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Résumé – Nous proposons un détecteur APP de faible complexité capable de démoduler les constellations MAQ émises sur un canal à antennes
multiples (jusqu’à 16 antennes). Le détecteur APP recherche le point de vraisemblance maximale (VM) en appliquant un décodage par sphères
accéléré. A l’aide d’une énumération de Pohst à double récursion, il construit ensuite une liste centrée sur le point VM afin d’évaluer les
probabilités a posteriori. Le rayon de la liste est choisi de façon à stabiliser la taille de la liste et tenir compte des frontières de la constellation
finie. En utilisant une modulation MAQ-16 sur un canal symétrique à 4 antennes, un turbo code de rendement 1/2 et des blocs de longueur 20000
bits, nous observons une différence de 1,56 dB seulement entre les performances simulées et la capacité du canal au sens de Shannon.

Abstract – We propose a low complexity APP detector for demodulating QAM constellations transmitted on a MIMO channel (up to 16
antennas). The APP detector starts by applying an accelerated sphere decoder to find the maximum likelihood (ML) point. Then, using a double
recursion Pohst enumerator, a shifted list is built around the ML point to evaluate the output APP. The list radius is selected in order to control
the list size and to cope with the boundaries of the finite multiple antenna constellation. With a rate 1/2 turbo code and a blocklength equal to
20000 bits, we achieved a bit error rate at 1.56 dB from Shannon capacity limit while transmitting a 16-QAM on a 4x4 multiple antenna channel.

1 Introduction and system model

The growing importance of iterative processing in communica-
tion systems [2] during the last decade has permitted to attain
exceptional performance on different kind of data transmis-
sion channels, e.g., bit-interleaved coded modulations (BICM)
[12][4] on multiple antenna (MIMO) channel combined with
joint detection and decoding at the receiver side [3][7]. When
the channel number of dimensions and the number of points per
dimension increase, the classical exhaustive soft output channel
detector becomes intractable. We present a new non exhaustive
spherical list centered on the maximum likelihood (ML) point
to compute weighted channel likelihoods. For example, our
APP detector achieves a bit error rate at 1.56 dB from Shannon
capacity limit while transmitting a 16-QAM on a 4x4 multiple
antenna channel.
Information bits are protected by an error-correcting code and
interleaved by a pseudo-random permutation. The coded bits
are then mapped into points of a 16-QAM constellation. Sym-
bols are conveyed on a multiple antenna or multiple input mul-
tiple output (MIMO) channel with ��� transmit antennas and ���
receive antennas. Let �����
	�� denote the MIMO channel input
and �����	�� the MIMO channel output. Channel input and
output are linked via the non-selective Rayleigh fading model:������������������ (1)

where ��� � !#"%$'& is an � �)( � � complex matrix. The entries!#"*$ of the channel matrix are complex random variables with a
Gaussian probability distribution of zero mean and unity vari-
ance. This complex system can easily be converted into a real
system and viewed as a lattice + in , - 	/. [5] perturbed by addi-

tive noise. The real space dimension is �10 ��2 �3� . The equality�4���5� is now extended to the real space 6
	5. to get�4���87:9;�<�46 	/. 9=���=> 	5. (2)

A lattice + is a discrete subgroup of 6?	/. [5], i.e., it is a > -
module of rank �@0 . In (2), the lattice + is generated by the� 0A( � 0 real matrix 7 �B� 7C"%$D& which is derived from the
channel matrix � by the following simple relation7 "*$ � EGF ! "%$ H ! "%$I H !#"*$ F !J"%$LK (3)

where
F ! "%$ and H ! "%$ denote the real and imaginary part of ! "%$ ,

respectively. The matrix 7 is called lattice generator matrix.
Geometrically, the point � belongs to a discrete infinite set of
points satisfying a group structure. When � is restricted to a
finite QAM integer constellation, then � belongs to a finite lat-
tice constellation denoted by M . With the above notations and
a 2�N -QAM modulation, the cardinality of M is 25NO	 � .
Some evident capacity optimization arguments led us to choose�3� � �P� . The lattice representation of the MIMO channel al-
lows us to use related theory and decoding algorithms adapted
to digital communications and particularly to finite constella-
tions problems.

2 Our APP detector for multiple anten-
nas

The direct method for establishing a non exhaustive APP de-
tector is to build a spherical list of lattice points around  . Such
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lattice point enumeration is achieved in polynomial time via
Pohst enumeration [8][6] inside a sphere of squared radius ��� .
The number ��� of lattice points inside the sphere can be well
approximated by

� ���
� 	5. ( � 	 .�
	��� +�� (4)

where
� 	/. is the volume of a unit radius sphere in , - 	 . and�
	��� +�� ��� �����  7���� is the lattice fundamental volume. Such a

method applied in [7] is still too complex: the lattice constella-
tion M to be decoded is finite. Centering the list around  makes
� � completely unstable. The instability is due to the additive
noise and to the exact position of the transmitted point withinM . Thus, there is no evident relation similar to (4) between ���
and ��� , the effective number of constellation points inside the
spherical boundaries.

We propose a spherical list centered around the ML point ����� .
Since � �!� belongs to M#"�+ , the fraction ���%$%�&� can be well
selected depending on the position of �'��� and the shape ofM . The fraction � � $%� � should be controlled by taking into
account the influence of these two parameters. As an exam-
ple, consider a cubic integer constellation M in 6 	 . . We can
evaluate the average number of points in the list by the simple
hypothesis that it is divided by 2 for each dimension where the
ML point is on the edge of the constellation. For a 16-QAM
with �3� � ��0 $/2 transmit antennas, we have ( "	 . ( 2�	 . points
with ) components on the edge of the constellation. This leads
to an average number of points for 16-QAM equal to

* � � � & � 	 .+ "-,�. ( "	 .�/ 2�	 .0 	/. / 2 " � � �
E21
0 K 	 . � � (5)

When � � � 0
, the average reduction factor is about 34$
365 .

Hence, in the general case of a random (non-cubic) constel-
lation M given by the MIMO channel, we can adjust the sphere
radius by taking into account the number of hyperplanes �8769 �
at the constellation boundaries passing through the ML point.
The number of expected points ��� is multiplied by : � �;769 � & ,
an expansion factor of the list size which depends on �<769 � .
Indeed, the higher the number of hyperplanes the ML point be-
longs to, the less the points in the list. For the special case of
MIMO channels family, the empirical choice : � ) & �>=?)�$�24@ �A3
yields good results.

The number � � is also influenced by the shape of M . A non-
cubic shape with an acute corner attenuates the fraction � � $B� � .
We selected the normalized distance C ED � as a figure of merit
for the shape of M :

C ED �?� �F�G N " 	 ED ��
	��� +�� �IH 	/. (6)

where ���G N " 	 ED � is the minimum diagonal element of the Gram
matrix D � 7 7 � . Then, we introduce an additional expan-
sion factor J�KML#3 and apply the simple rule:

C ND ��LOC ";P J'K �QJ " (7)

In the 8-dimensional real space, one may take CSR � 1 ��T , C � �U �FT , JVR � 0 , and J � �W3 U . Finally, the radius � of the shifted
spherical list X should be computed according to

��� E : � � 769 � & ( J K ( � � ( �
	��� +��� 	 . K
YZ .

(8)

Our APP detector starts by applying an accelerated sphere de-
coder to find � ��� and then it builds the list using a double
Pohst recursion for channel likelihoods evaluation. The final
APP is determined by mixing the likelihoods and the a priori
information via a sum-product formula. It is worth to note that,
except for the final sum-product formula, the main processing
done by our APP detector (accelerated sphere decoder+shifted
spherical list) is outside the iterative detection/decoding loop.

2.1 Accelerated sphere decoding algorithm

A very efficient algorithm to find the closest point in a lattice
when observing any point in the real space is the sphere de-
coder [10][11]. The main idea of this algorithm is to enumer-
ate the lattice points that belong to a sphere centered on  and
to calculate the corresponding Euclidean distances. The point
that minimizes the distance is called the closest point ( � ��� ). If
no point is found, the radius of the sphere should be enlarged.
Each time a point is found, the radius of the sphere can be re-
duced to the distance of this new point, which limits the number
of points enumerated but still ensures the closest point crite-
rion.

There are two main strategies for point enumeration. The first
was proposed by Pohst [8][6] and applied by Viterbo et al (VB)
[10][11] to digital communications. The second was proposed
by Schnorr and Euchner [9] and applied by Agrell et al (AEVZ)
in [1]. On multiple antenna channels, VB and AEVZ complex-
ities are similar at moderate and high signal-to-noise ratios. At
low signal-to-noise ratios, AEVZ may show a speed improve-
ment with respect to VB by a factor varying from 1 up to 4.
We modified AEVZ sphere decoder in order to take into ac-
count the QAM constellation boundaries. We did not apply
basis reduction (LLL or KZ) to the accelerated sphere decoder
because basis reduction is incompatible with a fast checking of
the QAM constellation boundaries. The finite constellation na-
ture of the system allows to significantly reduce the complexity
of the sphere decoder by dynamically modifying the bounds of
research depending on those of the constellation. The acceler-
ated sphere decoder is capable of ML performance on MIMO
channels (up to 16 antennas) with a reasonable complexity (see
Figure 1).

We give below the complete steps of the modified AEVZ sphere
decoder.

Accelerated Sphere Decoder: applying Schnorr-Euchner strategy,
and taking into account the boundaries of the finite QAM constella-
tion



Input. A received point � , the generator matrix �������	�
����
of the lattice, the radius � of the sphere, and the bounds������� and ������� of the constellation. You can set the ra-
dius � to ��� . A slight gain in speed of at most 30% can
be obtained if � is linked to the Gaussian noise variance��� �"!$# or to the minimum distance %'& ���(� ��)*�

Output. The ML point �,+.- belonging to the constellation and its
squared Euclidean distance to �

Step 1. (Pre-processing) Compute the Gram matrix / � �0�21
and do a Cholesky decomposition / �43$3 1 , where 3
is lower-triangular. Compute the inverse 3657�83:9<;

Step 2. (Initialization) Set =?>A@BC%EDF@B7GH� � , IJGK�<� , %EDF@BMLNGO
, >AL"GP� 3 5 , � L"GRQ >AL?L�S , � L"GPTVUXW�� � LZY � ����� � ,� L[G\TVD]�^� � LEY � ����� � , compute _ � �]>,LLa` � Lb�dce� 3 5L?L � ,@Bd>dfgL7Gh@?D�ie�^�j_'�

Step 3. Compute �<>�k %EDF@?B2G %EDF@BMLl�4_ � . If ��>�k7%EDF@B�m=?>A@BC%EDF@B and IJn�po then go to 4 else go to 5 endif
Step 4. Compute for D �qo Y�rsr�rsYtIu` o >,L 9<;dv � Gw>AL v � `x_ 3 5L � ,

decrement I , set %EDF@BMLyGh�<>�k %EDF@?B , � L6GzQ >AL?L?S , � L$GTuUeW{� � LZY � ����� � , � LxG|TuD]�}� � LeY � ���?� � , _ � �]>AL?L	`� L �dce� 3 5L?L � , @Bd>df L Gq@?D]ie�}�j_'� , go to 3
Step 5. If ��>�k7%EDF@B~m�=?>A@BC%EDF@B then set �� G � , =?>A@BC%EDF@B:G��>�k7%EDF@B , else if I � � then return �� and terminate,

else increment I , endif. Compute � L
G � L$��@BC>Mf�L ,
if � L~m ������� or � Lu� ������� then @Bd>dfgLNG�`7@?BC>dfgL�`@?D�ie�^��@BC>Mf�LA� , � LyG � L���@?BC>dfgL endif. If � L	m � ����� or� Lu� � ����� then go to 5, endif. _~G��]>,L?L[` � L,�dc 3 5L?L ,@Bd>df L G�`7@Bd>df L `
@?D�ie�^��@BC>Mf L � , go to 3

2.2 APP evaluation based on a shifted
spherical list

Given a list X of constellation points in , - 	/. , the approximated
extrinsic probability � F� $ � of a coded bit � $ is given by the fol-
lowing normalized marginalization:

�� F� $ � � �4�?���X�}����� , Rt����� � E �X�	�C�?�'  �(¡ �C¢¢�£ ¢ K�¤ �Z¥, ${¦ F�D� �d§� �,�X� ��� � E � �	¨ �?�'  ¡ ¨ ¢¢C£ ¢ K�¤ �Z¥, $ ¦ F� � �d§
(9)

The subset M F� $ �W34� represents the set of points belonging toM with © -th bit equal to 3 . The a priori probabilities ¦ �� $6� of
the coded bits are fed back from a soft-input soft-output (SISO)
decoder of the error-correcting code included in the BICM. Our
spherical list X is centered around the closest point � ��� found
by the accelerated sphere decoder. The squared radius ��� has
been determined in a way to guarantee a moderate value for
����� � X � (e.g., 1000 points). The list size should not be too
small (e.g., 10 points!), in order to guarantee an APP quality
as if X � M . On the contrary, the list size should not be too
large (e.g., close to � M��O� 7 	�� ) in order to limit the detec-
tor complexity. The ML point and its neighbors in M yield the
dominant likelihoods in the extrinsic probability generated by
the APP detector.

The evaluation of the Euclidean distances between  and the
points in X has been optimized by applying a double Pohst re-
cursion while enumerating the lattice points. Indeed, the first
classical recursion is needed to check all constellation points
at a squared distance less than ��� from the center � ��� . We
added a parallel second recursion centered on  to reduce the

number of mathematical operations that compute the Euclidean
distances � �  I ��7 � � required in the extrinsic probability for-
mula.

We give below the complete steps of the double recursion point
enumeration inside X .

Soft Output Sphere Decoder: shifted spherical list enumeration with
a double Pohst recursion

Input. A received point � , a constellation point W +.- , the gen-
erator matrix ����� � �l� � � of the lattice, the radius � of
the sphere according to (8) below, and the bounds � �����
and � �a��� of the constellation

Output. A list ª of constellation points inside the sphere, a list of
squared Euclidean distances between � and each point in
the list

Step 1. (Pre-processing) Compute the Gram matrix / � �0�2«
and do a Cholesky decomposition / �¬363 1 , 3 is
lower-triangular. Cholesky decomposition produces an
upper-triangular matrix  � Q ® � ¯ S , ® �(� �°3 ���� , and® � ¯ �±3 ¯²� c 3 ��� for D �³o r?r?rd� � and ´ � Dµ� o r?r?rd� � .
Compute the inverse � 9�; , ¶ � � +.-V� W +.- � 9<; and_ � �'� 9<; . Notice that � +.- can be directly offered by
the accelerated sphere decoder (section 2.1)

Step 2. (Initialization) Set % � G·� � , ¸ � . G¹� � , ¸ º� . G¹� � .
For ´ ��o rsrsr � � set » ¯ G³¶ ¯ , »{º¯ G¼_ ¯ , DµG³� �

Step 3. Compute ½ � G TVD��¿¾µÀtÁ ¸ � cA® ��� �Â» �jÃ Y � �a���bÄ and� � G³TuUeW ¾µÅ ` Á ¸ � cA® ��� �Â» �jÆ Y � ���(� Ä ` o
Step 4. Increment � � . If � � �Ç½ � if DÈ� o compute É � G¶ � ` ��� and É,º� GÊ_ � ` ��� , compute ¸ � 9�; G|¸ � `® ��� ��» � ` � � � � and ¸ º� 9�; G¹¸ º� `Â® �(� ��»{º� ` � � � � , com-

pute » � 9<; G ¶ � 9�; �ÌË � .¯Íg� ® � 9�;dv ¯ É ¯ and »{º� 9�; G_ � 9<; � Ë � .¯²Í�� ® � 9<;dv ¯ É º¯ , decrement D and go to 3, else

compute �% � Gq� � `l¸ º� �¿® ;d; ��»{º; ` � ; � � , store � and �%
in ª , go to 4, endif, else if D � �<� terminate else incre-
ment D and go to 4, endif, endif

3 Computer simulations and
numerical results

The new soft output sphere decoder is applied to detect a 16-
QAM modulation transmitted on a

0 ( 0 ergodic MIMO chan-
nel. The error-correcting code is a rate 1/2 parallel Turbo code.
The RSC constituent is the classical 4-state (1,5/7) code. The
BICM interleaver size is 20000 bits. On Fig. 2, we can see
that the above coded system achieves a distance 1.56 dB from
Shannon capacity limit, under the constraint of a finite input
16-QAM alphabet. A supplementary signal-to-noise ratio gain
of 0.30dB can be obtained with a large BICM interleaver of
size 100000 at the expense of a greater latency.

References

[1] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest
point search in lattices,” IEEE Trans. on Information The-
ory, pp. 2201-2214, Aug 2002.

[2] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near
Shannon limit error-correcting coding and decoding:



1E-06

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

0 5 10 15 20 25 30 35

P
e(

bi
t)

Eb/N0 (dB)

1 antenna
2 antennas
4 antennas
8 antennas

16 antennas
Gaussian channel

FIG. 1: Performance of the accelerated sphere decoder (ML),
uncoded 16-QAM, ergodic Rayleigh MIMO channel, �@� ��P� � 1, 2, 4, 8 and 16 antennas.

turbo-codes,” Proceedings of ICC’93, Geneva, pp. 1064-
1070, May 1993.

[3] J. Boutros, F. Boixadera, and C. Lamy, “Bit-interleaved
coded modulations for multiple-input multiple-output
channels,” proceedings of the IEEE 6th International
Symposium on Spread Spectrum Techniques & Applica-
tions, New Jersey, September 2000.

[4] G. Caire, G. Taricco, and E. Biglieri, “Bit-interleaved
coded modulation,” IEEE Trans. on Inf. Theory, vol. 44,
no. 3, May 1998.

[5] J.H. Conway and N.J. Sloane, Sphere packings, lattices
and groups, 3rd ed., 1998, Springer-Verlag, New York.

[6] U. Fincke and M. Pohst, “Improved methods for calculat-
ing vectors of short length in a lattice, including a com-
plexity analysis,” Mathematics of computation, vol. 44,
pp. 463-471, April 1985.

[7] B. Hochwald and S. ten Brink, “Achieving near-capacity
on a multiple-antenna channel,” submitted to the IEEE
Transactions on Communications, July 2001.

[8] M. Pohst, “On the computation of lattice vectors of min-
imal length, successive minima, reduced bases with ap-
plications,” ACM SIGSAM Bull., vol. 15, pp. 37-44, Feb
1981.

1E-05

1E-04

1E-03

1E-02

1E-01

1E+00

5 5.1 5.2 5.3 5.4 5.5 5.6

B
it 

E
rr

ot
 R

at
e

Eb/N0 (dB)

iteration 1
iteration 5

iteration 10
iteration 15
iteration 20
iteration 25

FIG. 2: Performance of the soft output sphere decoder, rate 1/2
Turbo coded 16-QAM, ergodic Rayleigh MIMO

0 ( 0 channel,
Shannon limit is at

*�� $%� . � 0 / 5 dB.

[9] C.P. Schnorr and M. Euchner, “Lattice basis reduction:
improved practical algorithms and solving subset sum
problems,” Mathematical Programming, vol. 66, pp. 181-
191, 1994.

[10] E. Viterbo and E. Biglieri, “A universal lattice decoder,”
3 0 � N � Colloque GRETSI, Juan-les-Pins, pp. 611-614,
Sept. 1993.

[11] E. Viterbo and J. Boutros, “A universal lattice code de-
coder for fading channels,” IEEE Trans. on Information
Theory, pp. 1639-1642, July 1999.

[12] E. Zehavi, “8-PSK trellis codes for a Rayleigh channel,”
IEEE Transactions on Communications, vol. 40, pp. 873-
884, May 1992.


