussian Mixture Models

(GMM) have several interesting properties that make them suit-

able for feature selection in the context of large amount of data.

By taking advantage of their intrinsic properties, it is possible to

increase the computational efficiency with respect to standard

implementation.

The contribution of this paper is a extension of the forward

feature selection method proposed in [27]. A smart implementa-

tion of the feature selection update rules are presented in order

to perform efficiently on large amount of data. The rules use

on linear algebra on block matrices applied to the covariance

matrix of the conditional class density function. Furthermore,

a floating version of the algorithm is proposed and evaluated.

Several correctness of fit criteria are proposed to handle unbal-

anced training sets, extending the conventional overall accuracy

measure. Finally, the developed algorithm is made available

to the scientific community as a remote module of the Orfeo

Toolbox [13].

The remaining of the article is organized as follows.

Section II presents GMM classifiers and problems related to

high-dimensional feature spaces. The feature selection methods

are detailed in Section III. Then, an efficient implementation

is presented in Section IV. Experimental results on two real

high dimensional datasets are given Section VI. Conclusion and

perspectives conclude the paper in Section VII.

II. GAUSSIAN MIXTURE MODELS IN HIGH

DIMENSIONAL SPACES

The following notations are used in the remaining. The train-

ing set is denoted by S = {xi , yi}n
i=1 where xi ∈ R

d is the

vector of features of the ith sample, d the number of spec-

tral/temporal features, yi = 1, ..., C the associated label, C the

total number of classes, n the number of samples and nc the

number of samples of class c.

A. Gaussian Mixture Models

For mixture models, it is assumed that a given sample x is the

realization of a random vector which distribution is a mixture

(convex combination) of several class conditioned distributions

[28]:

p(x) =

C∑

c=1

πcfc(x|θ), (1)

where πc is the prior, i.e., the proportion of class c and fc a

parametric density function controlled by θ.

Among the possible parametric models, the Gaussian one is

the most used [14]. It assumes that each fc is, conditionally to



Fig. 1. Number of parameters ηc per class in function of dimension
d: ηc = d(d + 3)/2 + 1.

c, a Gaussian distribution of parameters µc and Σc :

fc(x|µc ,Σc) =
1

(2π)
d
2 |Σc |

1
2

× exp

(

−1

2
(x − µc)

t
Σ

−1
c (x − µc)

)

. (2)

It is referred to as Gaussian mixture model (GMM). In a

supervised learning framework, the class parameters µc , Σc

and the prior πc are usually estimated through the conventional

unbiased empirical estimators:

π̂c =
nc

n
, (3)

µ̂c =
1

nc

∑

{i|y i =c}
xi , (4)

Σ̂c =
1

(nc − 1)

∑

{i|y i =c}
(xi − µc)(xi − µc)

t . (5)

To predict the class of a new unseen sample, the maximum a

posteriori rule is used:

x belongs to c ⇔ c = arg max
c∈C

p(c)p(x|c).

Under the GMM, and identifying p(c) as πc and p(x|c) as

fc(x|θ) and by taking the log, the decision function is obtained

Qc(x) = 2 log (p(c)p(x|c))
= −(x − µc)

t
Σ

−1
c (x − µc)

− log(|Σc |) + 2 log(πc) − d log(2π). (6)

B. Curse of Dimensionality in GMM

The computation of (6) requires the inversion of the covari-

ance matrix and the computation of the logarithm of the deter-

minant. The estimation of these terms suffers from the curse

of dimensionality[14]. In practice, the number of parameters ηc

to estimate for each class increases quadratically with respect

to the number of features, as illustrated in Fig. 1. Hence, if

the number of observation nc is small compared to the num-

ber of parameters ηc , the estimated covariance matrix is badly

conditioned and thus the computation of its inverse and its de-

terminant would be unstable. The worst situation is nc < ηc

which leads to a singular covariance matrix. Unfortunately, this

situation happens regularly in remote sensing. For instance in

hyperspectral image classification, very few labeled samples are

usually available because of the difficulty and the cost to collect

ground-truth.

There are two major solutions to this problem. The first op-

tion is to stabilize the inversion of the covariance matrices. Some

methods investigate the use of constraints on the direct problem.

Reynolds et al. [29] proposed to use diagonal covariance matri-

ces. It is also possible to force the diagonal element to be higher

than a given value by maximizing the GMM likelihood [30].

Celeux and Govaert [31] suggest to use equality constraints be-

tween coefficients of the covariance matrix in a parsimonious

cluster-based GMM framework. Other papers propose to work

on the inverse problem. A classical method is to use a regular-

ization method as the well-known ridge regularization [32]. A

ridge regularization aims to stabilize the inversion by replacing

the covariance matrix Σc by Σc + τI where τ is a positive pa-

rameter and I the identity matrix. Jensen et al. [33] propose a

different approach using a sparsity approximation to inverse the

covariance matrix.

The second option is to reduce the dimension. Feature extrac-

tion/selection methods have been developed in order to reduce

the dimension with various approaches described in Section I.

In this study, this latter option is explored and a feature se-

lection method named sequential forward features selection is

presented.

III. SEQUENTIAL FORWARD FEATURES SELECTION

The feature selection method proposed in this work is a

wrapper method associated to GMM models. Two elements

are needed to set up a wrapper method:

1) A function that ranks the features according to some good

classification or class separability criterion,

2) A search strategy to optimize the function.

Section III-A describes the various criteria used in this work

and two search strategies are discussed in Section III-B.

A. Criterion Function

The criterion evaluates how a given model built with a sub-

set of features performs for the classification task. It can be an

estimation of the correct classification or a measure of separa-

bility/similarity between class distributions. The former are in

general more demanding in terms of processing time than the

later.

1) Measures of Correct Classification: A measure of correct

classification is based on an error matrix M , or confusion ma-

trix [34, Ch. 4]. The confusion matrix allows the computation of

several global and per-class indices related to the classification

accuracy [34]. Three global criteria were used in this work:

a) The overall accuracy (OA) is the rate of the number of

samples with the correct predicted label over the total

number of samples [34]. This metric is easy to interpret

but is biased in the case of unbalanced classes.



b) The Cohen’s kappa (K) is a statistic which measures the

probability of agreement between predictions and ground-

truth [34].

c) The mean F1 score (F1mean) is the average of the F1 score

for each class and the F1 score is the harmonic mean of

the precision (number of True Positive over True Positive

plus False Positive) and the recall (number of True Positive

over True Positive plus False Negative) [35].

High values of theses indices correspond to an accurate clas-

sification.

These indices are estimated from the training set by a ncv -

cross-validation (ncv -CV) [36]. To compute the ncv -CV, a

subset is removed from S and the GMM is learned with the

remaining training samples. A test error is computed with the

removed training samples used as validation samples. The

process is iterated ncv times and the estimated classification

rate is computed as the mean test error over the ncv subsets of S.

2) Similarity Between Distributions: The similarity be-

tween two distributions can be quantified using divergence

measures [37]. Contrary to measures of correct classification,

divergences are computed directly on the trained model, with no

need of cross-validation estimation. Two particular divergences

are used in this work: the Kullback-Leibler divergence and the

Jeffries-Matusita distance. The advantage of these divergences

is that they have an explicit expression in the case of Gaussian

models. The simplification allows to get rid of any integration

calculations which is a major problem when dealing with

high-dimensional data.

The Kullback-Leibler divergence (KL divergence) measures

the amount of information lost when the first distribution is ap-

proximated by the second one [38]. It can be explicitly computed

in the case of Gaussian distributions:

KLcc ′ =
1

2

{

Tr(Σ−1
c Σc ′) + (µc − µc ′)

t
Σ

−1
c (µc − µc ′) − d

+ log

( |Σc |
|Σc ′ |

)}

, (7)

where Tr is the trace operator and d the dimension of the distri-

bution.

The KL divergence is not symmetric, i.e., KLcc ′ 6= KLc ′c . A

symmetrical version is used to compute the criterion function:

SKLcc ′ = KLcc ′ + KLc ′c

=
1

2

{

Tr(Σ−1
c Σc ′ + Σ

−1
c ′ Σc)

+ (µc − µc ′)
t(Σ−1

c + Σ
−1
c ′ )(µc − µc ′) − 2d

}

.

(8)

The extension to the multiclass problem is done by taking the

weighted mean of the KL divergences computed on all pair of

classes [19]:

CSK L =
C∑

c=1

C∑

c ′=c+1

πcπc ′SKLcc ′ . (9)

TABLE I
SUMMARY OF THE DIFFERENT CRITERION FUNCTIONS

Criterion Type Complexity

Overall accuracy Accuracy High

Cohen’s kappa Accuracy High

F1 mean Accuracy High

Kullback-Leibler divergences Divergence Low

Jeffries-Matusita distance Divergence Low

The Bhattacharyya distance is defined in the case of Gaussian

model as

Bcc ′ =
1

8
(µc − µc ′)

t

(
Σc + Σc ′

2

)−1

(µc − µc ′)

+
1

2
log

(

|Σc + Σc ′ |
√

|Σc ||Σc ′ |

)

. (10)

The Jeffries-Matusita distance is a measure based on the Bhat-

tacharyya distance. It saturates when the separability between

the two distributions increases [39]. The JM distance is defined

as

JM cc ′ =
√

2{1 − exp(−Bcc ′)}. (11)

Similar to the KL divergence, a weighted mean of the distance

between two classes is computed to aggregate the measures in

a single value:

CJ M =
C∑

c=1

C∑

c ′=c+1

πcπc ′JM cc ′ . (12)

Table I summarizes the presented criterion functions and their

characteristics. In the following J denotes one criterion from

Table I.

B. Selection Method

Two sequential search algorithms have been implemented in

this work [17]: the sequential forward selection and the sequen-

tial floating forward. The later one is an extension of the former.

Both select features iteratively.

1) Sequential Forward Features Selection: The Sequential

Forward Selection (SFS) starts with an empty set of selected

features. At each step, the feature associated to the highest cri-

terion function J is added to the set. This feature is definitively

added to the pool of selected features and the algorithm stops

when a given number of variables maxVarNb has been reached.

The Algorithm 1 presents the process in details.

2) Sequential Floating Forward Feature Selection: The Se-

quential Floating Forward Selection (SFFS)[23] is based on two

algorithms: the SFS described above and the Sequential Back-

ward Selection (SBS). The SBS is the backward equivalent of

SFS. The difference is that it starts with every features in the

pool of selected features and tries at each step to remove the less

significant one in term of the given criterion function.

The SFFS works as the SFS but between each step of the

SFS algorithm, a backward selection is operated to identify the



Algorithm 1: Sequential Forward Features Selection.

Require: Ω, J, maxVarNb

1: Ω = ∅
2: F = {all variables fi}
3: while card(Ω) < maxV arNb do

4: for all fi ∈ F do

5: Ri = J({Ω + fi})
6: end for

7: j = arg maxi Ri

8: Ω = {Ω + fj}
9: F = F \ fj

10: end while

11: return Ω

less important feature. If the criterion value is higher than the

best value ever obtained with a set of same size, the identified

feature is picked out. The SBS step is repeated while removing

the less important feature leads to an increase of the criterion

value. Then SFS is called again. The algorithm stops when a

given number of features maxVarNb has been selected. The

Algorithm 2 provides details about the process.

This SFFS algorithm evaluates more solutions than the SFS

algorithm. The results are expected to be better but the trade-off

is an increased computational time which is dependent on the

complexity of the dataset.

IV. EFFICIENT IMPLEMENTATION

The most demanding part of the algorithm is the evaluation

of the criterion for all the remaining variables (see lines 5-7 in

Algorithm 1). Calculations are based on linear algebra, and the

numerical complexity is on average O(d3). Furthermore, for

the accuracy-type criterion the complexity is augmented by the

cross-validation procedure.

An efficient implementation of the criterion optimization is

detailed in the following. It is based on the symmetry property

of the covariance matrix and block inverse formula [40]. It is

shown that the criterion can be split into two parts: one that needs

to be computed for each tested variable, and one that needs to be

computed only once per selection step. For the cross-validation

part, updates rules are given to derive sub-models without the

necessity to learn a GMM models for each fold.

A. Statistical Update Rules

1) Update for Cross Validation: Based on [27], a method

to accelerate the ncv -fold cross-validation process in the case

of criterion functions based on correct classification measures

was implemented. The idea is to estimate the GMM with the

whole training set once and then, instead of training models on

(ncv − 1) folds, parameters of the complete model are used to

derive those of sub-models, thus reducing the whole complexity.

Proposition 1 (Mean update for cross-validation):

µ̂
n c −νc
c =

ncµ̂
n c
c − νcµ̂

νc
c

nc − νc

Algorithm 2: Sequential Floating Forward Features

Selection.

Require: J, maxVarNb

1: Ω =

maxV arN b
︷ ︸︸ ︷

(∅, ..., ∅)
2: F = {all variables fi}
3: k = 0
4: while k < maxVarNb do

5: for all fi ∈ F do

6: Ri = J({Ωk + fi})
7: end for

8: j = arg maxi Ri

9: k = k + 1
10: if Rj ≥ J(Ωk ) then

11: Ωk = {Ωk−1 + fj}
12: flag = 1
13: while k > 2 and flag = 1 do

14: for all fi ∈ Ωk do

15: Ri = J({Ωk \ fi})
16: end for

17: j = arg maxi Ri

18: if Rj > J(Ωk−1) then

19: Ωk−1 = {Ωk \ fj}
20: k = k − 1
21: else

22: flag = 0
23: end if

24: end while

25: end if

26: end while

27: return ΩmaxVarNb

Proposition 2 (Covariance matrix update cross-validation):

Σ̂
n c −νc

c =
1

nc − νc − 1

{

(nc − 1)Σ̂
n c

c − (νc − 1)Σ̂
νc

c

− ncνc

(nc − νc)
(µ̂νc

c − µ̂
n c
c )(µ̂νc

c − µ̂
n c
c )t

}

where nc is the number of samples of class c, νc is the number

of samples of class c removed from the initial set, exponents on

Σc and µc denotes the set of samples used to compute them.

2) Criterion Function Computation: At iteration k, depend-

ing on the criterion, three terms have to be computed: the inverse

of the covariance matrix, the logarithm of the determinant of the

covariance matrix and the quadratic term in (6). However, all

these terms have already been computed for iteration (k − 1).
By using the positive definiteness of the the covariance matrix

and block formulae [41, Ch. 9.2], it is possible to factorize these

terms at iteration k.

In the remaining of the paper, Σ(k−1)
c denotes the covariance

matrix of the (k − 1)th iteration, i.e., the covariance matrix of

the selected features and Σ
(k)
c denotes a covariance matrix at

the kth iteration, i.e., the covariance matrix augmented by the

feature xk . Then, since Σ
(k)
c is a positive definite symmetric



matrix, the covariance matrix can be written as

Σ
(k)
c =

[
Σ

(k−1)
c uc

u
t
c σ

(k)
c

]

, (13)

where σ
(k)
c is the variance of xc , uc is the kth column of the ma-

trix without the diagonal element, i.e., uc(i) = Σ
(k)
c (i, k) with

i ∈ [1, k − 1]. Using block matrix inverse formulae, the inverse

of the covariance matrix is given by the following proposition.

Proposition 3 (Forward update rule for the inverse of the

covariance matrix):

(Σ(k)
c )−1 =





Ac vc

v
t
c

1

αc



 (14)

where Ac = (Σ(k−1)
c )−1 + 1

α c
(Σ(k−1)

c )−1
ucu

t
c(Σ

(k−1)
c )−1 ,

vc = − 1
α c

(Σ(k−1)
c )−1

uc and αc = σ
(k)
c − u

t
c(Σ

(k−1)
c )−1

uc .

This update formulae is used to obtain all the (Σ(k)
c )−1

corresponding to all the possible augmented set of a given

selection iteration. Similar update formulae can be written for

the backward step.

Using (13) and (14), it is possible to deduce the following

propositions (proof are given in Appendix A).

Proposition 4 (Update rule for the quadratical term):

(x(k))t(Σ(k)
c )−1

x
(k) = (x(k−1))t(Σ(k−1)

c )−1
x

(k−1)

︸ ︷︷ ︸

computed once per selection step

+ αc(
[
v

t
c

1
α c

]
x

(k))2

︸ ︷︷ ︸

computed for each augmented set

. (15)

Proposition 5 (Update rule for logdet):

log
(

|Σ(k)
c |
)

= log
(

|Σ(k−1)
c |

)

︸ ︷︷ ︸

computed once
per selection step

+ log αc
︸ ︷︷ ︸

computed for
each augmented set

. (16)

From these update rules, it is now possible to split each cri-

terion into two parts: one computed once per selection step and

one computed for each augmented set.

Proposition 6 (Decision function (6)):

Qc(x) = − (x(k−1) − µ
(k−1)
c )t(Σ(k−1)

c )−1(x(k−1) − µ
(k−1)
c )

︸ ︷︷ ︸

computed once per selection step

− log
(

|Σ(k−1)
c |

)

+ 2 log(πc) + k log(2π)
︸ ︷︷ ︸

computed once per selection step

− αc

([
v

t
c

1
α c

]
(x(k) − µ

(k)
c )
)2

− log αc

︸ ︷︷ ︸

computed for each augmented set

. (17)

Proposition 7 (Kullback-Leibler divergence (8)):

SKLcc ′ =
1

2

{

Tr
(

(Σ(k)
c )−1

Σ
(k)
c ′ + (Σ

(k)
c ′ )−1

Σ
(k)
c

)

︸ ︷︷ ︸

computed for each augmented set

+ α
([

v
t
c

1
α c

]
(µ(k)

c − µ
(k)
c ′ )
)2

︸ ︷︷ ︸

computed for each augmented set

+ α
([

v
t
c ′

1
α c ′

]

(µ(k)
c − µ

(k)
c ′ )
)2

− 2k
︸ ︷︷ ︸

computed for each augmented set

+
(

µ
(k−1)
c − µ

(k−1)
c ′

)t

(Σ(k−1)
c )−1

(

µ
(k−1)
c − µ

(k−1)
c ′

)

︸ ︷︷ ︸

computed once per selection step

+
(

µ
(k−1)
c − µ

(k−1)
c ′

)t

(Σ
(k−1)
c ′ )−1

(

µ
(k−1)
c − µ

(k−1)
c ′

)

︸ ︷︷ ︸

computed once per selection step

}

,

(18)

with (Σ(k)
c )−1 computed with Proposition 3.

Proposition 8 (Jeffries-Matusita distance (11)):

Bcc ′ =
1

4
(µ(k−1)

c − µ
(k−1)
c ′ )t(Σ̃

(k−1)
)−1(µ(k−1)

c − µ
(k−1)
c ′ )

︸ ︷︷ ︸

computed once per selection step

+
1

2
log




|Σ̃(k−1) |

√

|Σ(k−1)
c ||Σ(k−1)

c ′ |





︸ ︷︷ ︸

computed once per selection step

+
1

4
α̃(
[
ṽ

t 1
α̃

]
(µ(k)

c − µ
(k)
c ′ ))2 +

1

2
log

(
α̃√

αcαc ′

)

︸ ︷︷ ︸

computed for each augmented set

,

(19)

where Σ̃ = Σc + Σc ′ and α̃ and ṽ are defined as αc and vc but

using Σ̃ instead of Σc .

The Algorithm 3 illustrates the optimization of the Algo-

rithm 2 using these formulae.

B. Numerical Issues

For each iteration k, after the selection of optimal features

w.r.t the selected criterion, the inverses of the covariance matri-

ces and their log-determinant needs to be computed. However,

the lack of training samples or the highly correlated features

may induce a badly-conditioned matrix with very small, or even

negative, eigenvalues. Such values will degrade drastically the

estimation of the inverse and of the log-determinant, and so the

numerical stability.

To deal with this limitation, the choice has been made to

perform an eigenvalues decomposition of the covariance matrix

Σ
(k)
c :

Σ
(k)
c = P

(k)
c Λ

(k)
c (P(k)

c )t (20)



Algorithm 3: Sequential Floating Forward Features Selec-

tion with Updates.

Require: J, maxVarNb

1: Ω =

maxV arN b
︷ ︸︸ ︷

(∅, ..., ∅)
2: F = {all variables fi}
3: k = 0
4: while k < maxVarNb do

5: for all c ∈ {1, ..., C} do

6: Diagonalize Σ
(k−1)
c = PcΛcP

t
c

7: for all λc(i) do λc(i) = max(EPS FLT, λc(i))

8: Precompute (Σ(k−1)
c )−1 , (x(k−1) − µ

(k−1)
c )t

(Σ(k−1)
c )−1(x(k−1)−µ

(k−1)
c ) and log(|Σ(k−1)

c |)
using Propositions (3), (4) and (5)

9: end for

10: for all fi ∈ F do

11: for all c ∈ {1, ..., C} do

12: Compute update constant αc

13: αc = max(EPS FLT, αc)
14: end for

15: Ri = J({Ωk+fi}) using Equs. (17), (18) or (19)

16: end for

17: j = arg maxi Ri

18: k = k + 1
19: if Rj ≥ J(Ωk ) then

20: Ωk = {Ωk−1 + fj}
21: flag = 1
22: while k > 2 and flag = 1 do

23: for all c ∈ {1, ..., C} do

24: Diagonalize Σ
(k−1)
c = PcΛcP

t
c

25: for all λc(i) do λc(i) = max
(EPS FLT, λc(i))

26: Precompute (Σ(k−1)
c )−1 , (x(k−1)

−µ
(k−1)
c )t(Σ(k−1)

c )−1(x(k−1) − µ
(k−1)
c )

and log
(

|Σ(k−1)
c |

)

using Propositions

(3), (4) and (5)

27: end for

28: for all fi ∈ Ωk do

29: for all c ∈ {1, ..., C} do

30: Compute update constant αc

31: αc = max(EPS FLT, αc)
32: end for

33: Ri = J({Ωk\fi}) using (17), (18) or (19)

34: end for

35: j = arg maxi Ri

36: if Rj > J(Ωk−1) then

37: Ωk−1 = {Ωk \ fj}
38: k = k − 1
39: else

40: flag = 0
41: end if

42: end while

43: end if

44: end while

45: return ΩmaxVarNb

Fig. 2. OTB Module: The feature selection is done on the image hyper.tif

using the training set from reference.shp. The feature selection algorithm is
the forward search used with the Jeffries-Matusita criterion, 20 features are
extracted and the corresponding GMM model is saved in model.txt. Then the
whole image is classified using the model and the results is saved in the geotiff
ThematicMap.tif.

where Λ
(k)
c and P

(k)
c are the diagonal matrix of eigenvalues of

the covariance matrix and the orthonormal matrix of correspond-

ing eigenvectors, respectively. To prevent numerical instability,

non strictly positive eigenvalues are thresholded to a fixed value

EPS_FLT. In our implementation, EPS_FLT is set to the floating

machine precision.

Then, the inverse of the covariance matrix can be computed as

(Σ(k)
c )−1 = P

(k)
c (Λ̃

(k)

c )−1(P(k)
c )t (21)

and the log-determinant as

log
(

|Σ(k)
c |
)

=
d∑

i=1

log(λ̃(k)
c (i)), (22)

where the ∼ indicated thresholded values and λc(i) the ith

eigenvalue.

Same reasoning applied to the term α in the update rules:

it is also thresholded to EPS_FLT. Algorithm 3 details when

computational stability is enforced (lines 7, 13, 25 and 31).

C. Implementation

The proposed method has been implemented in C++ through

the Orfeo Toolbox (OTB) [13]. The Orfeo Toolbox is an open-

source library for remote sensing image processing, developed

by the French Space Agency (CNES). The feature selection

algorithm can be installed as a remote module, the source code

is freely available1.

Following OTB framework, two applications are available.

The first, called otbcli_TrainGMMSelectionApp, per-

forms a feature selection algorithm (SFS or SFFS) with the

one criterion given from Table I. The second, called otb-

cli_PredictGMMApp, generates the thematic maps accord-

ing to the learn model. The only technical limitation that the

training set must fit in the RAM of the computer. The classifica-

tion step is streamed and there is no limitation in term of image

size. The Fig. 2 shows a code excerpt to run the application.

V. DATASETS

Numerical experiments have been conducted on two different

datasets. The first one, called Aisa, is an airborne hyperspectral

dataset and the second, called Potsdam, is an very high resolution

multispectral airborne image.

1https://www.orfeo-toolbox.org/external-projects/



TABLE II
INFORMATION CLASSES FOR THE AISA DATASET

Class Number of samples

Winter wheat 136,524

Sunflower 61,517

Green fallow last year treatment 30,197

Alfalfa 17,626

Maize 18,278

Millet 7,199

Broadleaved forest 10,746

Meadow 23,283

Winter barley 2,799

Reed 4,222

Water course 4,773

Rape 26,566

Green fallow with shrub 9,272

Green fallow last year treated 3,426

Pasture 2,107

Oat 3,436

Fig. 3. Aisa dataset: (a) colored composition of the image (R: 634 nm, G:
519 nm, B: 477 nm), (b) ground-truth.

A. Aisa Dataset

The Aisa dataset has been acquired by the AISA Eagle sensor

during a flight campaign over Heves, Hungary. It contains 252

bands ranging from 395 to 975 nm. 16 classes have been defined

for a total of 361, 971 referenced pixels, Table II presents the

number of pixel per class. The Fig. 3 shows a colored composi-

tion of the image and the ground-truth.

B. Potsdam Dataset

This second dataset is built from a dataset of remote sensing

images distributed by the International Society for Photogram-

metry and Remote Sensing (ISPRS).2 The dataset is composed

of aerial images of the urban area of Potsdam. The area is di-

vided into 38 patches of 6000 × 6000 pixels with a resolution

2http://www2.isprs.org/commissions/comm3/wg4/2d-sem-label-
potsdam.html

Fig. 4. From top to bottom, true color composition, ground-truth and normal-
ized DSM of: (a) tile 5_11, (b) tile 5_12 and (c) tile 3_10.

TABLE III
INFORMATION CLASSES FOR THE THREE TILES OF THE POSTDAM DATASET

Number of samples per tile

Class 5_11 5_12 3_10

Clutter 1,078,611 812,038 1,890,467

Trees 4,493,295 2,132,368 8,780,245

Cars 900,076 1,101,541 434,615

Buildings 13,469,575 17,501,421 5,128,149

Low vegetation 4,718,219 3,210,596 11,428,326

Impervious surfaces 11,340,224 11,242,036 8,338,198

of 5 cm by pixel and 4 channels are available: Red, Blue, Green

and Infrared (RGBIR). A Digital Surface Model with the same

resolution is also provided and a so-called normalized DSM rep-

resenting the height above ground. The ground-truth for 24 tiles

are provided with 6 classes: Low vegetation, High vegetation,

Impervious surfaces, Buildings, Cars, Clutter. Three tiles have

been used in this work, they are displayed in Fig. 4. Table III

summarizes the number of samples of each class.

Conventionally, the following features are extracted using the

RGBIR images in order to increase the classification accuracy,

similarly to [26]:

1) Fifteen Radiometric indexes: NDVI, TNDVI, RVI, SAVI,

TSAVI, MSAVI, MSAVI2, GEMI, IPVI, NDWI2, NDTI,

RI, CI, BI, BI2 [42].

2) Morphological profile build on each band with a disk of

radius 5, 9, 13, 17, 21, 25, 29, 33, 37 and 41 (80 features)

[43];

3) Attribute profile build on each band with area as attribute

and 1000, 2000, 5000, 10000 and 15000 as thresholds (40

features) [44].



4) Attribute profile build on each band with diagonal of

bounding box as attribute and 100, 200, 500, 1000 and

20000 as thresholds (40 features) [44].

5) Textural features for each channel with neighborhood of

19 × 19 pixels: mean, standard deviation, range and en-

tropy (16 features) [42].

The normalized DSM and the raw RGBIR image are added

to these 191 features and then stacked to create a new im-

age with 196 bands. The resulting data cube is therefore high-

dimensional.

VI. EXPERIMENTAL RESULTS

A. Method

The aim of the experiments is to compare the proposed

method to standard classifiers used in operational land map pro-

duction [45]. A non-optimized previous version of the method

has been already compared to other selection methods in [27].

Hence, the primary objective is to assess the operational effi-

ciency and it is compared to other OTB classifiers used opera-

tionally through their command line applications.3

The following classifiers are tested:

1) A k-nearest-neighbors classifier (KNN) with OTB default

parameters (32 as number of neighbors).

2) A Random Forest classifier with parameters optimized by

grid search (200 trees, 40 as max depth, 50 as size of the

randomly selected subset of features at each tree node)

3) A GMM classifier with ridge regularization (GMM ridge)

with regularization constant optimized by grid search.

The GMM classifier is part of the external module described

in Section IV-C.

All these classifiers are compared with 3 configurations of

the proposed GMM classifier:

1) One with forward selection and JM distance as criterion

(GMM SFS JM);

2) One with forward selection and Cohen’s kappa as criterion

(GMM SFS kappa);

3) One with floating forward selection and JM distance as

criterion (GMM SFFS JM).

Other configurations have been investigated and performs ei-

ther equally or lower in terms of classification accuracy [46]. For

the sake of clarity, only the three aforementioned configurations

are discussed here and the results for all other configurations is

available in the supplementary material.

The training set has been created with an equal number of

samples for each class and additionally a spatial stratification

has been performed, i.e., each training sample belongs to a

spatial polygon that does not intersect spatially with any spatial

polygons used for the validation. Several size of training set

have been tested. For the Aisa dataset, experiments have been

conducted using 250, 500 and 1000 samples by class and for the

Potsdam dataset, 1000 and 50000 samples by class.

For SFS and SFFS selection, the number of variables to select

is set to 30 for the Aisa dataset and 60 for the Potsdam dataset.

After the selection procedure, the optimal number of extracted

3http://otbcb.readthedocs.io/en/latest/OTB-Applications.html

Fig. 5. Criterion evolution (kappa) in function of the number of selected
variables for first trial with Aisa dataset with 500 samples by class. Red vertical
line is the retained number of variables and black vertical line is the maximum
of the criterion.

variables is selected as follow. Rather than selecting the number

of variables corresponding to the highest value of the criterion,

the number of retained variables is set when the criterion stops

to increase significantly. It is found by computing the discrete

derivative of the criteria between two iterations and normaliz-

ing it by its maximum value. The number of selected features

corresponds to the last iteration before the value drops below

10−3 for all datasets. See Fig. 5 for an example.

The classification rate is presented using Cohen’s kappa but

scores computed with overall accuracy and mean of f1-score are

available in supplementary material. Processing time has been

evaluated on a desktop computer with 8Gb of RAM and Intel(R)

Core(TM) i5-3570 CPU @ 3.40 GHz × 4 processors.

B. Aisa Dataset

When creating training and validation sets, special care is

taken to assure that training samples are picked out from distinct

areas than test samples. The polygons of the reference are split

in smaller polygons and then 50% of the polygons are taken

randomly for training and the remaining 50% for validation.

An example of training and validation set is shown in Fig. 6.

From the training polygons, a given number of samples were

selected to build the training set, while all the pixels from the

validation polygons were used for the validation. Moreover 20

random trials were run with a different training set (different

polygons). Table IV presents the results of the experiment with

mean and standard deviation of the Kappa coefficient over the

20 trials and Table V the corresponding processing time. Bold

values corresponds to best results. In Table IV, when several

bold scores appears for the same experiment, it means that the

scores has been assessed as equivalent with a Wilcoxon rank-

sum test [46]. Additionally, Table V summarizes the mean of

the number of selected variables for each variation of the GMM

classifier with selection.

The results show that, on this dataset, GMM classifiers with

feature selection get the best classification rate. Among the three

variations of the selection algorithm, none appears to perform

better than the others. Using kappa or Jeffries-Matusita distance

as criterion is equal and using SFFS does not give any advantage.



Fig. 6. Aisa dataset: (a) training polygons of first trial, (b) test polygons of
first trial.

TABLE IV
AVERAGE CLASSIFICATION ACCURACY 20 TRIALS (STANDARD DEVIATION

IN PARENTHESIS)

Cohen’s kappa

# samples by class 250 500 1000

GMM SFS kappa 0.678 (0.029) 0.687 (0.029) 0.699 (0.028)

GMM SFS JM 0.685 (0.030) 0.689 (0.030) 0.701 (0.029)

GMM SFFS JM 0.685 (0.030) 0.689 (0.030) 0.701 (0.029)

GMM ridge 0.611 (0.040) 0.620 (0.036) 0.642 (0.034)

KNN 0.551 (0.035) 0.563 (0.033) 0.574 (0.030)

Random Forest 0.645 (0.026) 0.673 (0.023) 0.693 (0.023)

TABLE V
MEAN PROCESSING TIME FOR TRAINING AND CLASSIFICATION FOR RESULTS IN

TABLE IV

Training time (s) Classification time (s) # of selected features

# samples by class 250 500 1000 250 500 1000 250 500 1000

GMM SFS kappa 257 496 955 5.2 5.2 5.5 11.95 12 12.05

GMM SFS JM 8.6 8.9 9.1 5.7 5.7 5.9 11.95 12 12.05

GMM SFFS JM 8.8 9.0 9.3 5.0 5.0 5.4 21.45 24.35 27.05

GMM ridge 71.7 105 167 530 530 530 all all all

KNN 8.9 19.6 59.7 387 639 887 all all all

Random Forest 24.5 49.3 105 33.0 41.7 45.9 all all all

The difference with the second best classifier, Random Forest,

appears to be significant when using 250 and 500 samples.

Random Forest has similar performance in term of classification

rate with 1000 samples and one could expect to get a better

classification rate with RF if more samples were available. The

GMM classifier with ridge regularization and the KNN classifier

are both outperformed.

In term of computational time, the GMM classifiers are as

expected very fast for classification and also for training, except

when the criterion function is a classification rate. In this case,

using JM distance as criterion and SFS as search strategy is the

best choice in term of time efficiency. The good performance in

time can be explained by the dimension reduction. Actually, the

decision rule corresponding to (6) has a complexity in d3 where

d is the dimension. Thus, reducing d induces a reduction of the

classification time.

The processing times of the three standard classifiers suffer

from the increase of training samples. For the GMM classifier

with ridge, the selection of regularization parameter is more

costly with more samples because of the classification rate es-

timation needed. For the KNN classifier, the model stores all

the training samples and the prediction implies to compute the

distance to all the training samples which explains the increase

of the processing time and additionally of the size of the model

file. Finally, for the Random Forest classifier, the trees tends to

be deeper in order to capture the additional information avail-

able with more samples and that explains the increase of the

processing time.

C. Potsdam Dataset

For the Potsdam dataset, training samples were selected from

one tile (5_11) and validation samples were all the pixel of

tile 5_12 or 3_10. Tables VI and VII present the results in

terms of classification accuracy and processing time. Bold val-

ues corresponds to best results. In Table VI, when several bold

scores appears for the same experiment, it means that the scores

has been assessed as equivalent with a Wilcoxon rank-sum

test [47].

With this second dataset, the Random Forest classifier and

the GMM classifier with kappa as selection criterion perform

the best in terms of classification accuracy. When using 1000

samples per class, no significant difference of classification rate

has been observed on test set. But, with 50,000 samples per

class, the Random Forest classifier becomes significantly better

in terms of classification accuracy.

The Postdam classes are more difficult to discriminate, since

Gaussianity assumption does not hold. For instance, a building

can be made of various materials, resulting in heterogeneous

distribution. Hence, GMM with ridge regularization performs

baldy. Random Forest classifier is more adapted to this problem

and reached the best classification accuracy. However, it can be

note that letting the algorithm be driven by a classification qual-

ity criterion such as the Kappa coefficient helps in improving

the classification accuracy. The KNN classifier is again outper-

formed.

From the Tables VI and VII, the number of extracted variables

shows that JM criterion identifies less relevant samples than

with the kappa criterion. Moreover, the selection method with

criterion kappa manages to get good performance with only

6.7% of the initial variables with 1000 samples and 15% with

50,000 samples.

In term of processing time, results are similar than with the

Aisa dataset. GMM classifiers with selection are very fast for

prediction. For example, the GMM classifier with kappa as cri-

terion for the selection is 63% faster than the Random Forest

classifier for prediction with 1000 samples and 83% faster with



TABLE VI
KAPPA COEFFICIENT AND PROCESSING TIME FOR 1,000 SAMPLES BY CLASS AND AVERAGED OVER 5 TRIALS (STANDARD DEVIATION IN PARENTHESIS)

5_11 (train) 5_12 (test) 3_10 (test) Train. Time Classif. time # of selected features

GMM SFS kappa 0.694 (0.002) 0.669 (0.005) 0.533 (0.008) 400 310 13.2

GMM SFS JM 0.624 (0.028) 0.631 (0.034) 0.461 (0.027) 2 310 11

GMM SFFS JM 0.624 (0.028) 0.631 (0.034) 0.461 (0.027) 2.6 310 11

GMM ridge 0.632 (0.007) 0.592 (0.010) 0.433 (0.008) 10 2000 all

KNN 0.637 (0.005) 0.607 (0.005) 0.478 (0.002) 0.7 9500 all

Random Forest 0.729 (0.004) 0.673 (0.005) 0.529 (0.009) 20 840 all

Processing times are given in second.

TABLE VII
KAPPA COEFFICIENT AND PROCESSING TIME FOR 50,000 SAMPLES BY CLASS AND AVERAGED OVER 5 TRIALS (STANDARD DEVIATION IN PARENTHESIS)

5_11 (train) 5_12 (test) 3_10 (test) Train. Time Classif. time # of selected features

GMM SFS kappa 0.713 (0.001) 0.684 (0.001) 0.531 (0.005) 20000 340 29

GMM SFS JM 0.560 (0.111) 0.576 (0.104) 0.435 (0.085) 6 330 10

GMM SFFS JM 0.560 (0.111) 0.576 (0.104) 0.435 (0.085) 6.6 340 10

GMM ridge 0.641 (0.015) 0.611 (0.026) 0.440 (0.015) 460 2000 all

KNN / / / / / /

Random Forest 0.851 (0.001) 0.715 (0.001) 0.573 (0.002) 2000 2000 all

Processing times are given in second. NB: The test has not been conduct with KNN because of a too long processing time for classification.

50,000 samples. However, the training time is increased with

respect to random forest.

VII. CONCLUSION AND PERSPECTIVES

An algorithm for the classification of high dimensional Earth

observation images has been proposed. The algorithm is based

on Gaussian mixture model and a forward feature selection

strategy to reduce the dimension of the data to be processed.

From experimental results, this strategy has shown to be robust

the curse of dimensionality. As a side effect, the volume of data

is reduced and the final classification processing time is reduced.

To cope with the large volume of data during the learning step,

updates rules from the forward search have been split into two

parts in order to save computation. One part is only computed

once per iteration, and the other part needs to be computed for

each tested features. Several criteria have been included, three

based on classification accuracy and two based on divergence

measures.

Experiments have been conducted on two real high dimen-

sional data set, and the results have been compared to standards

classifiers. Results show that the proposed approach performs,

in most cases, at least as best as classifiers (Random Forest) and

even outperforms all of them in term of classification time.

The resulting code is available as a remote module of the

Orfeo ToolBox on GitHub and makes it possible to process

large high dimensional images efficiently. The C++ code is

freely available for download: https://www.orfeo-toolbox.org/

external-projects/.

Perspectives of this work concern the selection of continuous

interval of features rather than a single feature [48], [49]. It will

be of highest interest for continuous features, such as temporal

feature or spectral feature.

APPENDIX A

PROOF OF UPDATE RULES

Proof of proposition (4)
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Proof of proposition (5) From (13) and standard results for

the determinant of block matrix [40, Ch. 9] we have immedi-

ately:
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