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Sommario

L'analisi dei deadlock nella programmazione orientata a oggetti può risultare

molto complicata, in quanto i programmi possono avere in�niti stati.

In questa tesi, presenterò una nuova tecnica per lo studio di deadlock causati

dai metodi wait - notify in Java. A tal �ne, ogni processo è stato modelliz-

zato attraverso una Rete di Petri. Questo modello permette di determinare

la presenza di deadlock analizzando il reachability tree.

La tecnica presentata nella mia tesi è una parte di un progetto molto più

ampio e complesso, in quanto nel mio lavoro ho considerato solamente pro-

grammi con un oggetto.
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Abstract

Deadlock analysis of object-oriented programs that dynamically create threads

and objects is complex, because these programs may have an in�nite number

of states.

In this thesis, I analyze the correctness of wait - notify patterns (e.g. dead-

lock freedom) by using a newly introduced technique that consists in an

analysis model that is a basic concurrent language with a formal semantic. I

detect deadlocks by associating a Petri Net graph to each process of the input

program. This model allows to check if a deadlock occur by analysing the

reachability tree. The technique presented is a basic step of a more complex

and complete project, since in my work I only consider programs with one

object.
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Chapter 1

Introduction

Concurrent object-oriented programming is a common model of program-

ming born in the 80-ies [2, 18] and is now largely used by the mainstream

programming languages as Java, C#, C++, etc. Usually concurrent languages

feature parallel computing by means of threads. For example, if two codes,

code1 and code2, must be executed in parallel, then the languages allow

programmers to specify the following execution structure:

1 thread1: code1

2 thread2: code2

This composition is safe as long as code1 and code2:

• either do not access to common variables;

• they don't modify (write) common variables, they may only read vari-

ables.

For example the following code are safe:

Example 1.

1 thread1: {y = x+3}

2 thread2: {z = 3*z+4}

1 thread1: {y = x+3}

2 thread2: {z = x+1}

Most of programming languages guarantee exclusive access to objects by

synchronization methods. Synchronization prevents threads from accessing

3



4 1. Introduction

the shared data at the same time. The importance of synchronization is

explained in the following example.

Example 2.

1 x = 0

2 thread1: sync(x){x = x+1}

3 thread2: sync(x){x = x-1}

At the beginning x is 0. If threads 1 and 2 can access to x in a mutually

exclusive way the outcome value is always 0. In fact, if thread 1 accesses

�rst to x, the variable becomes 1. Then, thread 2 subtracts 1 from x and

the result is 0. Equivalently, if thread 2 access �rst to x and then thread

1. Without synchronization, it is impossible to predict the result. In fact,

threads can access simultaneously to x.

A problem that can be encountered with threads is deadlock. When one

thread depends on another for its execution, a deadlock may occur. When

two threads are holding locks on two di�erent resources, one thread would

like to have other's source, a deadlock occurs. Deadlock is the result of poor

programming code and is not shown by a compiler or execution environment

as an exception. The dining philosophers problem is an example problem

often used in concurrent algorithm design to illustrate synchronization issues

and techniques for resolving them. The problem is usually described as

follows:

• a given number of philosophers are seated at a round table and they

must alternately think and eat;

• between every pair of adjacent plates there is only one fork;

• each philosopher can only eat when there are both left and right forks;

• after a philosopher �nishes eating, he needs to put down both forks so

that the forks become available to others.
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Thus, it is impossible for a philosopher to eat at the same time as one of

his neighbors: the forks are a shared resource for which the philosophers

are competing as shown in Figure 1.1. The problem is how to design a

The Dining Philosophers

Problem

Cache Memory
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The dining philosophers problem: definition

It is an artificial problem widely used to illustrate the problems linked to

resource sharing in concurrent programming.

The problem is usually described as follows.

• A given number of philosopher are seated at a round table.

• Each of the philosophers shares his time between two activities:

thinking and eating.

• To think, a philosopher does not need any resources; to eat he needs

two pieces of silverware.

255

• However, the table is set in a very peculiar way: between every pair of

adjacent plates, there is only one fork.

• A philosopher being clumsy, he needs two forks to eat: the one on his

right and the one on his left.

• It is thus impossible for a philosopher to eat at the same time as one

of his neighbors: the forks are a shared resource for which the

philosophers are competing.

• The problem is to organize access to these shared resources in such a

way that everything proceeds smoothly.

256

The dining philosophers problem: illustration
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257Figure 1.1: The dining philosophers problem.

discipline of behavior (a concurrent algorithm) such that every philosophers

will eat. This example was designed to illustrate the challenges of avoiding

deadlock and �nd a proper solution is not obvious. In fact, there are a lot of

proposal in which his attempted solution fails because it allows the system

to reach a deadlock state, in which no progress is possible. Assume that each

philosopher grabs the fork on his left and then the one on his right, then he

releases them in reverse order. The attempted solution fails because it allows

the system to reach a deadlock state, in which the philosophers will eternally

wait for each other to release a fork.

A relevant feature of object-oriented calculi is thread coordination, which

is usually expressed by the methods wait and notify and the relation between

them can easily lead to deadlocks. In my thesis I will focus on detecting Java

deadlocks caused by those methods.
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1.1 Related Works

Deadlock detection in concurrent programs that create networks with arbi-

trary numbers of nodes is extremely complex and solutions either give im-

precise answers. Deadlock-freedom of concurrent programs has been largely

investigated in the literature [1, 4, 5, 10, 16, 17]. The proposed algorithms

automatically detect deadlocks by building graphs of dependencies (a, b) be-

tween resources, meaning that the release of a resource referenced by a de-

pends on the release of the resource referenced by b. The absence of cycles in

the graphs entails deadlock freedom. When programs have in�nite states, in

order to ensure termination, current algorithms use �nite approximate mod-

els that are excerpted from the dependency graphs.

In [8, 11] the problem has been solved for value-passing CSS [13] and pi

calculus in [14]. In that case there are two formal models: Petri Nets and

deadlock Analysis models - lams [9]. Lams are basic recursive models that

collect dependencies and dynamic name creation. In [12] it is demonstrated

that is possible to de�ne a deadlock analyzer for object-oriented programs

by only using an extension of lams. The algorithm developed in [12] has

been prototyped in JaDA [7], which is a tool that detects deadlocks of Java

programs at static time. While the type system in [6] simply checks static

information, JaDA infers the behavioural types from the bytecode.

1.2 Thesis Structure

The aim of my thesis is to design and implement a technique capable of

detecting Java deadlocks caused by wait - notify methods with one object.

The analysis model is a basic concurrent language with a formal semantic

where each process P is generated by the syntax described in Chapter 2.

In this chapter, I also show some examples of programs with two objects,

analysing their behaviours and if a deadlock may occur or not.

I modeled very process of the language has been modeled into a Petri Net

graph. Models are presented in Chapter 3. I designed a compiler that takes
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in input a program and returns the corresponding Petri Net graph for each

process. By means of an o�-the-shelf solver for Petri Net (PIPE [15]), I have

analyzed the reachability tree in order to check if a deadlock occurs or not.

In Chapter 4, I describe the implementation choices of my work and I report

some examples and results in Chapter 5.
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Chapter 2

Concurrency in Java

Java is an object-oriented programming language that is concurrent. Con-

currency refers to the ability of di�erent parts of a program to be executed

out-of-order without a�ecting the �nal outcome. In other words, concur-

rency is the ability to run several programs in parallel and parallel execution

is when two tasks start at the same time. Thus, threads are generated in

parallel in order to get access to common resources locks are used. Locks

grant access to objects in a mutually exclusive way. Moreover, Java provides

three methods wait, notify and notify all to improve the e�ciency commu-

nication between threads.

In this thesis, I will focus on the concurrency model of Java and the correct-

ness of concurrent programming patterns.

2.1 The Java Thread Model

Java provides built-in support for multithreaded programming. The Java

run-time system depends on threads for many things, and all the class li-

braries are designed with multithreading in mind. Multithreading allows

animation loops to sleep for a second between each frame without causing

the whole system to pause. When a thread blocks in a Java program, only

the single thread that is blocked pauses and all other threads continue to run.

9



10 2. Concurrency in Java

There exist several threads states: a thread can be running or it can be ready

to run. A running thread can also be suspended and it can then be resumed.

Moreover, a thread can be blocked when waiting for a resource. At any time,

a thread can be terminated and its execution is stopped immediately. Once

terminated, a thread cannot be resumed.

2.1.1 Synchronization

When two or more threads need access to a shared resource, they need some

way to ensure that the resource will be used by only one thread at a time.

The process by which this is achieved is called synchronization and Java

provides a language-level support for it. A monitor is an object that is used

as a mutually exclusive lock and the rule is that there should be only a thread

which can own a monitor at a given period of time. When a thread acquires

a lock, it is said to have entered the monitor. All other threads attempting

to enter the locked monitor will be suspended until the �rst thread exits

the monitor. These other threads are said to be waiting for the monitor.

A thread that owns a monitor can reenter the same monitor if it wants to.

Synchronization is easy in Java, because all objects have their own implicit

monitor associated with them. To enter an object's monitor, just call a

method that has been modi�ed with the synchronized keyword. While a

thread is inside a synchronized method, all other threads that try to call it

(or any other synchronized method) on the same instance have to wait.

2.1.2 Wait, Notify and NotifyAll

Basically, in Java:

• every object has a lock associated with it;

• a thread must acquire the lock, before it can enter a synchronized block

or a method;
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• the lock is automatically released when the thread exits the synchro-

nized block;

• a thread that cannot acquire the lock is suspended until the lock is

available.

If a thread tries to enter a synchronized block that is locked by another

thread, it waits until the lock is released. In this case, the thread is in the

entry-set and is called runnable. The Object class in Java contains three

�nal methods that allows threads to communicate about the lock status of a

resource, these methods are wait(), notify(), and notifyAll(). Being �nal

means that every subclass of Object (i.e. every Java class) inherits them

and they cannot be modi�ed. Those three methods can be called only in a

synchronized context. The rules for using these methods are actually quite

simple:

• wait() tells the calling thread to give up the monitor and go to sleep

until some other thread enters the same monitor and calls notify().

In other word, the wait() method releases the lock and suspends the

thread;

• notify() wakes up only one thread between the waiting threads;

• notifyAll() wakes up all the threads that called wait() on the same

object.

Every object has a wait-set, that is a thread set which contains all the threads

that have called the wait() and have not been noti�es by the notify()

or notifyAll() methods. The mechanism of inter-thread communication

is illustrated in �gure 2.1.
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Entry-set The Owner Wait-set

enter
1

acquire
2

release
3

notify

4

aquire
5

release and exit

6

Figure 2.1: Diagram of inter-thread communication.

2.1.3 Deadlocks

A special type of error that needs to be avoided that relates speci�cally to

multitasking is deadlock, which occurs when two threads have a circular

dependency on a pair of synchronized objects. For example, suppose one

thread enters the monitor on object X and another thread enters the monitor

on object Y. If the thread in X tries to call any synchronized method on Y,

it will block as expected. However, if the thread in Y, in turn, tries to call

any synchronized method on X, the thread waits forever, because to access

X, it would have to release its own lock on Y so that the �rst thread could

complete. Deadlocks are di�cult to avoid or anticipate since they may not

happen during every execution and may involve more than two threads. They

may have catastrophic e�ects for the overall functionality of the software

system. The following example shows how the relation between wait() and

notify() can easily lead to deadlock.

Example 3. The code below will terminate successfully because the notify()

operation on x by t will be always performed after the wait() operation on
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x by the current thread because it owns the lock on x when t.start() is

executed.

1 Thread t = new Thread(){

2 public void run(){

3 synchronized(x) {

4 x.notify();

5 } ;

6 }

7 };

8 synchronized(x){

9 t.start();

10 try {

11 x.wait();

12 } catch (InterruptedException e) {

13 };

14 }

If the scope of synchronize is a x.wait() invocation, a deadlock may occur

because the thread t may be performed before the

x.wait() instruction.

Thus, the relation between wait() and notify() can easily lead to dead-

locks. In fact, it may happen when:

• the x.wait() operation in t does not happen before a matching x.notify()

in t’;

• a lock on a object held by t is blocking the execution of t’.

The following example is the dining philosophers problem discussed in

Chapter 1. It was designed to illustrate the challenges of avoiding deadlock.
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Example 4.

1 public void buildTable(int n, Object x, Object y){

2 if(n==0){

3 synchronized(y){synchronized(x){}};

4 }

5 else{

6 final Object z = new Object();

7 Thread t = new Thread(){

8 public void run(){

9 synchronized(x){synchronized(z){}};

10 }

11 };

12 t.start();

13 this.buildNetwork(n-1, z, y);

14 }

15 }

new Object z creates a new Object, (new Thread P)Q creates a new thread

with body P that runs in parallel with thread Q and synchronized(x){P}

is the method that locks x and runs P. This method creates n + 1 threads

(n+ 1 philosophers) and each one shares an object (a fork) with the closest

one. Every philosopher, except one, grabs the fork on his left and on his

right then releases them, in this order. The exceptional case is the branch

n == 0 because the strategy is opposite. When the method is called by

buildTable(n,x,x) a deadlock never occurs. If I change the branch n == 0

with

synchronized(y){synchronized(x){}} a deadlock may occur because every

philosopher has the same strategy.



Chapter 3

The Analysis Model

My analysis model is a basic concurrent language with a formal semantic. I

use two countable sets of names: x, y, . . . are the object names and A,B,C, . . .

the method names. A program is a pair (D , P ) where D is a �nite set of

method de�nitions and P is the main process.

The processes P are the terms generated by the following syntax:

P ::= 0 | (νx)P | (νP )P | f(x̄) | notifyAll(x ).P | sync(x ){P}.P

| wait(x ).P | notify(x ).P

A process can be the inert process 0 or a restriction (νx)P that behaves

like P , but the external environment cannot access to x (the object), in this

thesis only one object processes are analyzed. P can also be (νP )P , i.e.

the creation of a new thread, or f(x̄) an invocation to a method. Moreover

the process can be wait(x ).P , notify(x ).P , notifyAll(x ).P , they modify the

states of threads. The thread that executes wait() is suspended and the

lock x is released; notify() wakes up one thread and the lock x is acquired

by the thread; notifyAll() wakes up all the threads in the wait-set. In the

end the process P can be sync(x ){P}.P , that executes the �rst P with the

exclusive access to x and then executes the second process.

15



16 3. The Analysis Model

3.1 Semantics

The semantics of my programming language are de�ned operationally by

means of a transition system. The formal de�nition is below.

1. There are terms P ::= P | P x• P that are called threads. The term

P
x• P corresponds to a thread that is performing P in a critical section

for x; when P terminates the lock of x must be released (if
x• /∈ P) and

P may start.

2. Con�gurations are multisets of threads, written P1 | · · · | Pn, or some-

times with the shorter form
∏

i∈1,...,n Pi; con�gurations are ranged over

by T ;

3. Let ≡ be the congruence relation that includes commutativity and asso-

ciativity of | , with 0 being the identity, and f(z) ≡ Pf{z/x}, assuming

that f(x) = Pf ;

4. We write x ∈ T if there is P ∈ T such that P = P′ x• P′′ and P′ is not
pre�xed by wait(x ).;

5. Let P1, · · · ,Pn,Pn+1 be terms that do not contain
x• (they may contain

y
•, z•, · · · , with y, z, · · · 6= x). We de�ne

sync(x)n{ P1
x• · · · x• Pn

x• Pn+1 }
def
= sync(x){· · · sync(x){︸ ︷︷ ︸

n times

P1} · · · .Pn}.Pn+1

With the foregoing assumptions, we de�ne #x(P1
x• · · · x• Pn

x• Pn+1) =

n

6. The transition relation is T −→ T ′ de�ned as follows
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(Zero)

0
x• P | T −→ P | T

(NewO)

z fresh

(ν x)P | T −→ P{z/x} | T

(NewT)

(ν P )P | T −→ P | P | T

(Sync)

x /∈ T

sync(x){ P }. P | T −→ P
x• P | T

(NtfT)

P′
=

n times︷ ︸︸ ︷
P′

1

x• · · · x• P′

n

x• P′

n+1

notify()x.P | wait()x.P′ | T −→ P | sync(x)n{ P′ } | T

(NtfF)

no wait(x ).P′ in T

notify()x.P | T −→ P | T

(Cong)

T1 ≡ T ′
1 T ′

1 −→ T ′
2 T ′

2 ≡ T2

T1 −→ T2

De�nition 1. Deadlock-freedom A program (D , P ) is deadlock-free if the

following conditions hold:

whenever P −→∗ T and T = (νx1) . . . (νxn)(sync(x){ P }. P |T ′
)

then there exists T
′′

such that T −→ T
′′
.

In other words, a program is deadlock-free when there exists a thread

such that it can be reduced to the identity 0.

3.2 Examples

Some examples are discussed below, highlighting their behaviours and if

deadlock occur or not.
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1.

sync(x){ (ν sync(x){ notify(x ). }. )wait(x ). }.

→ (ν sync(x){ notify(x ). }. )wait(x ).
x• 0

→ sync(x){ notify(x ). }. | wait(x ).
x• 0

→ notify(x ).
x• 0 | wait(x ).

x• 0

→ 0
x• 0 | 0 x• 0

Lock is acquired by the main thread; with the wait() method the

thread releases the lock that is acquired by the second thread. When

notify() is called, it wakes up the thread and moves it from the

sleeping-queue to the ready-queue for it to be executed.

2.

sync(x){ (ν sync(x){ notify(x ).wait(x ). }. ) wait(x ).notify(x ). }.

→ (ν sync(x){ notify(x ).wait(x ). }. ) wait(x ).notify(x ).
x• 0

→ sync(x){ notify(x ).wait(x ). }. | wait(x ).notify(x ).
x• 0

→ notify(x ).wait(x ).
x• 0 | wait(x ).notify(x ).

x• 0

→ wait(x ).
x• 0 | notify(x ).

x• 0
(1)−→ 0

x• 0 | 0 x• 0

Where in (1) we used the commutativity of |. Main thread has the lock

that is released by the wait() method: the thread is in the wait-set.

Now the inner thread can acquire the lock: the notify() method wakes

up the thread that is waiting on this object's monitor. Right after the

lock is released by calling the wait(), the lock is acquired by the main

thread and woken up by the notify().

3. We report an example where deadlock may occur depending on which
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process we choose to wake up.

(ν sync(x){ notify(x ).wait(x ). }. ) sync(x ){ wait(x ).notify(x ). }.

→ (ν sync(x){ notify(x ).wait(x ). }. ) | sync(x ){ wait(x ).notify(x ). }.

→ sync(x){ notify(x ).wait(x ). }. | sync(x ){ wait(x ).notify(x ). }.

→ notify(x ).wait(x ).
x• 0 | sync(x ){ wait(x ).notify(x ). }.

→ wait(x ).
x• 0 | sync(x ){ wait(x ).notify(x ). }.

→ wait(x ).
x• 0 | wait(x ).notify(x ).

x• 0 Deadlock

According to the previous rules, there is not a transition for the wait()method.

Thus, in this case a deadlock occurs.

(ν sync(x){ notify(x ).wait(x ). }. ) sync(x ){ wait(x ).notify(x ). }.

→ (ν sync(x){ notify(x ).wait(x ). }. ) | sync(x ){ wait(x ).notify(x ). }.

→ sync(x){ notify(x ).wait(x ). }. | sync(x ){ wait(x ).notify(x ). }.

→ sync(x){ notify(x ).wait(x ). }. | wait(x ).notify(x ).
x• 0

→ notify(x ).wait(x ).
x• 0 | wait(x ).notify(x ).

x• 0

→ wait(x ).
x• 0 | notify(x ).

x• 0

→ 0
x• 0 | 0 x• 0

In this case, the process is deadlock-free. The following transition sys-

tem underlines the fact that deadlock may occur or not. In fact, in

this transition system it is clear that the process may �nish or not de-

pending on which transition we decide to make: two times on three a

deadlock does not occur, but not every choice leads to the same �nal

state.
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P

P0 | P1

P0

| wait(x ).notify(x ). x• 0
notify(x ).wait(x ).

x• 0
| P1

notify(x ).wait(x ).
x• 0

| wait(x ).notify(x ). x• 0
wait(x ).

x• 0
| P1

wait(x ).
x• 0

| notify(x ). x• 0
wait(x ).

x• 0
| wait(x ).notify(x ). x• 0

0
x• 0 | 0 x• 0

Figure 3.1: Transition system of the deadlock-free program of Example 3.

4. This code will terminate successfully because the notify() operation

will be always performed after the wait(). In this case for any reduction

a deadlock never occur. In fact, the transition system ends always with

the node 0
x• 0.

(ν sync(x){ notify(x ).wait(x ).notify(x ). }. ) sync(x ){ notify(x ).wait(x ).notify(x ). }.

→ sync(x){ notify(x ).wait(x ).notify(x ). }. | sync(x ){ notify(x ).wait(x ).notify(x ). }.

→ notify(x ).wait(x ).notify(x ).
x• 0 | sync(x ){ notify(x ).wait(x ).notify(x ). }.

→ wait(x ).notify(x ).
x• 0 | sync(x ){ notify(x ).wait(x ).notify(x ). }.

→ wait(x ).notify(x ).
x• 0 | notify(x ).wait(x ).notify(x ). x• 0

→ notify(x ).
x• 0 | wait(x ).notify(x ). x• 0

→ 0
x• 0 | notify(x ). x• 0

→ 0
x• 0 | 0 x• 0
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P

P0 | P1

notify(x ).wait(x ).notify(x ).
x• 0

| P1

P0

| notify(x ).wait(x ).notify(x ). x• 0

wait(x ).notify(x ).
x• 0

| P1

notify(x ).wait(x ).notify(x ).
x• 0

| notify(x ).wait(x ).notify(x ). x• 0

P0

| wait(x ).notify(x ). x• 0

wait(x ).notify(x ).
x• 0

| notify(x ).wait(x ).notify(x ). x• 0

notify(x ).wait(x ).notify(x ).
x• 0

| wait(x ).notify(x ). x• 0

notify(x ).
x• 0

| wait(x ).notify(x ). x• 0

wait(x ).notify(x ).
x• 0

| notify(x ). x• 0

0
x• 0

| notify(x ). x• 0

notify(x ).
x• 0

| 0 x• 0

0
x• 0 | 0 x• 0

Figure 3.2: The transition system of the program described in Example 4.
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Now I will show some examples of code with two objects.

5. The following code is an example of a deadlock-free program.

sync(x){ (ν sync(y){ sync(x){ notify(x ). }. wait(y). }. )wait(x ).sync(y){ notify(y). }. }.

→ (ν sync(y){ sync(x){ notify(x ). }. wait(y). }. )wait(x ).sync(y){ notify(y). }. x• 0

→ sync(y){ sync(x){ notify(x ). }. wait(y). }. | wait(x ).sync(y){ notify(y). }. x• 0

→ sync(x){ notify(x ). }. wait(y).
y
• 0 | wait(x ).sync(y){ notify(y). }. x• 0

→ notify(x ).wait(y).
y
• 0 x• 0 | wait(x ).sync(y){ notify(y). }. x• 0

→ wait(y).
y
• 0 x• 0 | sync(y){ notify(y). }. x• 0

→ wait(y).
y
• 0 x• 0 | notify(y). x• 0

y
• 0

→ 0
y
• 0 x• 0 | 0

y
• 0 x• 0

6. This last example gives a deadlock. In fact, during the analysis we can

choose between two or more reductions and, as shown in the following

transition system, sometimes a deadlock can occur.
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(ν sync(x){ sync(y){ wait(y). }. }. )sync(x ){ sync(y){ notify(y). }. }.

→ sync(x){ sync(y){ wait(y). }. }. | sync(x ){ sync(y){ notify(y). }. }.

→* sync(y){ wait(y). }. x• 0 | sync(x ){ sync(y){ notify(y). }. }.

→ wait(y).
y
• 0 x• 0 | sync(x ){ sync(y){ notify(y). }. }.

→ wait(y).
y
• 0 x• 0 | sync(y){ notify(y). }. x• 0

→ wait(y).
y
• 0 x• 0 | notify(y). x• 0

y
• 0

→ 0
y
• 0 x• 0 | 0

y
• 0 x• 0

(ν sync(x){ sync(y){ wait(y). }. }. )sync(x ){ sync(y){ notify(y). }. }.

→ sync(x){ sync(y){ wait(y). }. }. | sync(x ){ sync(y){ notify(y). }. }.

→ sync(x){ sync(y){ wait(y). }. }. | sync(y){ notify(y). }. x• 0

→ sync(x){ sync(y){ wait(y). }. }. | notify(y). x• 0
y
• 0

→ sync(y){ wait(y). }. x• 0 | 0 x• 0
y
• 0

→ wait(y).
x• 0

y
• 0 | 0 x• 0

y
• 0 Deadlock

We can compare the two reductions. In the �rst one, with * transition

I analyze before the P0 thread that ends with a wait(). Then, I make

the P1 reductions and get a notify(). So we can reduce both with

the rule of notify()- wait(). On the other hand, in the second case I

decided to reduce before the main thread, obtaining a notify()and so

an identity 0. But the other thread ends with a wait()and it cannot

be reduced without a parallel notify(), so it gives a deadlock.

The transition system in Figure 3.3 shows the same result: some reduc-

tions lead to the �nal state 0, but there are some other that produce

deadlock.



24 3. The Analysis Model

P

P0 | P1

sync(y){ wait(y). }. x• 0
| P1

P0

| sync(y){ notify(x ). }. x• 0

wait(y).
x• 0

y
• 0

| P1

sync(y){ wait(x ). }. x• 0
| sync(y){ notify(x ). }. x• 0

P0

| notify(x ). x• 0
y
• 0

wait(x ).
x• 0

y
• 0

| sync(y){ notify(x ). }. x• 0

P0 | 0
x• 0

sync(y){ wait(x ). }. x• 0
| notify(x ). x• 0

y
• 0

wait(x ).
x• 0

y
• 0 | notify(x ). x• 0

sync(y){ wait(x ). }. x• 0 | 0 x• 0

0
x• 0

y
• 0 | 0 x• 0

y
• 0

wait(x ).
x• 0

y
• 0 | 0 x• 0

y
• 0

Figure 3.3: The transition system of the program described in Example 6.



Chapter 4

Petri Nets

Petri Nets are a mathematical tool for modeling systems. Analysis of Petri

Net can reveal important information about the structure and then this in-

formation can be used to evaluate the modeled system and suggest changes.

The practical application of Petri Nets considers them as an auxiliary analy-

sis tool. For this approach, the system is modeled as a Petri Net and then it is

analyzed. Some problems can occur during the analysis, then it is necessary

to modify the design of the model until the system is error-free.

4.1 Petri Net Structure

A Petri Net is a tuple (N, T, I, O): a �nite set of places N = {n1, . . . , nk}, a
�nite set of transitions T = {t1, . . . , tm}, an input function I and an output

function O. Where N ∩ T = ∅ and:

I : T → N∞

that identi�es the places leading into a transition and

O : T → N∞

that identi�es the places leading out a transition. The cardinality of N is

k ≥ 0, the cardinality of set T is m ≥ 0. An arbitrary element of the �rst

25
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set is denoted by ni, i = 1, . . . , k, and one element of the set of transitions

by tj, j = 1, . . . ,m.

Petri Net can be graphically represented by a bipartite directed multigraph.

Thus, a Petri Net is de�ned by places and transitions and a Petri Net graph

has two types of nodes: a circle that corresponds to a place, and a bar

that is the graphical representation of a transition. Directed arcs con-

nect places and transitions, some arcs are directed from places to transitions

and other arcs from transitions to places. A Petri Net graph is a multigraph

because it allows multiple arcs from one node to another. Petri Net graphs

are usually associated with an initial marking. A marking is an assignment

of tokens to the places of a Petri Net and the number of tokens can change

during the execution. Formally, a marking µ can be de�ned as a function

from the set of places to a set of nonnegative integers: µ : N → N. In Petri

Net graph a marking is represented by a dot •.

4.1.1 Petri Net Execution

The execution of a Petri Net depends by the number and the distribution

of tokens. A Petri Net executes by �ring transitions: a transition �res by

removing tokens from its input places and creating new tokens to its output

ones. A transition may �re if it is enabled, it means that each of its input

places has at least as many tokens in it as arcs from the place to the transition.

So multiple tokens are needed for multiple input arcs. A transition �res by

removing all its enabling tokens from its input places and then locating into

each of its output places one token for each arc from the transition to the

place. An example of Petri Net graph and its execution is shown below.
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Example 5. An example of Petri Net graph and its execution. At the

beginning, the place N0 has the initial token, red transitions are the enabled

ones.

N1
t1

N2

N3

t2 N4 N1
t1

N2

N3

t2 N4

N1
t1

N2

N3

t2 N4 N1
t1

N2

N3

t2 N4

Figure 4.1: A Petri Net graph and its execution.

Example 6. I report another example a Petri Net graph that explicates

when a transition is not enabled. In the second step of the execution the

N1

t1

N2

N3
t2 N4

N1

t1

N2

N3
t2 N4

transition t1 is not enabled because in place N1 there is not a token, that has

been deleted and put in N2 with the �rst transition.

4.1.2 Reachability

Determining the reachability of a marking is one of the most interesting

problems of Petri Net graph. When a marking is reachable from the initial
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one? Formally, I can describe this problem as follows.

De�nition 2 (Reachability problem). Giving a Petri Net C with marking µ

and a marking µ′, is µ′ ∈ R(C, µ)?

An important tool to determine the reachability set of a Petri Net is the

reachability tree. I will describe it with an example.

As shown in Figure 4.2, the initial marking has two possible transitions: t1

and t2. Thus, in the reachability tree I add two nodes which result from both

transitions. Now, I consider all markings reachable from this con�guration:

from (1, 1, 0) I can �re t1, giving (1, 2, 0) and t2, giving (0, 2, 1); from (0, 1, 1)

it is possible to reach the (0, 0, 1) marking.

N1

t1 t2

N2

N3

t3

(1, 0, 0)

(1, 1, 0)

t1

(0, 1, 1)

t2

Figure 4.2: A Petri Net graph with the �rst step of its reachability tree.

(1, 0, 0)

(1, 1, 0)

(0, 2, 1)

t2

(1, 2, 0)

t1

t1

(0, 1, 1)

(0, 0, 1)

t3

t2

Figure 4.3: Second step of reachability tree.

With the new three markings I can repeat the process, noticing that

the marking (1, 0, 0) is dead. So I obtain the third step of the reachability

tree, shown in Figure 4.4. If this procedure is repeated over and over, every

reachable marking will be produced. Sometimes, the reachability set might
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(1, 0, 0)

(1, 1, 0)

(0, 2, 1)

(0, 1, 1)

t3

t2

(1, 2, 0)

(1, 3, 0)

t1

(0, 3, 1)

t2

t1

t1

(0, 1, 1)

(0, 0, 1)

t3

t2

Figure 4.4: Third step of reachability tree.

be in�nite and also the corresponding reachability tree. However, even a Petri

Net with a �nite reachability set, can have an in�nite tree: it represents all

possibile sequences of transitions and if they are always enabled, the tree

would be in�nite. I show a sample graph with a in�nite reachability tree

in Figure 4.5. Since the reachability tree is an important tool for Petri Net

analysis, there are some techniques that allow us to limit the tree to a �nite

size. It is necessary to classify the markings: there are the dead markings, the

one in which no transition is enabled, known as terminal nodes ; the duplicate

nodes, those markings which have previously appeared in the tree and no

successors of a duplicate node need to be considered.

4.2 Modeling with Petri Nets

A performance model of Java execution has been developed by using Petri

Net graph. Each process has been modeled by a Petri Net graph and saved

as an .xml �le. It allows us to analyze multi-threaded Java applications.

During the execution of a program, we combine the corresponding Petri Net

models and, using the Petri Net tool PIPE [15], we can analyze the process.

The reachability tree analysis allows us to check if a deadlock occur. This

analysis will be examine in depth in the following chapters.
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N1t1

t2

N2

(1, 0)

(0, 1)

(1, 0)

(0, 1)

...

Figure 4.5: A �nite Petri Net graph with an in�nite reachability tree.

4.2.1 The Model

Now, I will describe the model for each instruction. The syntax used is

described in Chapter 2. We indicate with the notation PN (P ) the corre-

sponding model of P .

• The inert process 0 is represented by the empty place:

PN (0)=

• The creation of a new thread (νP )P ′ has been modeled by the Petri

Net graph is shown below:
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PN ((νP )P ′)= PN (P ) PN (P ′)

• We also use P
x• P ′ that corresponds to a thread that is performing

P in a critical section for x. The �rst model is if
x•/∈ P , the second

otherwise.

PN (0
x• P ′)=

PN (P )

x

PN (P )

• We modeled the synchronization method sync(x ){P}.P as shown be-

low, in order of appearance for
x•∈ P ′ and for

x•/∈ P ′.
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PN (sync(x ){P}.P)=

PN (P
x• P ′)

x

PN (P
x• P ′)

• For the wait() method we chose the following model:

PN (wait(x ).P)=

x

wx

nx

• Regarding the notify() and notifyAll() methods, they have been

modeled using inhibitor arcs too.
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PN (notify(x ).P)=

wx

nx PN (P)

PN (notifyAll(x ).P)=

wx

nx PN (P)
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Chapter 5

The Compiler

In order to test our analyzer and obtain some results related to the problem

of deadlock prevention of wait-notify methods in Java, I designed a compiler,

using ANTLR and its API, able to transform a program written in the syntax

described in Chapter 2 into Java. Then, it translates our language in a Petri

Net graph, according to the models presented in Chapter 3. In this chapter,

I will �rstly present how ANTLR works, then my implementations choices.

5.1 ANTLR

ANTLR, ANother Tool for Language Recognition, [3], is a parser generator that

uses LL(∗) for parsing. It takes in input a context-free grammar that speci�es

a language and produces a source code as output. ANTLR can automatically

generate parsers (which can generate parse tree and abstract parse tree),

lexers and tree parsers.

More speci�cally, ANTLR reads a grammar and generates a program that reads

an input stream and if the input stream is not conform to the syntax of

language de�ned in the grammar. If the syntax analysis does not generate

an error (i.e. the program is syntactically correct), then the default action is

simply to exit. Moreover, ANTLR also provides to check lexical correctness.

35
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5.2 Implementation

5.2.1 The Grammar

In Chapter 2 I described the language to be analyzed, in this section I will

present the corresponding grammar.

1 program : term (SEMIC term)* ;

2 term : (left=statement (( op=operator ) right=statement )?) ;

3 statement : zero | new_object |new_thread | method | sync | waiting |

↪→ notifying | notifyingAll ;

4 new_object : LPAR NU ID RPAR (statement)*;

5 new_thread : LPAR NU statement RPAR (statement)*;

6 method : CHAR LPAR ( ID ( COMMA ID)* )? RPAR (ASM (ID | statement)

↪→ )* ;

7 sync : SYNC LPAR ID RPAR LBRA (statement)+ RBRA (DOT statement)

↪→ *;

8 waiting : WAIT LPAR ID RPAR (DOT statement)* ;

9 notifying : NOTIFY LPAR ID RPAR (DOT statement)*;

10 notifyingAll : NOTIFYALL LPAR ID RPAR (DOT statement)*;

11 operator : PLUS ;

12 zero : DIGIT ;

13

14 // token

15 SYNC : ’sync’;

16 WAIT : ’wait’;

17 NOTIFY : ’notify’;

18 NOTIFYALL : ’notifyAll’;

19 NU : ’nu’;

20 DIGIT : ’0’;

21 CHAR : ’A’..’Z’ ;

22 ID : [a-z]+ ;

23 DOT : ’.’;

24 COMMA : ’,’ ;

25 SEMIC : ’;’ ;
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26 LPAR : ’(’ ;

27 RPAR : ’)’ ;

28 LBRA : ’{’;

29 RBRA : ’}’;

30 PLUS : ’+’ ;

31 ASM : ’=’;

32 WS : (’ ’|’\t’|’\n’|’\r’)+ {skip();};

I created some node classes, one for each rule of the grammar. Each

class has two main methods: toVisit(), which generates the Java code and

petriNetGeneration() that matches each method to its Petri net model.

Before describe each of above functions in more details, it is necessary to

introduce the semantic analysis.

5.2.2 Semantic Analysis

Semantic analysis is a process in compiler construction. This phase should

guarantee that the syntax structure of the source program has meaning or

not.

In my case, semantic analysis is expected to recognize:

• Methods x.wait(), x.notify() and x.synchronized() can be called

only if object x has been de�ned before;

• x.wait(), x.notify() must always be in a synchronized() block.

I solved the �rst problem in the code generation part. In fact, when a wait, a

notify or a synchronized method is called on an object x, the main compiler

class GrammarVisitorImpl.java, that I will later discuss thoroughly, saves all

objects names in a list and de�nes each one while creating output Java code.

Concerning the second case, I avoided this problem with the GrammarWalker.java

class. This class can be automatically generated by ANTLR and provides two

types of methods for each rule of the grammar: exitRule and enterRule. I

used a temporary array list of variables, temp, in which I added the synchronized
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method when called (when a enterSynch is called) and remove it when the

block ends. I also used an integer variable, int counter, that counts the

level of the nested synchronized. Thus, when a wait or a notify is called,

the program controls if the corresponding element in the temp array is null,

if yes an error message is reported and the compiler does not terminate the

code generation. Otherwise the code execution continues as before.

5.2.3 Java Code Generation

If the code is syntactically and semantically correct, the compiler can proceed

with the Java code generation. For this purpose, the method toVisit()

is called on the root of the abstract syntax tree. Each instruction of the

grammar has a speci�c node in which all the needed information is saved,

thanks to GrammarVisitorImpl.java class and its method that I describe

deeply below.

GrammarVisitorImpl class

In this class I implemented the visitStatementmethod. It returns the visited

rule-corresponding node with all the informations according on the type of

the node I am visiting. To better understand what this method does, I report

below the part of the code that returns a waiting node. An important variable

of this class is ArrayList<String> names in which all the object names are

saved.

1 if (ctx.waiting()!=null){

2 names.add(ctx.waiting().ID().getText());

3 if(ctx.waiting().statement(0)!=null){

4 return new WaitingNode(ctx.waiting().ID().getText(),

↪→ visit(ctx.waiting().statement(0)));

5 }

6 else{

7 return new WaitingNode(ctx.waiting().ID().getText());}}
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In the if condition, the program veri�es if the node is a waiting one, using

the method waiting() automatically generated by ANTLR. Then, I add in the

array names the name of the object in which the program calls the wait()

method. At this point, the function controls if after the wait()there is an-

other method call. If yes, it returns the wait-node and its children nodes

after visiting them. Otherwise, the function returns only the current node

and its execution ends.

toVisit() method

In each node class, I implemented the toVisit() method. It returns the cor-

responding Java code as a string and call the toVisit() method for the next

instruction. The toVisit() method code for the waiting node is reported

below.

1 public String toVisit() {

2 if (stat!=null){

3 return "try {\r\n"+id+".wait();\r\n} catch (

↪→ InterruptedException e) {\r\n};\r\n"+stat.toVisit()

↪→ ;

4 }

5 else{

6 return "try {\r\n"+id+".wait();\r\n} catch (

↪→ InterruptedException e) {\r\n};\r\n";

7 }

8 }

This method returns a string and calls itself for node stat which represents

the next instruction of the input program. The method is similar for all other

nodes.
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5.2.4 Petri Net Graph Generation

After the Java code is generated, the compiler goes on with the Petri Net

graph generation. The Petri Net graph models shown in Chapter 3 are saved

in a .xml �le. Thus, in this section, I'm going to describe how the compiler

can merge multiple �les in order to obtain a Petri Net graph for the whole

input program.

petriNetGeneration() method

This method is implemented also in each node class. It adds in ArrayList<Tuple>

inputFiles the corresponding Petri Net graph �le according to models pre-

sented in Chapter 3. Now, I will brie�y present some of the most useful classes

and variables, that I implemented, in order to better understand what this

method does.

• filesNode class: this class contains all the informations about the Petri

Net �les. Main class �elds are:

� Integer whereToPut: this integer can have values from 0 to 3.

This number represents the "level" of the current instruction, in

other words it indicates if there exists a paralell process or not. It

will be used in the ReadXmlFiles class of which I will later discuss.

� Integer recursion: 0 if there is not recursion, 1 otherwise.

� ArrayList<Tuple> inputFiles described above.

• class Tuple: I created this class in order to have all �les informations

in one element of the array.

• arrayFilesNode fileMethod is a node �eld that contains all Petri Net

�les of methods declared in the input program with all their informa-

tions about recursion, the existence of a new thread and so on. In fact,

it is an ArrayList of filesNode.
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Here below is shown the code of the node notify petriNetGeneration()

method.

1 public void petriNetGeneration() {

2 if(fileMethod.ArrayFiles.size()!=0 AND fileMethod.ArrayFiles.get

↪→ (fileMethod.ArrayFiles.size()-1).whereToPutMethod == 1){

3 Tuple tuple = new Tuple("sixthCase.xml", file.whereToPut,

↪→ fileMethod.ArrayFiles.get(fileMethod.ArrayFiles.size()

↪→ -1).recursion);

4 fileMethod.ArrayFiles.get(fileMethod.ArrayFiles.size()-1).

↪→ inputFiles.add(tuple);

5 }

6 else{

7 Tuple tuple = new Tuple("sixthCase.xml", file.whereToPut);

8 file.inputFiles.add(tuple);

9 }

10 if(stat!=null){

11 stat.petriNetGeneration();

12 }

13 }

At line 2, it checks if there exist some methods declared in the input program.

If yes, the methods puts the corresponding Petri Net �le in the fileMethod

array or otherwise in the main array of �les. Then, it goes on with the visit

of all the parts of the program, if there are some other instructions in the

body of the notify. Others petriNetGeneration() methods are very similar.

ReadXmlFiles class

ReadXmlFiles is the main class of the compiler concerning the Petri Net graph

generation. In fact, I merged all the xml Petri Net �les using this class and

its main method readXMLfile(ArrayList<Tuple> inputFiles, int len). As

an overview we can consider this function as a function that takes in input
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the ArrayList of �les and its length. At the beginning of the code, there

is a for loop over all the input �les, the function creates the new .xml �le,

called mergedXml, in the �rst iteration of the loop and then updates it with

the new merged �le. Thus, the function works with two .xml �les at a time:

the mergedXml (after the �rst iteration) and the one to add. It merges them

deleting the last place of the �rst Petri Net graph and replacing it with the

�rst place of the second �le. Moreover, at each iteration the function updates

the names of places, transitions and archs of the second �le concatenating a

letter taken from the array of string LETTERS which contains all the letters

of the alphabet. That is because the names of the places shall be unique in

order to properly execute a Petri Net graph and obtain the �nal markings.

The x, wx and nx places are not changed, because there must be just one

in common for each �le. Now, I will discuss what this method does in more

details.

1 for (int i=0; i<noDouble1.size(); i++){

2 if(nodeNames.contains(noDouble1.get(i))){

3 find1 = true;

4 temp1 = noDouble1.get(i);

5 }

6 if(nodeNames.contains(noDouble2.get(i))){

7 find2 = true;

8 temp2 = noDouble2.get(i);

9 }

10 if(nodeNames.contains(noDouble3.get(i))){

11 find3 = true;

12 temp3 = noDouble3.get(i);

13 }

14 }

15 if(nodeNames1.get(j).equals("x") AND find1){

16 Element toErase = (Element) nodes1.item(index);

17 toErase.getParentNode().removeChild(toErase);
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18 flag1 = true;

19 }

20 else if(nodeNames1.get(j).equals("nx") AND find2){

21 Element toErase = (Element) nodes1.item(index);

22 toErase.getParentNode().removeChild(toErase);

23 flag2 = true;

24 }

25 else if(nodeNames1.get(j).equals("wx") AND find3){

26 Element toErase = (Element) nodes1.item(index);

27 toErase.getParentNode().removeChild(toErase);

28 flag3 = true;

29 }

30 else{

31 index ++;

32 }

The code above is the part of the function that works with x, nx and wx

places. In particular, it checks if in the mergedXml �le there are these places.

If yes, the boolean �ag find is set true and it looks for the same place in

the current �le. If it �nds it, then it removes the place because they shall be

unique and set boolean flag as true. This is the same for all the x, nx and

wx places. In details:

• nodeNames1 is the array list of string that contains all the names of the

places of the second .xml �le;

• noDouble1, noDouble2 and noDouble3 contain the strings x, nx and wx,

respectively and their concatenations with the elements of LETTERS;

• find1, find2 and find3 are the boolean variables that indicate that in

mergedXml �le there are x, nx and wx places;

• find1, find2 and find3 are the boolean variables set true if x, nx and

wx places are also in the second �le.
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1 if(nodeNames.get(j).contains("nuPN") || j == indexToDel){

2 Node varNode = nodes.item(j);

3 String name2 = ((Element) varNode).getAttribute("id");

4 Element tNode = null;

5 for (int k=0; k<nodes1.getLength() ; k++){

6 if(((Element) (nodes1.item(k))).getAttribute("id").

↪→ contains("P0")){

7 tNode = (Element) nodes1.item(k);

8 var = k;

9 }

10 }

11 varNode.getParentNode().insertBefore(doc.adoptNode(nodes1.item(

↪→ var).cloneNode(true)), varNode);;

12 varNode.getParentNode().removeChild(varNode);

13 tNode = (Element) nodes.item(j);

14 String name = tNode.getAttribute("id");

15 for(int k1 = 0; k1<arcs.getLength(); k1++){

16 if(arcNames.get(k1).contains(name2)){

17 Element temp = (Element) (arcs.item(k1));

18 String tempName = temp.getAttribute("id");

19 temp.removeAttribute(name2);

20 if(temp.getAttribute("source").equals(name2)){

21 String tempName2 = temp.getAttribute("source");

22 temp.setAttribute("source",tempName2.replace(name2,name

↪→ ));

23 }

24 if(temp.getAttribute("target").equals(name2)){

25 String tempName2 = temp.getAttribute("target");

26 temp.setAttribute("target",tempName2.replace(name2,name

↪→ ));

27 }
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28 name2 = temp.getAttribute("source").concat(" to ").concat(

↪→ temp.getAttribute("target"));

29 temp.setAttribute("id",tempName.replace(tempName,name2));

30 name2 = ((Element) varNode).getAttribute("id");

31 }

32 }

33 }

The previous code is a part of the readXMLfile function in which I deleted

the last place of the mergedXml �le and replace it with the �rst node of the

next �le. The integer variable indexToDel is the index of place that will be

deleted. It is stored in the previous iteration of the for loop. In the code

above, I check if the current node (index j) is the node to be deleted. If

yes, I look for the �rst place of the current �le, that is the place named

P0. When found, I store its index in var. Then, I add at mergedXml �le this

place and delete the old one. In the second part of the code, I change the arcs

names: in fact, in order to merge the �les, it is necessary to replace the target

and/or the source of those transitions which goes from/to the deleted place.

After that, the function insert all the remaining nodes, arcs and transitions

in mergedXml �le and saves the modi�ed �le. Thus, we obtain a Petri Net

graph for the input program ready to be analyzed. At the end, I show what

this function does with the following example.

Example 7. The aim of this example is show how the readXMLfile works.

We want the Petri Net graph of the following sample program:

sync(x){ notify(x ). }.

As shown in a previous chapter, the Petri Net model for syncronized and

notify are the ones in Figure 5.1:
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Figure 5.1: Petri Net graph for the synchronized and notify methods.

Thus, with the petriNetGeneration() method the compiler stores in an

array the �les corresponding to the Petri Net graph models, in this case

they are the �les of synchronized and notify, but also the one which is

the representation of
x• 0 according to the transition relations described in

Chapter 2. In Figure 5.2 is shown the resulting Petri Net graph. We notice

Figure 5.2: Example of Petri Net graph generation.

that there is only one place named x and the other places and transitions



5.2 Implementation 47

names are concatenated with a letter. In fact, the elments of the second

�le (the one about notify) are concatenated with the b and the ones of the

third �le with the c. This guarantees us the correctness of graph execution,

because there are not places or transitions with the same name. Moreover, as

described before, the last place of the synchronized model has been replaced

with the �rst of the notify graph.
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Chapter 6

Evaluation

In this chapter I will describe the results achieved for the analysis of deadlocks

with Petri Net graph.

6.1 Results

I will describe how compiler works for examples presented in Chapter 2.

Thus, they will be translated into Java and represented as Petri Net graphs

thanks to models presented in Chapter 3.

Firstly, I'll show a sample program deadlock-free with an easy Petri Net

graph. In the second example presented a deadlock may occur, depending

on which process I decide to wake up. It the end, I will describe an example

with recursion. Even if it is deadlock-free, this example is interesting to show

because the deadlock-free condition in Petri Net graph is di�erent from the

�rst case.

6.1.1 A Deadlock-free Example

The �rst example is a sample program with only one object.

sync(x){ (ν sync(x){ notify(x ).wait(x ). }. ) wait(x ).notify(x ). }.

49
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This code is deadlock-free as seen in Chapter 2. Our analysis gives the

same result. The compiler has translated the program in Java code reported

below. Moreover, it is represented by the Petri Net graph in Figure 6.1

obtained thanks to model reported in Chapter 3. The PIPE animation mode

let us follow the graph execution. At the end of this phase, I obtain the �nal

markings represented in the right image in 6.1. This con�guration means that

the program is deadlock-free because tokens are in the x and �nal places.

1 public static void main(String[] args) {

2 Object x = new Object();

3 synchronized(x){

4 Thread t1 = new Thread(){

5 public void run(){

6 synchronized(x){

7 x.notify();

8 try {

9 x.wait();

10 } catch (InterruptedException e) {

11 };

12 }

13 }

14 };

15 t1.start();

16 try {

17 x.wait();

18 } catch (InterruptedException e) {

19 };

20 x.notify();

21 }

22 }
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Figure 6.1: Petri Net graph and its execution.

The graph has two initial tokens, one in the x place and the other in the
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�rst place of the graph. After the execution, one token is in x place and the

other is in the �nal node. Thus, this representation of the program is correct

because analysing the Petri Net graph I obtain that it is deadlock-free.

6.1.2 An Example with Deadlock

The following code is the one I will analyze using the technique developed in

previous chapters.

(ν sync(x){ notify(x ).wait(x ). }. )sync(x ){ wait(x ).notify(x ). }.

In this case, I have two parallel processes because the ν is out of the �rst

synchronized. So, the compiler gives the following Java code:

1 public static void main(String[] args) {

2 Object x = new Object();

3 Thread t1 = new Thread(){

4 public void run(){

5 synchronized(x){

6 x.notify();

7 try {

8 x.wait();

9 } catch (InterruptedException e) {

10 };

11 }

12 }

13 };

14 t1.start();

15 synchronized(x){

16 try {

17 x.wait();

18 } catch (InterruptedException e) {

19 };

20 x.notify();}}
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If I run the code above, a deadlock does not occur. This is caused

by the fact that Java executes �rstly the thread t2 and then the second

synchronized with its body. This is the same result shown in the graph in

Figure 3.2 in Chapter 2. Thus, with a small change in the compiler I obtain

the following code in which a deadlock occurs. The di�erence is that thread

t1 is the �rst to be executed.

1 public static void main(String[] args) {

2 Object x = new Object();

3 Thread t1 = new Thread(){

4 public void run(){

5 synchronized(x){

6 x.notify();

7 try {

8 x.wait();

9 } catch (InterruptedException e) {

10 };

11 }

12 }

13 };

14 Thread t2 = new Thread(){

15 public void run(){

16 synchronized(x){

17 try {

18 x.wait();

19 } catch (InterruptedException e) {

20 };

21 x.notify();}

22 }

23 };

24 t1.start();
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25 t2.start();}

Figures 6.2 are the Petri Net graph and its �nal con�guration for this

example. The di�erence is that there is not the synchronize Petri Net model

at the beginning of the graph and this is the cause of the deadlock. If

I execute the t2 part of the Petri Net graph before than the t1 one, I will

obtain a deadlock-free con�guration and this is in line with the results gained

before.



6.1 Results 55

Figure 6.2: Petri Net graph and its �nal con�guration.

6.1.3 A Recursive Program

In this section I will show an interesting example with recursion. The pro-

gram analysed is the following:
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F (x) = sync(x){ notify(x ).wait(x ). }. F (x )

G(x) = wait(x ).notify(x ).G(x )

sync(x){ ( νF (x)) G(x) }.

Below the corresponing Java code is shown. I focus my analysis on the Petri

Net graph of this program, reported in Figure 6.3.

1 public static void F(Object x){

2 synchronized(x){

3 x.notify();

4 try {

5 x.wait();

6 } catch (InterruptedException e) {

7 };

8 F(x);

9 }

10 }

11

12 public static void G(Object x){

13 try {

14 x.wait();

15 } catch (InterruptedException e) {

16 };

17 x.notify();

18 G(x);

19 }

20

21 public static void main(String[] args) {

22 Object x = new Object();

23 synchronized(x){

24 Thread t1 = new Thread(){
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25 public void run(){

26 F(x);

27 }

28 };

29 t1.start();

30 G(x);

31 }

32 }

In Figure 6.3, on the right, the red transitions are the enabled ones.

Performing the Petri Net graph of this example, I obtain always that con�g-

uration and it means that a deadlock does not occur. Thus, analysing Petri

Net graph of the program it's possible to detect if a deadlock occurs. In

this case this is very useful, in fact running the corresponding Java code the

program does not end because of the recursion.
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Figure 6.3: Petri Net graph and its con�guration.



Chapter 7

Conclusions and Future

Developments

In my thesis I have de�ned a technique for detecting wait - notify deadlocks

in Java programs with one object. These methods modify the states of

threads as regards locks: the thread executing x.wait() is suspended and

the corresponding lock on x is released; the thread executing x.notify()

wakes up one thread suspended on x, which in vain will attempt again to

grab x. Programming patterns with wait - notify methods may be faulty.

In fact, it may happen that the notify is performed before a matching wait.

Therefore the corresponding waiting thread may risk to blocked forever.

In this thesis, I have analyzed the correctness of wait - notify patterns

(e.g. deadlock freedom) by using an analysis model that is a basic concurrent

language with a formal semantic.

Every process of the language has been modeled into a Petri Net graph.

I designed a compiler that takes in input a program and returns the corre-

sponding Petri Net graph for each process.

By means of an o�-the-shelf solver for Petri Net (PIPE [15]), I have analyzed

the reachability tree in order to check if a deadlock occurs or not.

This work is a basic step of a more complex and complete project, that

aims at de�ning a general technique for detecting deadlocks in Java. In

59
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particular, the technique de�ned in my thesis will be generalized to programs

with two or more objects and combined with previous works [12, 6].
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