
ALMA MATER STUDIORUM - UNIVERSITY OF BOLOGNA

SCHOOL OF ENGINEERING AND ARCHITECTURE

CASY Center for Research on Complex Automated Systems

DEI Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”

MASTER DEGREE IN AUTOMATION ENGINEERING

GRADUATION THESIS

in

System Theory and Advanced Control

AUTOMATIC SEARCH OF MISSING PEOPLE IN

AVALANCHES

CANDIDATE
Francesco Ricciardi

SUPERVISOR
Eminent Prof.

Lorenzo Marconi

CO-SUPERVISOR
Dott. Nicola Mimmo

Academic Year 2016/2017

Graduation Session III

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AMS Tesi di Laurea

https://core.ac.uk/display/154950299?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

One of the main source of danger for people practising activities in mountain en-

vironments is avalanches. In the early 70s has been commercialized the first model of

avalanche beacon transceiver: a device, composed by a transmitter and a receiver, spe-

cialized to the purpose of finding people buried under the snow. Since 2013, project

SHERPA is working to develop ground and aerial robots to support human in the search

of missing people in avalanches.

The aim of this dissertation is to provide a way to interface an avalanche beacon receiver

(ARTVA) with the autopilot module mounted on a quad-copter drone, and to study and

realize a software implementation of two automatic search algorithms, with the intention

of speeding up search operations with drones.

First we will focus on interfacing the ARTVA system with a quad-copter autopilot mod-

ule, named Pixhawk. This module embed a software, named PX4, which runs on a

real-time operating system (RTOS), and have several connection ports, among which

there is the serial one that we will use for our purpose. Then we will analyse how to use

the data coming from the ARTVA receiver to construct and implement the two search

algorithms. The idea is to generate set-points, based on the information coming from

the avalanche beacon receiver, and use them to feed the position controller which is

implemented in the PX4 firmware. Finally, we will execute simulations, provide results,

and investigate if a practical implementation is possible and what are the relative issues.

Le valanghe sono una delle principali fonti di pericolo per coloro che praticano attività in

montagna. All’inizio degli anni ’70 è stato commercializzato il primo modello di apparec-

chio di ricerca travolti in valanga: si tratta di un dispositivo, composto da un trasmettitore

e un ricevitore, specializzato per la ricerca di persone seppellite nella neve. Fin dal 2013,

3

4 ABSTRACT

il progetto SHERPA sta lavorando allo sviluppo di un sistema di robot terrestri e aerei

con lo scopo di supportare l’uomo nella ricerca di dispersi in valanga.

L’obiettivo di questa trattazione è quello di trovare un modo per interfacciare il sistema

di ricerca dispersi in valanga con il modulo autopilota montato su un drone quadricot-

tero, e di studiare e realizzare una implementazione software di due algoritmi di ricerca

automatica, cos̀ı da poter velocizzare le operazioni di ricerca con i droni.

In primis verrà realizzato l’interfacciamento tra il sistema ARTVA e Pixhawk, un modulo

autopilota per quadricotteri. Il suddetto modulo incorpora un software, chiamato PX4,

che esegue su un sistema operativo in tempo reale, e inoltre dispone di diversi connet-

tori, tra cui la porta seriale che verrà utilizzata al nostro scopo. Poi si indagherà come

utilizzare i dati ricevuti da ARTVA per costruire e utilizzare i due algoritmi di ricerca.

L’idea è quella di generare dei riferimenti, basandosi sui dati ottenuti dal ricevitore, e di

madmandarli al controllore di posizione già implementato nel firmware di PX4. Infine,

verranno eseguite delle simulazioni, verranno mostrati i risultati, e si cercherà di capire

se è possibile una implementazione pratica e quali sono i relativi problemi.

Contents

Abstract 3

1 Introduction 15

1.1 Motivations . 15

1.2 State of the art . 16

2 ARTVA system and search algorithms 19

2.1 ARTVA system interfacing . 19

2.1.1 ARTVA protocol data block . 21

2.1.2 Reading ARTVA data . 23

2.1.3 Data validation algorithm . 27

2.2 Flux Line search technique . 29

2.2.1 Mathematical description . 30

2.2.2 Implementation . 33

2.3 Extremum Seeking search technique . 35

2.3.1 SISO scheme and linear analysis 35

2.3.2 Non-local stability of non-linear case 38

2.3.3 Hybrid Extremum Seeking Control 43

2.3.4 Implementation . 47

2.4 General control scheme . 49

3 Results 51

3.1 Simulations . 51

3.1.1 Flux Line algorithm simulation 53

3.1.2 HESC algorithm simulation . 56

5

6 ABSTRACT

3.1.3 Algorithms comparison . 60

3.2 Practical implementation . 61

3.2.1 Test with motors off . 61

3.2.2 Test with motors on and no shielding 62

3.2.3 Test with motors on and standard aluminium shielding 63

3.2.4 Test with motors on and EMI aluminium shielding 64

Conclusions 65

A First Appendix 67

A.1 PX4 . 67

A.1.1 Flight stack . 67

A.1.2 Middleware . 68

A.1.3 NuttX . 68

A.2 Communication over serial port . 68

A.2.1 Asynchronous serial protocol . 69

A.2.2 Rules of serial communication . 70

A.3 Pubish/subscribe structure . 71

A.3.1 Adding a new topic . 72

A.3.2 Publish into a topic . 72

A.3.3 Subscribe to a topic . 73

A.4 ROS . 74

A.4.1 Creating a package . 74

A.4.2 Building the workspace and sourcing the setup file 74

A.4.3 ROS nodes . 75

A.4.4 ROS topics . 75

A.4.5 Launch a ROS node with a launch file 75

B Second Appendix 77

B.1 ARTVA system interfacing . 77

B.1.1 Reading ARTVA data . 77

B.1.2 Data validation algorith . 80

CONTENTS 7

B.2 Algorithms implementation . 84

B.2.1 Flux Line algorithm . 84

B.2.2 HESC algorithm . 86

Bibliography 89

List of Figures

1.1 Grid and Cross Flight algorithms operation 17

2.1 Magnetic dipole: moment and magnetic field 20

2.2 Data validation algorithm flowchart . 28

2.3 Flux Line search technique operation . 30

2.4 Extremum Seeking Control scheme for a static map 35

2.5 Extremum Seeking Control scheme for plants with dynamics 37

2.6 First order Extremum Seeking control scheme 40

2.7 Higher order Extremum Seeking control scheme 42

2.8 General control scheme . 50

3.1 Flux Line algorithm simulation case A 54

3.2 Flux Line algorithm simulation case B 54

3.3 Flux Line algorithm simulation case C 55

3.4 Flux Line algorithm simulation case D 55

3.5 Circle-shaped HESC algorithm simulation case A 56

3.6 Circle-shaped HESC algorithm simulation case B 57

3.7 Circle-shaped HESC algorithm simulation case C 57

3.8 Circle-shaped HESC algorithm simulation case D 58

3.9 Eight-shaped HESC algorithm simulation case A 58

3.10 Eight-shaped HESC algorithm simulation case B 59

3.11 Eight-shaped HESC algorithm simulation case C 59

3.12 Eight-shaped HESC algorithm simulation case D 60

A.1 Flight stack architecture . 68

9

10 LIST OF FIGURES

A.2 Example of parallel interface . 69

A.3 Example of serial interface . 69

A.4 Example of a serial data frame . 71

List of Tables

2.1 Protocol data block . 22

3.1 Algorithms comparison . 61

3.2 Test results: motors off . 62

3.3 Test results: motors on, no shielding . 63

3.4 Test results: motors on, simple aluminium shielding 63

3.5 Test results: motors on, EMI aluminium shielding 64

11

List of Achronyms

SHERPA Smart collaboration between Humans and ground-aErial Robots

for imProving rescuing activities in Alpine environment

ARTVA Apparecchio di Ricerca Travolti in Valanga, search device of peo-

ple overwhelmed in avalanches

RTOS Real-Time Operating System

ICAR International Commission for Apline Rescue

GPS Global Positioning System

CRC Cyclic Redundancy Check

SISO Single-Input Single-Output

SPA Semi-global Practical Asymptotically

HESC Hybrid Extremum Seeking Control

FIFO First In First Out

ROS Robot Operating System

ESC Electronic Speed Controller

EMI Electromagnetic Interference

API Application Programming Interface

13

Chapter 1

Introduction

The goal of this project was to study, realize and simulate automatic search algorithms

with the aim of implementing them on a quad-copter drone by means of an autopilot

module. The aforesaid algorithms have the purpose to guide the drone toward people

buried under the snow in avalanches, so to minimize the time spent on the search, and

ensure a prompt intervention from rescuers. Those algorithms are generated using data

coming from an avalanche beacon system (ARTVA).

Since February 1st 2013 the European project SHERPA[1] is involved in the development

of a mixed ground and aerial robotics platform to support human in search and rescue

activities in unfriendly and hostile environments, like the alpine rescuing scenario, which

is specifically targeted by the project.

1.1 Motivations

A research made by the International Commission for Alpine Rescue (ICAR)[2] shows

that about 150 people are killed by avalanches every year in Europe and North America.

The overall survival rate of avalanche victims is 77%, and it mainly depends on the

grade and duration of burial. The analysis of a Swiss sample showed that 39% of people

involved in an avalanche were completely buried, and the survival probability in those

cases is 47.6%, versus 95.8% in cases of partial burial. These data highlight that grade

of burial is the strongest single factor for survival.

The above mentioned analysis shows also that survival probability remains above 80%

15

16 CHAPTER 1. INTRODUCTION

until 18 minutes after burial, a lapse of time referred as survival phase, falling thereafter

to 32%, in the so-called asphyxia phase. Another noticeable decrease in survival occurs

after 90 minutes, due to hypothermia combined with hypoxia and hypercapnia. There-

fore, also the duration of burial is very important and has to be taken in consideration.

Asphyxia was found to be the most common cause of death, and may occur in combi-

nation with trauma and hypothermia. So, the main recommendation is to locate and

extricate buried victims as quick possible.

The objective of SHERPA is to use quad-copters, which are not slowed by the hostility

of the terrain, to perform an automatic and rapid search of the victim, in such a way to

speed up the human intervention.

1.2 State of the art

As far as now, the efficiency of quad-copter drones supported by ARTVA systems in

rescuing operations has been tested with the implementation of a two phases search al-

gorithm, while a terrain following one is in charge of making the vehicle maintain always

a certain altitude from the ground.

After take-off, the quad-copter reaches a defined altitude and starts the Grid Flight[3]

phase, during which it follows previously defined length parallel lines, placed at a certain

distance from each other. More precisely, the drone travels a line until its end, then it

move toward the next line following a trajectory perpendicular to the lines, and, once

reached the next line, it travels that line backward until the end, keeping on describing

a sort of grid-shaped path until the first signal coming from the beacon is acquired.

At this point, the Cross Flight phase starts, making the quad-copter perform the follow-

ing operations:

• Forward flight until the beacon signal is lost, storing the GPS position when it

happens; then, the flight segment continues to ensure avoiding false null signal

detection and, in the case, the GPS position is updated.

• Backward flight until the beacon signal is found again and continue flying until it

is lost, storing so the second GPS point.

1.2. STATE OF THE ART 17

• The autopilot module computes the midpoint between the two GPS acquired lo-

cation and lead the drone to it.

• Turn 90◦ and repeat the forward and backward flight in order to identify the next

two GPS points, namely the other two vertices of the cross.

• The autopilot module computes the midpoint between the two GPS acquired lo-

cation and flies the quad-copter to it.

This point should be the one with the highest signal strength corresponding to the

position of the transmitting beacon. The operation of this algorithm is shown in Figure

1.1. This search algorithm has been found to perform well, especially when wide areas

need to be surveyed. However, our purpose is to improve search times by replacing the

Cross Flight phase with an algorithm that is capable of drive the vehicle directly to the

position of the beacon transmitter.

Figure 1.1. Grid and Cross Flight algorithms operation: the blue arrows represent Grid Flight,

the green arrows represent Cross Flight, the red cross represents the transmitter’s position.

Chapter 2

ARTVA system and search

algorithms

Now we will analyse first the ARTVA beacon system and how to interface it to

Pixhawk autopilot module, and so to read and handle the data coming from the ARTVA

receiver with PX4 software running on the aforementioned module. Then we will study

two possible search algorithms and how to implement them. The description of PX4

software and some of its basic concept are reported in the first appendix, while all the

code used to realize the interfacing between the beacon receiver and the autopilot module,

the reading of data, and the implementation of the search algorithms, is reported in the

second appendix.

2.1 ARTVA system interfacing

The avalanche beacon system (ARTVA) used in our application includes a transmitter

and a receiver which can be mounted on the quad-copter drone and activated during the

search of missing people. Typical features of beacon transmitters are:

• carrier frequency of 457 kHz,

• up to 200 hours battery life,

• search range of about 50 metres.

19

20 CHAPTER 2. ARTVA SYSTEM AND SEARCH ALGORITHMS

ARTVA transmitter’s flux lines behave as the external magnetic field produced by the

magnetic dipole moment, represented in Figure 2.1; they propagates from a pole to

the opposite one, following an ellipse fashion with growing amplitude. Conversely, the

ARTVA receiver transform the signal received from the transmitter in two values:

Distance (d) Represents receiver’s distance from the transmitter and it is computed as

the inverse of signal’s intensity.

Angle (δ) It is the angle between the direction of the receiver and the line tangent to

the flux ellipse to which the receiver is located.

Figure 2.1. Magnetic dipole: the blue thick arrow represents the moment, the black thin

arrows represent the magnetic field.

It is possible to identify three operation zones, depending on the distance between the

transmitter and the receiver:

Outer zone The transmitter is too far from the receiver, the received distance value d

is equal to −1 or to the designed maximum value, depending on the model of the

receiver, while the received angle value δ is equal to zero.

Mid zone The receiver distance value d is in the range between 250 and the designed

maximum value, while the received angle value δ can vary between −90 and +90,

2.1. ARTVA SYSTEM INTERFACING 21

which are intended to be degrees, depending on the orientation of the receiver with

respect to the transmitter.

Inner zone The transmitter is close to the receiver (in a radius of about 3 metres), the

received distance value d is lower or equal to 300, while the received angle value δ

is equal to zero.

The middle and the inner zones are the useful ones, providing information about the

transmitter’s position, while we cannot conclude anything with the data obtained in the

outer zone, except that we are too far from the target.

2.1.1 ARTVA protocol data block

The message sent from the ARTVA receiver to Pixhawk autopilot module is a 32

byte length data block, with 8-N-1 data format, sent with a baud rate of 9600 bps. The

frequency of transmission is 5 Hz, so a new message is sent each 200 ms. Moreover, the

number format of the message is little-endian.

The structure of the data block is presented in Table 2.1: as we can see, the first 4 bytes

are reserved for the protocol header, bytes from 5 to 20 contains the useful data, byte

21 indicates the number of transmitter which is in focus, while byte 22 is an incremental

counter. Then there are a bunch of bytes, from 23 to 27, which are unused, followed by a

single byte which is used for the CRC-8 checksum. Finally, the last 4 bytes are reserved

for the protocol footer.

Protocol’s header and footer As said before, both the protocol’s header and footer

are 4 bytes length, and, as the names suggest, they are placed at the start and at

the end of the data block, respectively. They are used in the validity check phase

to distinguish between correct messages and broken ones. Both of them are a fixed

hexadecimal number, 0×BABEFADE for the header and 0×EDAFEBAB for

the footer, both expressed in little-endian number format.

Useful data The useful data of the messages are represented by 4 distances and 4

angles. The distance and angle values that we need depend on the number of

transmitter in focus, e.g. if transmitter in focus is the number 1, we need to

22 CHAPTER 2. ARTVA SYSTEM AND SEARCH ALGORITHMS

Byte # Description Data format Content range Unit

1 - 4 Protocol start unsigned int 0×BABEFADE -

5 - 6 Distance to transmitter #1 unsigned short 0...65535 cm

7 - 8
Angle of transmitter #1

(most left ... most right)
signed short −90...+ 90 ◦

9 - 10 Distance to transmitter #2 unsigned short 0...65535 cm

11 - 12
Angle of transmitter #2

(most left ... most right)
signed short −90...+ 90 ◦

13 - 14 Distance to transmitter #3 unsigned short 0...65535 cm

15 - 16
Angle of transmitter #3

(most left ... most right)
signed short −90...+ 90 ◦

17 - 18 Distance to transmitter #4 unsigned short 0...65535 cm

19 - 20
Angle of transmitter #4

(most left ... most right)
signed short −90...+ 90 ◦

21
Transmitter # in focus (0: no

transmitter already detected)
unsigned char 0...4 -

22
Data block counter

(incremental / free running)
unsigned char 0...255 -

23 unused unsigned char 0× 00 -

24 unused unsigned char 0× 00 -

25 unused unsigned char 0× 00 -

26 unused unsigned char 0× 00 -

27
unused, reserved for

CRC-16 Checksum
unsigned char 0× 00 -

28
CRC-8 Checksum

from byte 5 to 26
unsigned char 0...255 -

29 - 32 Protocol end unsigned int 0× EDAFEBAB -

Table 2.1. Protocol data block.

2.1. ARTVA SYSTEM INTERFACING 23

acquire values from distance 1 and angle 1. The distance to transmitter value is a

2 bytes unsigned integer number in the range between 0 and 65535, and represents

a distance in centimetres; the angle of transmitter value is a 2 bytes signed integer

number in the range between −90 and +90, and represents an angle in degrees.

Each byte contains an hexadecimal number and, as said before, all values are

expressed in little-endian number format, so we will need to use the techniques of

masking and bit-shifting to reconstruct the values in such a way we can use them

as decimal numbers.

Scrambler Another thing to take into account is that the data block is scrambled by

adding the hexadecimal number 0 × 55 to each byte, in such a way to avoid long

sequences of 0 and 1. Thus, for descrambling data, we have to subtract 0×55 from

each byte.

CRC-8 checksum The checksum is used to verify data integrity, detecting error that

may be introduced during the transmission. The CRC-8 checksum is a single byte

unsigned character, which can assume integer values between 0 and 255, generated

based on generator polynomial g(x) = x8 + x2 + x+ 1.

2.1.2 Reading ARTVA data

The procedure used to read the data sent through the serial port by the ARTVA

receiver is implemented in a Pixhawk module named artva, and is composed of the

following steps:

• setting up and opening of the serial port (autopilot module side);

• read the arriving message;

• check the validity of the message;

• parse the message.

After these steps are correctly executed, the decoded message is ready to be published

in the apposite topic. Basic concepts of communication over a serial port are reported

in the first appendix. Now we will analyse each step of the reading procedure.

24 CHAPTER 2. ARTVA SYSTEM AND SEARCH ALGORITHMS

Setup and open serial port

In this step, we first set up the port by specifying the uart name of the serial port

to be opened, in our case /dev/ttyS6 (which corresponds to the serial 4 port of the

Pixhawk), and the data format, which, as previously said, is 8-N-1 9600 bps baud rate.

Then we can open the serial port by associating a file descriptor fd to the open() function

as follows:

fd = open(port, O_RDONLY | O_NOCTTY | O_NDELAY);

Where port is the name of the serial port, and the other three terms in the second field

of the function are flags. If the file descriptor fd returns a value equal or lower than 0,

it means that the connection to the port is failed; otherwise, the setting up and opening

procedure is finished and we can go on reading the message.

Read the message

The read() function can read from a serial port only one byte for each call so, if we

want to read a packet of bytes, we have to perform a call of the read() function for each

byte. This means that in our case, in which we want to read a 32 byte data block, we

have to realize a read cycle by means of a while() loop, so to execute a single read() for

each byte. The reading algorithm is executed by calling the following function:

int read_port()

The while() loop does not start until the procedure reads a byte containing the hexadec-

imal number 0×DE, which is the first byte of the message’s header. This is a precaution

needed to avoid the corruption of the data. In fact, it may happen that one or more

bytes are skipped for any reason. If this happens, performing the read procedure by just

using the while() loop will result in having a message buffer in which the header, the

content and the footer are not in the right places, because each byte in the buffer has

been shifted from its original position. This will lead to read all non-valid message, since

now the first 4 bytes of the buffer do not contain the right values of the header (and the

same is for the last 4 bytes which does not match the footer), and it will be the same for

all the successive reading cycles.

2.1. ARTVA SYSTEM INTERFACING 25

By performing the read of the first byte out of the cycle, we can ensure that, even if there

is a lose of some bytes, the reading cycle does not start until the algorithm recognizes

the header’s first byte, and so the positions of the next message’s bytes are not shifted.

Moreover, the buffer is cleaned at each new message read procedure, and the data are

descrambled by subtracting the hexadecimal number 0× 55 to each byte.

Validity check

The check of the message validity is performed by just ensuring that the values of the

first 4 bytes and of the last 4 ones are equal to the values of the header and the footer.

To run the validity check algorithm, we have to call the following function:

int check_ARTVA()

If a message does not pass the validity check, it is discarded and the algorithm wait for

the next message.

Message parsing

This part of the reading procedure has the purpose of reorder the bytes which consti-

tute the useful part of the message, namely distances and angles values, so to transform

the number format from little-endian to big-endian. The techniques of masking and

bit-shifting, used for this transformation, can be summarized in the following steps:

• take the 2 bytes we want to transform (e.g. 00000010 00101001 in binary) and take,

as a mask, the hexadecimal number 0 × FF00, which corresponds to the binary

number 11111111 00000000, then perform an AND operation:

0000010 00101001 AND 11111111 00000000 = 00000010 0000000

• Shifting the first of the 2 so obtained bytes to the right 8 places, we have basically

found the first byte:

00000000 0000010

26 CHAPTER 2. ARTVA SYSTEM AND SEARCH ALGORITHMS

• Repeating now the same AND operation, but taking a slightly different mask,

namely the hexadecimal number 0 × 00FF , corresponding to the binary number

00000000 11111111:

00000010 00101001 AND 00000000 11111111 = 0000000 00101001

• Shifting these 2 bytes to the left 8 places by using the << 8 operator, we found

the second byte:

00101001 00000000

• Finally, summing up the 2 obtained bytes, we found the 2 bytes reordered in big-

endian number format:

00101001 00000010

To execute the message parsing, this function must be called:

int parse_ARTVA()

By means of the masking and bit-shifting techniques applied on the message sent by the

ARTVA receiver, we are able to reconstruct the distances and the angles values expressed

in decimal numbers.

Publishing data

When the reading procedure is complete and the message has been correctly decoded,

the values of distances and angles, the value representing the transmitter in focus, and

the value of the data block counter are published into a topic named artva data so that

they can be recalled and used in real-time by the Pixhawk module which performs the

ARTVA data validation and the set-point generation. The string of code used to publish

the data is the following:

orb_publish(ORB_ID(artva_data), artva_topic_pub, &sens);

The publish/subscribe structure and how to use it is described in the first appendix.

2.1. ARTVA SYSTEM INTERFACING 27

2.1.3 Data validation algorithm

Once a new ARTVA measure has been read, we need to check if it is a valid one, so to

discard all eventual wrong values coming from disturbances and electromagnetic noises.

In order to check the validity of a measure, we have to check if it is consistent with

the last values found, namely if it does not differ too much from them. To perform this

data validation, the PX4 module set point, which is in charge of computing the set-point

values (position or velocity, depending on the algorithm in use) to feed the controller,

contains also a two-phase validation procedure.

The first thing to do is subscribe to the topic containing the data we need: the topic

containing the data read from ARTVA, and the one containing the vehicle position, since

we will later need to know the yaw angle of the quad-copter. We can subscribe to those

topics by means of the following strings of code:

orb_check(artva_topic_sub, &updated);

if (updated) orb_copy(ORB_ID(artva_data), artva_topic_sub, &sensor);

orb_check(yaw_topic_sub, &updated);

if (updated) orb_copy(ORB_ID(vehicle_local_position), yaw_topic_sub, &pos);

The set point module runs first a parse algorithm to determine which of the four pairs

of values (distances and angles) are the interesting ones, then executes the following two

functions:

• first validation,

• step validation,

which together constitute the data validation algorithm. A flowchart of the algorithm is

shown in Figure 2.2.

Parsing data

The parsing function decides which distance and angle values to take in consideration

by just selecting the distance value which is below the admissible threshold, imposted to

2500 (about 25 metres), and its relative angle value. If there are no distances values below

the threshold, the function says that no transmitter has been detected. This function

28 CHAPTER 2. ARTVA SYSTEM AND SEARCH ALGORITHMS

Figure 2.2. Data validation algorithm flowchart.

also imposes the validity ranges for distances and angles to be used in the validation

procedure. Parsing of data is performed by calling the following function:

int parse_data()

First validation

The first validation procedure aims to find fk consecutive consistent values, where

fk is a tunable coefficient, checking consistency of both distances and angles. If it suc-

ceeds, the algorithm proceeds to the next validation phase; otherwise, if a non consistent

2.1. ARTVA SYSTEM INTERFACING 29

values is found before collecting fk consecutive consistent values, the procedure restarts.

Consistency of the values is checked by using the validity ranges defined in the parsing

function:

if current value ∈ (last value∓ validity range)

then current value is valid

Angles values are considered in modulus, since there are points in which they can change

from −90 to +90. Once fk consecutive consistent values are found, and the algorithm

can move to the next phase, the last arrived values are used as sample values for the

next validation procedure. To execute the first validation algorithm we have to call the

following function:

int first_validation()

Step validation

The step validation procedure compares each new arriving distance measure with the

sample value:

if current value ∈ (sample value∓ validity range)

then current value is valid

If the measure is consistent, then the distance and the angle values can be used to

compute the set-point, and so they are marked as refer values for the generating set-point

algorithm. If a non consistent measure is found, the values are discarded, the validity

ranges are enlarged, and the check is repeated by using the next arriving measure. After

that sk non valid measures are found, the first validation procedure must be repeated.

Also sk is a tunable coefficient. The step validation algorithm function can be called

with the following string of code:

int step_validation()

30 CHAPTER 2. ARTVA SYSTEM AND SEARCH ALGORITHMS

2.2 Flux Line search technique

The first algorithm we are going to present is based on the fact that the ARTVA

transmitter behave like a magnetic dipole. The main idea is to exploit this characteristic

to align the drone to a flux line, and make the vehicle follow it until it reaches the beacon

transmitter. Practically speaking, at each new ARTVA data received, we want the drone

to compensate its yaw inclination with respect to the line tangent to the flux ellipse, and

to move along that direction, as it is shown in Figure 2.3. The output of the algorithm

will be a velocity set-point (and also a yaw correction).

Figure 2.3. Flux Line search technique operation: the red arrow represents the velocity

set-point, the light blue arrows represents the yaw correction.

2.2.1 Mathematical description

The drone is guided toward the victim by means of the following reference velocity[4]:

v∗(τ) = vδ(k)
vmaxKd(k)√

1 +K2d2
(2.1)

2.2. FLUX LINE SEARCH TECHNIQUE 31

valid ∀τ ∈ [k, k + ∆T], where

vδ =

cos δ(k)

sin δ(k)

0

Moreover, K is a tunable coefficient, while vmax represents the drone’s maximum speed

in the horizontal plane. The yaw reference, designed to make the X-axis of the drone’s

reference frame aligned with the direction of v∗(τ), is computed by means of the following

law:

ψ∗(τ) = ψ(k) + δ(k) (2.2)

valid ∀τ ∈ [k, k + ∆T]

Stability analysis

For the purpose of analysing the stability of the search based on flux lines, we can

represent the transmitter’s nominal magnetic field as follows:

H =
1

4πr5
Am (2.3)

where

A =

2x2 − y2 − z2 3xy 3xz

3xy 2y2 − x2 − z2 3yz

3xz 3yz 2z2 − x2 − y2

and r2 = x2 + y2 + z2 is the actual Cartesian distance from the transmitter to the

receiver, and m = [mx my mz]
T represents the transmitter magnetic moment, in the

inertial reference frame. Furthermore, to reduce the calculus complexity, we can centre,

without loss of generality, the inertial frame Fi on the transmitter, which is generically

oriented on the inertial xi-zi plane. Given Hxiyi = [Hxi Hyi]
T , projection of H on the

inertial xi-zi plane, the following analysis is conducted by imposing the X-axis of the

drone’s reference frame aligned with the Hxiyi vector, the Z-axis of the drone’s reference

32 CHAPTER 2. ARTVA SYSTEM AND SEARCH ALGORITHMS

frame parallel to the inertial zi-axis, and the Y -axis of the drone’s reference frame aligned

consequently. Finally, the centre O of the drone’s reference frame is placed on the inertial

xi-yi plane at the coordinates identified by means of the couple (x, y). Given the time

instant k, it is possible to introduce a polar coordinate change:x(k)

y(k)

 =

ρ(k) cos θ(k)

ρ(k) sin θ(k)

 (2.4)

Then, the vector Hxiyi can be described in terms of its parallel and perpendicular com-

ponents with respect to the radius ρ(k):H‖
H⊥

 =

 cos θ(k) sin θ(k)

− sin θ(k) cos θ(k)

Hxi

Hyi

 (2.5)

Assuming that the inertial drone’s reference velocity v∗i (k) is taken along the direction

of the vector Hxiyi with modulus ||v∗(k)|| > 0, we have that:v
∗
ix(k)

v∗iy(k)

 =
||v∗(k)||
||Hxiyi ||

Hxi

Hyi

 (2.6)

which can also be expressed in terms of parallel and perpendicular components with

respect to the radius ρ(k): v
∗
i‖

(k)

v∗i⊥(k)

 =
||v∗(k)||
||Hxiyi ||

H‖
H⊥

 (2.7)

The angle θ(k) can be changed if and only if the perpendicular component of the velocity

is different from zero.

ρθ̇(k) = v∗i⊥(k) =
||v∗(k)||
||Hxiyi ||

mxρ
2(k) · sin θ(k) (2.8)

Proposition 1 For any initial condition (ρ(0), θ(0)) with ρ(0) > 0 and θ(0) 6= 0, the

2.2. FLUX LINE SEARCH TECHNIQUE 33

tracking of the references (2.1) and (2.2) guarantees that

lim
k→∞

θ(k) = π

Proposition 2 For any initial condition (ρ(0), θ(0)) with ρ(0) > 0 and π
2
< θ(0) < 3π

2
,

the tracking of the references (2.1) and (2.2) guarantees that

lim
k→∞

ρ(k) = 0

Remark The composition of Proposition 1 and Proposition 2 says that if the search

starts with initial conditions given by ρ > 0 and θ ∈ (−π
2
, π

2
), the radius increases

until the angle θ does not reach the compact domain [π
2
, 3π

2
]. This problem is solved

with the direction inversion procedure later described.

2.2.2 Implementation

The Flux Line set-point generation algorithm follows the steps below:

Direction check Once every ck data received, where ck is a tunable coefficient, stores

a distance value. Each time new data pass the validation algorithm, compares

the distance value of the new data with the last stored one. If the new value is

greater than the stored one, changes sign to the formula that computes the set-

point. Moreover, only for the current iteration, instead of computing a new velocity

set-point, the algorithm will publish the last computed set-point changed in sign.

In this way the drone will come back to the previous position before the algorithm

starts computing new set-point values in the opposite direction.

Yaw correction Computes the yaw correction to be applied to the drone if the angle

values received from ARTVA is greater than a certain threshold:

if angle value > threshold then apply the yaw correction

The yaw correction is saturated to a maximum value in such a way to be applied

34 CHAPTER 2. ARTVA SYSTEM AND SEARCH ALGORITHMS

gradually each time a new set-point is given to the controller:

if angle value ≤ yaw correction max then yaw correction = angle value

else yaw correction = yaw correction max

In this way, we avoid to have non-consistent consecutive ARTVA measures, which

will create difficulties in the data validation phase.

Velocity set-point computation Uses the current distance value to compute the ve-

locity set-point, so that the closer the drone is to the beacon transmitter, the lower

is the imposed velocity. Also the generated velocity is saturated to a maximum

value:

if distance value ≤ velocity max then velocity set point = distance value

else velocity set point = velocity max

In order to be passed to the controller, the velocity set-point value, which is in-

tended in the direction tangent to the flux ellipse, must be decomposed along the

X and Y directions of the drone body frame:

vspx = sign · vsat · cos(δ)

vspy = sign · vsat · sin(δ)
(2.9)

where δ, which is the angle value received from ARTVA, is equal to zero if the yaw

angle has been completely compensated.

Reference system transformation Transforms the reference system from the one in

agreement with the body to the inertial one:

vspX = vspx · cos(γ) + vspy · sin(γ)

vspY = −vspx · sin(γ) + vspy · cos(γ)
(2.10)

where γ is the residual value of the yaw angle of the drone after the correction.

Finally, the algorithm publishes the two values of the velocity set-point and the value of

yaw correction to a topic from which the controller can read them.

2.3. EXTREMUM SEEKING SEARCH TECHNIQUE 35

2.3 Extremum Seeking search technique

The next presented algorithm is based on the Extremum Seeking Control, a control

technique which aim to select the set-point to keep the output at the extremum value

(maximum or minimum). In our case, we want to use this kind of control to search for

the minimum value of the distance from the beacon transmitter.

2.3.1 SISO scheme and linear analysis

Extremum Seeking for a static map

Figure 2.4. Extremum Seeking Control scheme for a static map.

Considering the Extremum Seeking scheme for a static map[5], represented in Figure

2.4, we have that:

f(ϑ) = f ∗ +
f ′′

2
(ϑ− ϑ∗)2 (2.11)

where f ′′ > 0. If f ′′ < 0, replace k (k > 0) with −k, so to obtain f ′′ > 0. The purpose is

to make ϑ−ϑ∗ as small as possible, so that the output y = f(ϑ) is driven to its minimum.

The perturbation signal a ·sin(ωt) helps to get a measure of gradient information of f(ϑ).

Defining the following quantities:

• ϑ∗: optimal input (unknown);

• ϑ̂: estimation of the optimal input;

36 CHAPTER 2. ARTVA SYSTEM AND SEARCH ALGORITHMS

• ϑ̃ = ϑ∗ − ϑ̂: estimation error;

We can write:

ϑ∗ − ϑ̂ = a · sin(ωt)− ϑ̃ (2.12)

From (2.11) and (2.12) we obtain:

y = f ∗ +
f ′′

2
(a · sin(ωt)− ϑ̃)2

= f ∗ +
f ′′

2
a2 · sin2(ωt) +

f ′′

2
ϑ̃2 − f ′′ϑ̃a · sin(ωt)

= f ∗ +
f ′′

4
a2 +

f ′′

4
a2 · cos(2ωt) +

f ′′

2
ϑ̃2 − f ′′ϑ̃a · sin(ωt)

(2.13)

The high-pass filter s
s+h

serves to remove f ∗

yf =
s

s+ h
y ≈ f ′′

4
a2 · cos(2ωt) +

f ′′

2
ϑ̃2 − f ′′ϑ̃a · sin(ωt) (2.14)

Then the signal is demodulated by sin(ωt)

ξ =
f ′′

4
a2 · cos(2ωt) sin(ωt) +

f ′′

2
ϑ̃2 · sin(ωt)− f ′′ϑ̃a · sin2(ωt) (2.15)

From (2.15), applying some trigonometric formulas, we can find:

ξ = −f
′′

2
ϑ̃a+

f ′′

2
ϑ̃a · cos(2ωt) +

f ′′

8
a2(sin(ωt)− sin(3ωt)) +

f ′′

2
ϑ̃2 · sin(ωt) (2.16)

Since ϑ∗ is constant, ˙̃ϑ = − ˙̂
ϑ. So, we get:

ϑ̃ ≈ k

s

[
− f ′′

2
ϑ̃a+

f ′′

2
ϑ̃ · cos(2ωt) +

f ′′

8
a2(sin(ωt)− sin(3ωt)) +

f ′′

2
ϑ̃2 · sin(ωt)

]
(2.17)

Neglecting the last term of (2.17), since it is quadratic in ϑ̃, we obtain:

ϑ̃ ≈ k

s

[
− f ′′

2
ϑ̃a+

f ′′

2
ϑ̃a · cos(2ωt) +

f ′′

8
a2(sin(ωt)− sin(3ωt))

]
(2.18)

Since the last two terms of (2.18) are high frequency signals, an integretor will nearly

cancels them. We can neglect them obtaining so:

ϑ̃ ≈ k

s

[
− f ′′

2
ϑ̃

]
⇒ ˙̃ϑ = −kf

′′

2
ϑ̃ (2.19)

Since kf ′′ > 0, the system is stable and ϑ̃ goes to zero.

Remark These approximations works only when ω is large (in a qualitative sense)

2.3. EXTREMUM SEEKING SEARCH TECHNIQUE 37

relative to k, a, h, and f ′′,

Theorem (Extremum Seeking) For the presented system, the output error y − f ∗

achieves local exponential convergence to an O(a2 + 1
ω2) neighbourhood of the

origin, provided the perturbation frequency ω is sufficiently large, and 1
(1+L(s))

is

asymptotically stable, where L(s) = kaf ′′

2s
.

Single parameter Extremum Seeking for plants with dynamics

Figure 2.5. Single parameter Extremum Seeking Control scheme for plants with dynamics.

The scheme in Figure 2.5 shows a non-linear plant with linear dynamics along with

the Extremum Seeking loop. We have that:

f(ϑ) = f ∗(t) +
f ′′

2
(ϑ− ϑ∗(t))2 (2.20)

where f ′′ > 0, constant and unknown. The purpose is to make ϑ−ϑ∗ as small as possible,

so that the output Fo(s)[f(ϑ)] is driven to its extremum Fo(s)[f
∗(ϑ)]. The optimal input

and output, ϑ∗ and f ∗, may be time-varying and their Laplace transforms are expressed

as follows:

L{ϑ∗(t)} = λϑΓϑ(s)

L{f ∗(t)} = λfΓf (s)
(2.21)

38 CHAPTER 2. ARTVA SYSTEM AND SEARCH ALGORITHMS

If ϑ∗ and f ∗ are constants, from (2.21) we can find:

L{ϑ∗(t)} =
λϑ
s

L{f ∗(t)} =
λf
s

(2.22)

While λϑ and λf are unknown, the Laplace transform of ϑ∗ and f ∗ is known, and is

included in the washout filter:
Co(s)

Γf (s)
=

s

s+ h
(2.23)

and in the estimation algorithm:

Ci(s)Γϑ(s) =
1

s
(2.24)

The inclusion of Γϑ(s) and Γf (s) in the respective blocks in the feedback branch follows

the internal model principle. When applied, in a very generalized manner, to the Ex-

tremum Seeking problem, it allows us to track time-varying maxima or minima.

The compensators Ci(s) and Co(s) are crucial design tools for satisfying stability condi-

tions and achieving desired convergence rates.

2.3.2 Non-local stability of non-linear case

Introduction

Considering the following non-linear system[6]:

ẋ = f(x, u)

y = h(x)
(2.25)

and suppose that exist a unique x∗ such that y∗ = h(x∗) is the extremum of the map

h(·). Assume, due to uncertainty, that neither x∗ nor h(·) are precisely known. The

objective is to force the solution of the closed-loop system to eventually converge to x∗

and to do so without any precise knowledge about x∗ or h(·).

The purpose is to show that, under appropriate conditions, the Extremum Seeking con-

troller achieves semi-global practical stability of the closed-loop system. In other words,

given an arbitrarily large set of initial conditions B∆ and an arbitrarily small neigh-

bourhoods Bv of the state x∗ where the output achieves its extremum y∗ = h(x∗), it is

2.3. EXTREMUM SEEKING SEARCH TECHNIQUE 39

possible to adjust the controller parameters so that all solutions starting from the set

B∆ eventually converge to Bv.

Preliminaries

Given the following system:

ẋ = f(t, x, ε) (2.26)

with x ∈ Rn, t ∈ R > 0, ε ∈ Rl > 0, the stability of (2.26) can depend in an intricate

way on the parameters vector ε.

Definition (Semi-Global Practical Asymptotic Stability) System (2.26) is said

to be semi-global practical asymptotically (SPA) stable, uniformly in (ε1, ε2, ..., εj),

j ∈ {1, 2, ..., l}, if there exists β ∈ KL such that the following holds: for each pair

of strictly positive real numbers (∆, v), there exist real numbers ε∗k = ε∗k(∆, v) > 0,

k = 1, 2, ..., j, and for each fixed εk ∈ (0, ε∗k), k = 1, 2, ..., j, there exist εi =

εi(ε1, ε2, ..., εi−1,∆, v), with i = j + 1, j + 2, ..., l, such that the solutions of the

system with the so constructed parameters ε = (ε1, ε2, ..., εl) satisfy:

|x(t)| ≤ β(|x0|, (ε1 · ε2 · ... · εl)(t− t0)) + v (2.27)

for all t ≥ t0 ≥ 0, x(t0) = x0, with |x0| ≤ ∆. If we have that j = l, then we can

say that the system is SPA stable, uniformly in ε.

Problem formulation

Considering the following single-input single-output (SISO) non-linear model:

ẋ = f(x, u)

y = h(x)
(2.28)

with f : Rn × R→ Rn, f ∈ C, and h : Rn → R, h ∈ C. Considering a family of control

laws of the following form:

u = α(x, ϑ) (2.29)

40 CHAPTER 2. ARTVA SYSTEM AND SEARCH ALGORITHMS

with ϑ ∈ R, scalar parameter. The closed loop system is then:

ẋ = f(x, α(x, ϑ)) (2.30)

The requirement that ϑ is scalar and that the system is SISO is to simplify the presen-

tation.

Assumption 1 There exists a function I : R→ Rn such that

f(x, α(x, ϑ)) = 0 (2.31)

if and only if x = I(ϑ).

Assumption 2 For each ϑ ∈ R, the equilibrium x = I(ϑ) of the closed-loop system is

globally asymptotically stable, uniformly in ϑ.

Assumption 3 Denoting Q(·) = h ◦ l, there exists a unique ϑ∗ maximizing Q(·), and

the following holds:

Q′(ϑ∗) = 0, Q′′(ϑ∗) < 0 (2.32)

Main results

Considering the first order Extremum Seeking control scheme shown in Figure 2.6:

Figure 2.6. First order Extremum Seeking control scheme.

The dynamics of the system are the following:

ẋ = f(x, α(x, ϑ̂+ a · sin(ωt)))

˙̂
ϑ = kh(x)b · sin(ωt)

(2.33)

2.3. EXTREMUM SEEKING SEARCH TECHNIQUE 41

Introducing a change of coordinates:

x̃ = x− x∗

ϑ̃ = ϑ− ϑ∗
(2.34)

we note that the point (x∗, ϑ∗) is in general not an equilibrium point of the system.

However, our purpose is to show that the system in new coordinate is SPA stable, which

ensure Extremum Seeking. The system (2.33) with the new coordinates (2.34) takes the

following form:

˙̃x = f(x̃+ x∗, α(x̃+ x∗, ϑ̃+ ϑ∗ + a · sin(ωt)))

˙̃ϑ = kh(x̃+ x∗)b · sin(ωt)
(2.35)

Defining now:

k = ωδK

σ = ωt
(2.36)

where ω and σ are small parameters, K > 0 is fixed, and replacing (2.36) in (2.35), we

obtain the system equations expanded in time σ:

ω
dx̃

dσ
= f(x̃+ x∗, α(x̃+ x∗, ϑ̃+ ϑ∗ + a · sin(σ)))

dϑ̃

dσ
= δKh(x̃+ x∗)b · sin(σ)

(2.37)

For simplicity of representation, we let b = a, so that the vector of parameters is the

following:

ε = [a2 δ ω]T (2.38)

System (2.37) has a two-time-scale structure and the first main result is proved by

applying the singular perturbations and averaging methods.

Theorem Suppose that assumptions 1-3 hold. Then, the closed-loop system (2.37),

when b = a and with parameter vector (2.38), is SPA stable, uniformly in (a2, δ).

Considering now the higher order Extremum Seeking control scheme represented in Fig-

ure 2.7, supposing WL(s) = (ωl

s
+ωl) and WH(s) = 1. The Extremum Seeking controller

contains an integrator and a low-pass filter. The low-pass filter is useful when we need

42 CHAPTER 2. ARTVA SYSTEM AND SEARCH ALGORITHMS

Figure 2.7. Higher order Extremum Seeking control scheme.

to filter out high frequency measurement noise in the system. Moreover, tuning the filer

parameter ωl may lead to a possible improvement in the transient response.

The following equations describe the closed-loop system under the above conditions:

ẋ = f(x, α(x, ϑ̂+ a · sin(ωt)))

˙̂
ϑ = kξ

ξ̇ = −ωlξ + ωlh(x)a · sin(ωt)

(2.39)

Introducing a change of coordinates:

x̃ = x− x∗

ϑ̃ = ϑ− ϑ∗

ξ̃ = ξ

(2.40)

system (2.39) with the new coordinates (2.40) takes the following form:

˙̃x = f(x̃+ x∗, α(x̃+ x∗, ϑ̃+ ϑ∗ + a · sin(ωt)))

˙̃ϑ = kξ̃

˙̃ξ = −ωl[ξ̃ − h(x̃+ x∗)a · sin(ωt)]

(2.41)

Defining now:

ωl = ωδωL

k = ωδK

σ = ωt

(2.42)

2.3. EXTREMUM SEEKING SEARCH TECHNIQUE 43

where ω and σ are small parameters, ωL and K > 0 are fixed, and replacing (2.42) in

(2.41), we obtain the system equations expanded in time σ:

ω
dx̃

dσ
= f(x̃+ x∗, α(x̃+ x∗, ϑ̃+ ϑ∗ + a · sin(σ)))

dϑ̃

dσ
= δKξ̃

d̃ξ

dσ
= −δωL[ξ̃ − h(x̃+ x∗)a · sin(σ)]

(2.43)

With the same parameter vector ε defined in (2.38)

Theorem Suppose that assumptions 1-3 hold. Then, the closed-loop system (2.43),

with parameter vector (2.38), is SPA stable, uniformly in a2.

2.3.3 Hybrid Extremum Seeking Control

The next presented algorithm is based on an Hybrid Extremum Seeking Control

(HESC). An hybrid dynamical system[7] is modelled as follows:

x ∈ C ẋ = f(x)

x ∈ D x+ = g(x)
(2.44)

The state x of the hybrid system can change according to a differential equation ẋ = f(x)

and according to a difference equation x+ = g(x). The behaviour of a dynamical system

which can be described by a differential equation is referred to as flow, while the behaviour

of a dynamical system which can be described by a difference equation is referred to as

jump. The objects involved in model (2.44) are:

• the flow set C,

• the flow map f ,

• the jump set D,

• the jump map g.

Considering now the model of the HESC[8], and assuming that the time domain is

described by continuous-time interval parametrized by τ ∈ [0, T), with T > 0, and

44 CHAPTER 2. ARTVA SYSTEM AND SEARCH ALGORITHMS

discrete-time instants j ∈ N, the flow map is described by the following equations:

˙̄px = v̄x

˙̄vx = −k1xv̄x − k2xw̄x

˙̄wx = 0

˙̄py = v̄y

˙̄vy = −k1yv̄y − k2yw̄y

˙̄wy = 0

ḣ∗ = 0

ψ̇∗ = 0

τ̇ = 1

(2.45)

where k1x, k2x, k1y and k2y are positive constants to be defined. The flow set is defined

as:

(˙̄px, ˙̄vx, ˙̄wx, ˙̄py, ˙̄vy, ˙̄wy, ḣ
∗, ψ̇∗), τ̇ ∈ R8 × [0, T) (2.46)

Indicating with d the distance values and with δ the angle values obtained from ARTVA,

the jump map is described as follows:

p̄x
+ = p̄x

v̄x
+ = v̄x

w̄x
+ =

1

n

j∑
i=j+1−n

d(i) sin(iωxT)

p̄y
+ = p̄y

v̄y
+ = v̄y

w̄y
+ =

1

n

j∑
i=j+1−n

d(i) sin(iωyT)

h∗+ = h∗

ψ∗+ = ψ + δ

τ+ = 0

(2.47)

2.3. EXTREMUM SEEKING SEARCH TECHNIQUE 45

where j ∈ N indicates the current jump, and also the instant when a new ARTVA data

is received, ωx and ωy ∈ R>0, n ∈ N. The jump set is defined as:

(˙̄px, ˙̄vx, ˙̄wx, ˙̄py, ˙̄vy, ˙̄wy, ḣ
∗, ψ̇∗), τ̇ ∈ R8 × T (2.48)

Finally, given the composite time t = τ+jT , the output of the controller are the following

reference positions:

p∗x(t) = p̄x(t) + ρx cos(ωxt)

p∗y(t) = p̄y(t) + ρy sin(ωyt)
(2.49)

where ρx and ρy are positive real constants to be defined. By choosing ρx = ρy and

ωx = ωy, we can drive the drone to describe a series of circles, with radius ρx = ρy,

during its trajectory; alternatively by imposing ωy = 2ωx and ρx = 2ρy, we can drive the

drone to describe a series of eight-shaped paths in its trajectory. This approach could be

useful to detect the exact position of the buried victim when the distance values received

from ARTVA are small.

Stability analysis

We have to introduce some definitions in order to analyse the stability of the con-

troller.

Definition (Terrain) The avalanche terrain is described by the piece-wise continuous

map

z = ha(x, y) (2.50)

where ha(0, 0) > 0 and x, y and z are the coordinates of the inertial reference frame

Fi(Oi, xi, yi, zi).

Definition (Minima Set) Given the attitude of the transmitter and the receiver, de-

fined with Rt and R respectively, given the avalanche terrain defined by (2.50),

then, for any positive constant d̄, the minima set Ω is defined as:

Ω := {(x, y) ∈ R2 : ∇d(x, y, d+ ha(x, y)) = 0,H(x, y, d+ ha(x, y)) > 0} (2.51)

where H(x, y, d + ha(x, y)) represents the Hessian matrix of d valued at (x, y, d +

46 CHAPTER 2. ARTVA SYSTEM AND SEARCH ALGORITHMS

ha(x, y)).

Definition (Minima Domain) For each element (x̄, ȳ) ∈ Ω, the minima domain D(x̄,ȳ)

is defined as the compact set

D(x̄,ȳ) :=

{
(x, y) ∈ R2 : ∇d(x−x̄, y−ȳ, d+ha(x−x̄, y−ȳ))×

x− x̄
y − ȳ

 > 0

}
(2.52)

where (x̄, ȳ) ∈ D(x̄,ȳ).

The validity of the HESC is based on the following assumptions:

Assuption (Periodicity) The pulsations ωx and ωy and the number of samples n are

such that

1

n

j∑
i=j+1−n

sin(iωxT) = 0

1

n

j∑
i=j+1−n

sin(iωyT) = 0

(2.53)

Assuption (Persistent Excitation) The pulsations ωx and ωy are such that there

exist two positive constants αx and αy such that

1

n

j∑
i=j+1−n

sin2(iωxT) > αx

1

n

j∑
i=j+1−n

sin2(iωyT) > αy

(2.54)

and furthermore
1

n

j∑
i=j+1−n

sin(iωxT) sin(iωyT) = 0 (2.55)

Now we can conclude that:

Theorem Given the HESC controller (2.45)-(2.47) and the position of the drone defined

by p = [p∗x, p
∗
y, d̄ + ha(x, y)], and assuming ||w|| = 0, then, for any ρ > 0 such that

Bρ(x̄, ȳ) ⊂ D(x̄,ȳ), there exist two positive constants ρ̄x and ρ̄y such that, for any

(ρ∗x(0), ρ∗y(0)) ∈ Bρ(x̄, ȳ) and for all 0 < ρx < ρ̄x and 0 < ρy < ρ̄y, the point (x̄, ȳ)

is locally asymptotically stable.

2.3. EXTREMUM SEEKING SEARCH TECHNIQUE 47

The term Bρ(x̄, ȳ) indicates a ball of radius ρ.

Remark This result says that, if p∗(t) ∈ D(x̄,ȳ) for all t ≥ 0, then the average position

(ρ̄x, ρ̄y) asymptotically goes to (x̄, ȳ).

2.3.4 Implementation

The HESC set-point generation algorithm follows the steps below:

FIFO update Stores a first in first out (FIFO) queue of the last m distance values

received from ARTVA and update it each time new data arrive.

Direction check Works a bit differently with respect to its counterpart in the previous

algorithm: takes an arithmetic mean of the last ck valid values found and, after dk

data received, compares the distance value of the last found data with the computed

mean. If the new value is greater than the mean, changes sign to the formula that

computes the set-point. The choice of computing the mean of ck values and to

wait dk data before performing the check is due to the fact that the imposed circle-

shaped (or eight-shaped, alternatively) trajectory results in consecutive distance

values which are not always decreasing, even if the drone is moving in the right

direction. Both ck and dk are tunable coefficients.

Yaw correction Exactly like the previous presented algorithm, computes the yaw cor-

rection to be applied to the drone if the angle values received from ARTVA is

greater than a certain threshold:

if angle value > threshold then apply the yaw correction

The yaw correction is saturated to a maximum value in such a way to be applied

gradually each time a new set-point is given to the controller:

if angle value ≤ yaw correction max then yaw correction = angle value

else yaw correction = yaw correction max

In this way, we avoid to have non-consistent consecutive ARTVA measures, which

will create difficulties in the data validation phase.

48 CHAPTER 2. ARTVA SYSTEM AND SEARCH ALGORITHMS

Jump map velocity computation Uses the values stored in the FIFO queue to com-

pute the perturbation coefficients:

wx =
1

m

m∑
j=1

FIFO(j) sin(jωx)

wy =
1

m

m∑
j=1

FIFO(j) sin(jωy)

(2.56)

Flow map velocity computation Computes velocity values from perturbation coef-

ficients found in the previous step and velocity values from the last iteration:

vx(T) = −k1xvx(T − 1)− k2xwx(T)

vy(T) = −k1yvy(T − 1)− k2ywy(T)
(2.57)

where T is the period between two ARTVA transmissions. Then, the two obtained

velocity values are saturated to a maximum:

if velocity value ≤ velocity max then velocity set point = velocity value

else velocity set point = velocity max

Position set-point computation Position set-point values are computed from veloc-

ity set-point values. Those values are scaled by a sort of saturation function: the

closer the drone is to the beacon transmitter, the lower is the distance between

consecutive position set-points. In this way the oscillations are strongly mitigated

when the drone is near to the beacon transmitter, avoiding the vehicle to step away

from it:

pspx = Hvx

pspy = Hvy

(2.58)

where H is the above mentioned mitigation function.

Reference system transformation Similarly to the Flux Line algorithm, transforms

the reference system from the one in agreement with the body to the inertial one.

Furthermore, add to each of the two components the term used to impose the

2.4. GENERAL CONTROL SCHEME 49

circle-shaped (or eight-shaped, alternatively) trajectory:

pspX = pspx · cos(γ) + pspy · sin(γ) + ρx · cos(ωxt)

pspY = −pspx · sin(γ) + pspy · cos(γ) + ρy · sin(ωyt)
(2.59)

where γ is the residual value of the yaw angle of the drone after the correction.

Finally, the algorithm publishes the two value of the position set-point and the value of

the yaw correction to a topic from which the controller can read them.

2.4 General control scheme

The general position control scheme of the autopilot module, updated with the pre-

sented algorithms for generation of the set-point, is shown in Figure 2.7. The algorithm

selection decides which of the two algorithms to run and activates the relative switch.

The possible operative configurations are the following:

Flux Line mode Switch B is activated (up);

HESC mode Switch A is activated and switch B is deactivated (down);

Standard mode Both switches are deactivated.

50 CHAPTER 2. ARTVA SYSTEM AND SEARCH ALGORITHMS

Figure 2.8. General control scheme.

Chapter 3

Results

Below we will analyse the results of the simulations of the two presented search

algorithms, and the main issues related to the practical implementation of the system.

3.1 Simulations

The software used to simulate the two algorithms is Robot Operating System (ROS),

the main functionalities of which are discussed in the first appendix. The simulations

are realized by means of three different ROS nodes:

Drone and ARTVA simulator Simulate both the model of the drone, with its dy-

namical behaviour, and the ARTVA beacon transmitter. The ARTVA equivalent

model[8] is obtained considering the nominal magnetic field generated, represented

in (2.3), and the magnetic field intensity described by:

||H|| = ||m||
4π||r||3

√
1 + 3 cos2 Θ (3.1)

where the actual distance to the transmitter is indicated by the vector r, while

Θ ∈ [0, π] describes the angle between r and m. Given rmin ∈ R>0 and rmax ∈ R>0,

with rmin < rmax, we can define the three operation zones:

• the outer zone:

Zo := {p ∈ R3 : ||p− pt|| > rmax}

51

52 CHAPTER 3. RESULTS

• the mid zone:

Zm := {p ∈ R3 : rmin < ||p− pt|| ≤ rmax}

• and the inner zone:

Zi := {p ∈ R3 : ||p− pt|| ≤ rmin}

where p and pt are the positions of the receiver and the transmitter, respectively.

From (2.3), the value of distance d, output of the receiver, can be approximated in

the following way:

d =

(
keq

4π‖C(RTH + w)‖

) 1
3

(3.2)

where keq is a positive constant, R is the receiver orientation, and C is a selection

matrix that assumes two different values, CP2 and CP3:

CP2 = [1 0 0]

CP3 = I3×3

leading so to two possible distance calculations, namely dP2 and dP3. The receiver

first determines the distance dP3 and, if dP3 < 300, sets the angle δ(k) to zero and

d(k) = dP3, otherwise calculates the distance dP2. If dP2 < 5000, then the receiver

determines the δ angle by means of the following equation:

δ = tan−1

(
[0 1 0](RTH + w)

[1 0 0](RTH + w)

)
(3.3)

and imposes d(k) = dP2. Lastly, if dP2 > 5000, the receiver’s output is d(k) = −1

and δ(k) = 0. The vector w = [wbx wby wbz]
T represents the electromagnetic

interferences, expressed in body frame, and can be written as sum of drone noises,

wd, and environmental noises we.

In the end, both d and δ, obtained from (3.2) and (3.3), are discretised and sampled

by means of a standard zero-hold filter to simulate their digital nature.

Set-point generation algorithm Contain the implementation of the algorithm (Flux

Line or HESC).

Controller simulator Simulate a simple discrete integrator.

3.1. SIMULATIONS 53

To perform the simulation, the three nodes has to be run in parallel on three different

terminal windows. We will present the results of the simulation of four different cases in

which, while the simulated drone is always initially placed at the origin of the inertial

reference frame, with the body frame coincident with it, the simulated transmitter is

placed in different spots:

• Case A: transmitter at (10, 15,−2);

• Case B: transmitter at (−6, 16,−2);

• Case C: transmitter at (−14,−9,−2);

• Case D: transmitter at (12,−13,−2).

The distance unit represents a metre, thus, in each case, the simulated transmitter is

more or less 17 metres far from the simulated drone and 2 metres under the snow.

3.1.1 Flux Line algorithm simulation

The output positions of the simulated drone, obtained by means of set-points gener-

ated with Flux Line search algorithm, and collected at each integration step, are plotted

in Figures 3.1-4. The algorithm performs quite well, with the simulated drone going

straight toward the transmitter’s position and reaching it with a good precision. Once

it gets to the minimum distance point, the simulated drone starts moving forward and

backward on the same line, remaining in the neighbourhood of the target. This is due

to the direction check step of the algorithm, which imposes to the vehicle a velocity

set-point equal to the last one but with opposite sign each time the drone steps away

from the transmitter’s position, and to the fact that, when the drone is very close to the

transmitter, the received angle value is zero, and so the yaw correction step does not

intervene, forcing the vehicle to maintain always the same orientation. Moreover, thanks

to the saturation of the velocity, the vehicle will move slowly when the detected distance

is small, avoiding so to go too far from the target.

54 CHAPTER 3. RESULTS

Figure 3.1. Flux Line algorithm simulation case A: transmitter at (10, 15,−2), the black dot

represents the initial position of the drone, the blue line represents the drone trajectory, the

red cross represents the transmitter’s position.

Figure 3.2. Flux Line algorithm simulation case B: transmitter at (−6, 16,−2), the black dot

represents the initial position of the drone, the blue line represents the drone trajectory, the

red cross represents the transmitter’s position.

3.1. SIMULATIONS 55

Figure 3.3. Flux Line algorithm simulation case C: transmitter at (−14,−9,−2), the black

dot represents the initial position of the drone, the blue line represents the drone trajectory,

the red cross represents the transmitter’s position.

Figure 3.4. Flux Line algorithm simulation case D: transmitter at (12,−13,−2), the black

dot represents the initial position of the drone, the blue line represents the drone trajectory,

the red cross represents the transmitter’s position.

56 CHAPTER 3. RESULTS

3.1.2 HESC algorithm simulation

Same as before, the output positions of the simulated drone, obtained this time

by means of set-points generated with circle-shaped HESC search algorithm and eight-

shaped HESC search algorithm, and collected at each integration step, are plotted in

Figures 3.5-8 and 3.9-12 respectively. Also this algorithm performs well, with the simu-

lated drone moving toward the transmitter’s position with the imposed oscillating move-

ment. The more the vehicle gets closer to the target, the more the trajectory takes the

geometry of a series of circles (or a series of eight-shaped paths, alternatively). Once

it gets close to the transmitter’s position, the drone continues oscillating, remaining in

its neighbourhood. This is due to the mitigation function, which reduces the imposed

perturbations, and so the velocity of the vehicle, the closer it gets to the target, and to

the direction check step of the algorithms, which reverses the motion if the drone goes

to far from the transmitter’s position.

Figure 3.5. Circle-shaped HESC algorithm simulation case A: transmitter at (10, 15,−2),

the black dot represents the initial position of the drone, the blue line represents the drone

trajectory, the red cross represents the transmitter’s position.

3.1. SIMULATIONS 57

Figure 3.6. Circle-shaped HESC algorithm simulation case B: transmitter at (−6, 16,−2),

the black dot represents the initial position of the drone, the blue line represents the drone

trajectory, the red cross represents the transmitter’s position.

Figure 3.7. Circle-shaped HESC algorithm simulation case C: transmitter at (−14,−9,−2),

the black dot represents the initial position of the drone, the blue line represents the drone

trajectory, the red cross represents the transmitter’s position.

58 CHAPTER 3. RESULTS

Figure 3.8. Circle-shaped HESC algorithm simulation case D: transmitter at (12,−13,−2),

the black dot represents the initial position of the drone, the blue line represents the drone

trajectory, the red cross represents the transmitter’s position.

Figure 3.9. Eight-shaped HESC algorithm simulation case A: transmitter at (10, 15,−2),

the black dot represents the initial position of the drone, the blue line represents the drone

trajectory, the red cross represents the transmitter’s position.

3.1. SIMULATIONS 59

Figure 3.10. Eight-shaped HESC algorithm simulation case B: transmitter at (−6, 16,−2),

the black dot represents the initial position of the drone, the blue line represents the drone

trajectory, the red cross represents the transmitter’s position.

Figure 3.11. Eight-shaped HESC algorithm simulation case C: transmitter at (−14,−9,−2),

the black dot represents the initial position of the drone, the blue line represents the drone

trajectory, the red cross represents the transmitter’s position.

60 CHAPTER 3. RESULTS

Figure 3.12. Eight-shaped HESC algorithm simulation case D: transmitter at (12,−13,−2),

the black dot represents the initial position of the drone, the blue line represents the drone

trajectory, the red cross represents the transmitter’s position.

3.1.3 Algorithms comparison

Now we will show a comparison between the two new proposed algorithms and the

Cross Flight algorithm described in the first chapter of this document, focusing on the

time they take to drive the simulated drone to the transmitter’s position, in such a way

to highlights their performance. For each algorithm, four simulations has been run using

the four cases of transmitter’s position presented before; the results of those simulations,

namely the time each algorithm takes for each single run and the average time, are

reported in Table 3.1. The maximum reference velocity imposed for each algorithm is

2 m/s. Furthermore, for Flux Line and HESC algorithms the simulation stops as soon

as the drone gets close to the transmitter (d < 250), while the Cross Flight algorithm

simulation stops when it reaches the computed position.

It is straightforward to see that Flux Line and HESC algorithms performs much better

than Cross Flight. Moreover, we can state that Flux Line is slightly faster than HESC

algorithms, mainly because of the oscillating trajectory of the seconds with respect to

the straight one of the first.

3.2. PRACTICAL IMPLEMENTATION 61

Search algorithm Case A Case B Case C Case D Average

Flux Line 29.62 33.58 31.59 28.55 30.84

Circle-shaped HESC 45.45 43.45 41.03 46.93 44.22

Eight-shaped HESC 45.39 42.51 42.45 45.35 43.93

Cross Flight 117.54 140.70 114.20 106.16 119.65

Table 3.1. Algorithms comparison: the time is expressed in seconds; case A: (10, 15,−2), case

B: (−6, 16,−2), case C: (−14,−9,−2), case D: (12,−13,−2).

3.2 Practical implementation

Regarding the practical implementation, it has been possible to test the operation of

the ARTVA system under different conditions. Nevertheless, we are not been able to test

the two presented search algorithms, both because some additional control structures are

needed, like take-off, landing and altitude management, and because of issues related to

ARTVA system implementation.

The main problem is the electromagnetic noise produced by brushless motors and by

the modulation technique adopted for the electronic speed controllers (ESCs). These

electromagnetic disturbances are low frequency signals, and when their intensity is high

enough, the ARTVA receiver sees them, and consequently handles them, as ARTVA

transmitter’s signals. By carrying out several tests under different conditions, as said

before, we have been able to observe the capability of ARTVA system and the behaviour

of electromagnetic disturbances. The tests made can be categorized as follows:

• motors off;

• motors on, without shielding;

• motors on, with standard aluminium shielding;

• motors on, with EMI aluminium shielding.

3.2.1 Test with motors off

The first test has been taken with motors off, and had the aim to verify the actual

range of the ARTVA system. The values of the received distance measures, related to

62 CHAPTER 3. RESULTS

the actual distance between the transmitter and the receiver, are reported in Table 3.2.

We can state that the progression of the ARTVA distance values are quite linear with

respect to actual distances, with a couple of exceptions. In particular, the value read

at 6 metres is higher than the one read at 8 metres, so it could be a wrong measure,

and the range of values read at 12 metres are too high, so they must be some kind of

disturbance. Furthermore, it is easy to note that the more is the distance between the

transmitter and the receiver, the higher is the variance of the measures obtained at the

same distance (e.g. values read at 22 metres). So, we can conclude that the system is

reliable within a distance of about 20 metres.

Actual distance (metres) ARTVA distance value

0 53

2 425

4 545

6 746

8 729

10 805

12 1838 / 1974

14 1036 / 1053

16 1242 / 1276

18 1648 / 1674

20 2140 / 2200

22 2140 / 2701

Table 3.2. Test results: motors off.

3.2.2 Test with motors on and no shielding

Another test has been taken with motors on, without propellers and with a constant

throttle of about 25%, so to verify the effect of the magnetic disturbances on the measure.

The results are reported in Table 3.3. It is immediate to see that with motors on we have

a drastic decrease in the quality of the measurement. Indeed, at distance greater than

3.2. PRACTICAL IMPLEMENTATION 63

6 metres, the ARTVA values we read are influenced by electromagnetic noises. This is

highlighted by the fact that from 8 metres up, the received value is always the same.

Actual distance (metres) ARTVA distance value

0 50

2 272

4 506

6 638

8 849

10 849

Table 3.3. Test results: motors on, no shielding.

3.2.3 Test with motors on and standard aluminium shielding

Since our aim is to be able to use the entire 20 metres range within which the ARTVA

measurements are reliable, we have tried to solve this problem by isolating the motors

housings and the drone’s arms, which contain the ESCs, with standard aluminium tape,

aiming to contain the electromagnetic interferences. Then we repeated the test, the

results of which are reported in Table 3.4. This solution is not working, since we have

not increased the range of valid measurements with respect to the previous test.

Actual distance (metres) ARTVA distance value

2 289

4 459

6 535

8 700

10 700

Table 3.4. Test results: motors on, standard aluminium shielding.

64 CHAPTER 3. RESULTS

3.2.4 Test with motors on and EMI aluminium shielding

Finally, we have tried to repeat the isolation solution using an electromagnetic inter-

ference (EMI) shielding aluminium tape, instead of a standard one. So we have isolated

the motors housings and the drone’s arms with the EMI aluminium tape, and then we

have repeated the test. The results are shown in Table 3.5. We have obtained just a

slight improvement in the quality of the measure (about 2 metres), which is absolutely

not enough for our purposes. This suggests that, despite the total isolation, there is still

an escape route for electromagnetic disturbances.

Actual distance (metres) ARTVA distance value

2 343

4 506

6 545

8 621

10 700

12 700

Table 3.5. Test results: motors on, EMI aluminium shielding.

Conclusions

Avalanche beacon systems are very helpful devices for the intent of saving people

buried under snow due to avalanches. Their implementation on aerial robots can lead

to even better results, speeding up search operations, ensuring so a faster human inter-

vention and raising the chances of finding missing people still alive and in non-critical

conditions.

In this thesis, we have analysed two search algorithms, based on the data received by

the avalanche beacon transmitter, aiming to improve the search time even more. The

innovation proposed by these two algorithms, with respect to the ones that have been

proposed until now, is that, as soon as the beacon signal is caught, the quad-copter drone

is guided directly toward the victim. From simulations performed with ROS, we observed

that both the proposed algorithms performs quite well, leading the drone straight toward

the signal source, and making it remain in the neighbourhood of the ARTVA transmitter

once find it.

Nevertheless, we have stumbled in some problems which arise with the practical imple-

mentation of this system. In particular, the electromagnetic noises coming from motors

and ESCs mounted on the quad-copter. These disturbances heavily influence the mea-

sures received from ARTVA, significantly decreasing the reliability of the system. As a

consequence of this, only the measures obtained around a few metres from the beacon

transmitter are correct, while, beyond a certain threshold, all the read values are in-

deed influenced by the electromagnetic noise. In this way, the efficiency of the presented

search algorithms is nullified, since we need to get very close to the ARTVA transmitter

in order to get a useful measure. We have tried to handle this issue by isolating the

disturbance generating components with a standard aluminium tape first, and then with

a EMI aluminium tape, unfortunately obtaining unsatisfactory results.

65

66 CONCLUSIONS

A possible future development to make the algorithms usable is to change the mechanical

configuration of the quad-copter drone; e.g. moving the motors and the ESCs in a cen-

tral aluminium housing, positioning the motors in such a way that the rotating axes are

horizontal, and transmitting the motion to the propellers by means of shafts supported

by spherical bearings, mounted inside the drone’s arms, at the end of which are placed

spiral bevel gears, in such a way to turn by 90 degrees the direction of the rotating axes.

Appendix A

First Appendix

Here are reported the description of some basis concepts, software structures and

tools that have been used in the project.

A.1 PX4

PX4 is the software running on the Pixhawk autopilot module. It consists in two

main layers[9]: the flight stack, which is an estimation and flight control system, and the

middleware, which is a general robotics layer that can support any type of autonomous

robot, providing internal/external communications and hardware integration. Modules

communicate with each other through a publish-subscribe message bus named uORB.

PX4 code runs on a real-time operating system (RTOS) named NuttX.

A.1.1 Flight stack

The flight stack is a collection of guidance, navigation and control algorithms for

autonomous drones. Figure A.1 shows an overview of the building blocks of the flight

stack. The estimator takes one or more sensor inputs and combines them to compute

a vehicle state. The controller takes a set-point and a measurement or estimated state

as input and adjust the value of the process variable such that it matches the set-point;

the output is a correction to eventually reach that set-point. The mixer takes force

commands and translates them into individual motor commands, while ensuring that

some limits are not exceeded.

67

68 FIRST APPENDIX

Figure A.1. Flight stack architecture.

A.1.2 Middleware

The middleware consists primarily of device drivers for embedded sensors, commu-

nication with the external world, and the uORB publish/subscribe message bus. In

addition, the middleware includes a simulation layer that allows PX4 flight code to run

on a desktop operating system and control a computer modelled vehicle in a simulated

world.

A.1.3 NuttX

NuttX is the RTOS on which the PX4 code runs, and it is open source, light-weight,

efficient and very stable. Modules are executed as tasks, namely each of them has its

own file descriptor list, but they share a single address space. A task can still start one

or more threads that share the file descriptor list. Each task or thread has a fixed-size

stack, and there is a periodic task which checks that all stacks have enough free space

left.

A.2 Communication over serial port

In order to make individual circuits to exchange information, they must share a

common communication protocol[10]. Among all existent protocols, we can distinguish

two main categories: parallel and serial. The main difference between parallel and serial

protocols is that parallel ones can transfer multiple bits at the same time, using buses

of data made of several wires; serial ones, instead, stream their data one single bit at a

A.2. COMMUNICATION OVER SERIAL PORT 69

time, requiring a reduced number of wires, sometimes just one. In conclusion, parallel

communication is certainly faster end easier to implement, but requires many more

input/output lines, while serial communication is slower but cheaper in terms of space

and wires.

In Figures A.2 and A.3 are represented an example of parallel communication and one of

serial communication, respectively. For our purpose of transmitting data from ARTVA

receiver to Pixhawk, we opt to use one of the five serial communication ports which are

embedded in the board.

Figure A.2. Example of parallel interface: an 8-bit data bus, controlled by a clock, transmit-

ting a byte every clock pulse. 9 wires are used.

Figure A.3. Example of serial interface: a single bit is transmitted every clock pulse. Just 2

wires are used.

A.2.1 Asynchronous serial protocol

Serial communication protocols could be subdivided in two groups: synchronous and

asynchronous. In a synchronous serial communication, data lines are always paired with

70 FIRST APPENDIX

a clock signal in such a way that all connected devices shares the same clock. This will

result in a more straightforward and faster transmission, but it requires at least an extra

wire between communicating devices. Conversely, asynchronous serial communications

does not need the support of an external clock, minimizing so the required wires, but

requiring more effort in ensuring the reliability of the transferring and receiving data.

The protocol that we use for our purpose is the most common form of asynchronous

serial communication.

A.2.2 Rules of serial communication

The asynchronous serial communication protocol presents a series of mechanisms with

specific rules, which help ensuring robust and error-free data transfers, compensating the

lack of the external clock. These mechanisms are:

• data bits,

• synchronization bits,

• parity bits,

• and baud rate.

The protocol is highly configurable and there are several way to transfer data serially;

the critical part is to ensure that both the communicating devices are configured to use

the exact same protocol.

Data block The data block contains the information carried by the serial packet. A

single packet can be set to contain from 5 to 9 bits of data. The standard data

size is the basic 8-bit byte. Other than on the single character-length, the two

connected device must agree also on the endianness of the data. In big-endian the

most significant byte, namely the one containing the most significant bit, is stored

or sent first, and then the following bytes are stored or sent in decreasing significant

order; vice versa in little-endian.

Synchronization bits The synchronization bits are special kind of bits, a start bit

and one or two stop bits, which are used to mark, as their names suggest, at the

beginning and at the end of the packet respectively.

A.3. PUBISH/SUBSCRIBE STRUCTURE 71

Parity bits Parity is a simple method used for error checking. It could assume two

values: even or odd. To produce the parity bit, all the bits of the data byte are

added up, and the evenness of the sum decides whether the bit is set or not. Parity

is optional and rarely used.

Framing the data The information transmitted is sent in a frame of bits. A data frame

is composed by the data block, which is usually one byte, the synchronization bits

and, eventually, the parity bit. Figure A.4 represents a data frame.

Figure A.4. Example of a serial data frame.

Baud rate The baud rate, expressed in unity of bits-per-second, specify how fast the

data is sent over a serial line. In order to communicate, two devices must operate at

the same baud rate. The higher the baud rate is, the faster the data is transferred,

but there are limits due to the clocks and sampling periods of the connected devices.

8-N-1 9600 The acronym 8-N-1 9600 stands for: 8 data bits, no parity bit, 1 stop beat,

and 9600 bps baud rate. This is one of the most commonly used serial data format,

and it is the one used for the communication between the ARTVA receiver and

Pixhawk.

A.3 Pubish/subscribe structure

Publish/subscribe is a commonly used messaging structure in software architecture

based on the fact that the sender, called publisher, do not communicate directly to a

receiver, called subscriber, but, instead, publish messages into a topic without having

the knowledge of what and how many subscriber, if any, are interested in receiving those

messages.

As said before in this appendix, PX4 software, running on Pixhawk autopilot module,

predisposes uORB[9]: an asynchronous publish/subscribe messaging application pro-

gramming interface (API) used for inter-threads/inter-processes communication. uORB

72 FIRST APPENDIX

is automatically started when the PX4 software is executed, since many applications

depend on it.

The main elements of the uORB messaging API are:

• topic,

• publisher,

• subscriber.

Below it is described how to enable uORB messaging between PX4 modules.

A.3.1 Adding a new topic

To add a new topic, it is sufficient to create a .msg file, containing the variables

that we want to pass from a module to another, inside the /msg directory of the PX4

software, and add the .msg file name to the list present in the file msg/Cmakelist.txt,

which is also present in the /msg directory. This procedure will automatically generate

the topic at build time, which will be placed in the /uORB/topics directory and has

the form of a structure. To use a topic in a PX4 module, it is necessary to include the

following header:

#include <uORB/topics/topic_name.h>

A.3.2 Publish into a topic

To publish a message into a topic from a PX4 module, after having included the topic

header to the module as shown above, the first thing to do is to declare the publisher

variable, which is used just to advertise the topic, and the structure to publish into the

topic:

orb_advert_t topic_name_pub;

struct topic_name_s topic_data;

Then it is necessary to advertise the topic:

topic_name_pub = orb_advertise(ORB_ID(topic_name), &topic_data);

A.3. PUBISH/SUBSCRIBE STRUCTURE 73

Finally, it is possible to publish the variable of the structure into the topic at any point

of the execution of the module by means of the following code string:

orb_publish(ORB_ID(topic_name), topic_name_pub, &topic_data);

After that, the variables are saved into the topic and could be used into another module

by subscribing it to that topic.

A.3.3 Subscribe to a topic

To make a PX4 module subscribe to a topic, in order to take values provided or

computed by another module, after having included the topic header, we have to declare

the subscriber variable, which is used to subscribe to the topic, the structure in which

we want to save the variables taken from the topic, and a boolean variable used to check

if the topic has been updated since last time it was checked:

int topic_name_sub;

struct topic_name_s topic_data;

bool updated;

Then we must subscribe to the topic:

topic_name_sub = orb_subscribe(ORB_ID(topic_name));

Lastly, it is possible, at any point of the execution of the module, to check if other

modules have updated the topic variables, and in case they have, to make a copy of the

updated variables by executing the strings of code shown below:

orb_check(topic_name_sub, &updated);

if (updated) orb_copy(ORB_ID(topic_name), topic_name_sub, &topic_data);

This will save a copy of the topic variables into the subscriber module, which can use

them for its purposes.

74 FIRST APPENDIX

A.4 ROS

Robot Operating System (ROS)[11] is a collection of tools, libraries, and conventions

which have the purpose to simplify the creation of complex and robust robot behaviour

across a wide variety of platforms. ROS provides a workspace in which are located

packages, which can contain nodes, topics, messages, an so on. Below we will analyse

some basic functions.

A.4.1 Creating a package

It is possible to create a package in the “catkin” workspace, inside the /src folder,

using the following script on a terminal:

cd ~/catkin_ws/src

catckin_create_pkg new_package std_msgs rospy roscpp

where std msgs, rospy, and roscpp are the dependencies of the package. This will create

a new package folder which contains a package.xml and a Cmakelist.txt file, which

have been partially filled out with the information we gave in the command (e.g. the

dependencies).

A.4.2 Building the workspace and sourcing the setup file

To build the catkin workspace we have to execute the following command:

cd ~/catkin_ws/src

catckin_make

After the workspace has been built, it has created a similar structure in the /devel sub-

folder. To add the workspace to our ROS environment, we need to source the generated

setup file executing the following string:

cd ~/catkin_ws/devel/setup.bash

A.4. ROS 75

A.4.3 ROS nodes

A node is an executable file within a ROS package. ROS nodes use a ROS client

library to communicate with other nodes. Moreover, nodes can publish or subscribe to

a topic and can also provide or use a service. To display information about ROS nodes

that are currently running we can use the following command:

rosnode list

Furthermore, if we want information about a specific node, we can run the following

command:

rosnode info /node_name

To directly run a node within a package, without having to know the package path, we

have just to run the following string:

rosrun [package_name] [node_name]

A.4.4 ROS topics

Topics are created from .msg files during the execution of ROS environment and are

automatically destroyed when the execution is stopped. In order to get information about

ROS topics currently subscribed to and published, we can run the following command:

rostopic list

To show the data published on a topic, we have to run the following string:

rostopic echo [topic_name]

A.4.5 Launch a ROS node with a launch file

A launch file, located in the /launch folder of a package, serves to run a node with

specific dependencies. To start a node as defined in a launch file we can use the following

command:

roslaunch [package_name] [launchfile_name.launch]

Appendix B

Second Appendix

Here is reported the code used to realize the interfacing between the ARTVA system

and Pixhawk autopilot module, and to implement the search algorithms.

B.1 ARTVA system interfacing

Below is shown the code of the reading function and the validation algorithm.

B.1.1 Reading ARTVA data

Read the message

int read_port() {

int i = 1;

int n = 0;

char temp_buf = ’\0’;

// Clean up the message array before start reading

memset(artva_msg, ’\0’, sizeof artva_msg);

// Start the reading cycle

while (temp_buf != 0xDE) {
read(fd, &temp_buf, 1);

temp_buf -= 0x55;

}

77

78 SECOND APPENDIX

n = 1;

artva_msg[0] = temp_buf;

while (i < 32) {
n = read(fd, &temp_buf, 1);

temp_buf -= 0x55;

artva_msg[i] = temp_buf;

i += n;

}

return 0;

}

Validity check

int check_ARTVA() {

msg_val = true;

//Check if the header is valid

if (artva_msg[0] != 0xDE) msg_val = false;

if (artva_msg[1] != 0xFA) msg_val = false;

if (artva_msg[2] != 0xBE) msg_val = false;

if (artva_msg[3] != 0xBA) msg_val = false;

//Check if the footer is valid

if (artva_msg[28] != 0xAB) msg_val = false;

if (artva_msg[29] != 0xEB) msg_val = false;

if (artva_msg[30] != 0xAF) msg_val = false;

if (artva_msg[31] != 0xED) msg_val = false;

return 0;

}

Message parsing

int parse_ARTVA() {

//Parse the message (little-endian)

uint16_t dOne = 0;

B.1. ARTVA SYSTEM INTERFACING 79

dOne = (uint16_t)((artva_msg[5] << 8) & 0xFF00);

dOne += (uint8_t)((artva_msg[4]) & 0xFF);

sens.d1 = dOne;

int16_t aOne = 0;

aOne = (int16_t)((artva_msg[7] << 8) & 0xFF00);

aOne += (uint8_t)((artva_msg[6]) & 0xFF);

sens.a1 = aOne;

uint16_t dTwo = 0;

dTwo = (uint16_t)((artva_msg[9] << 8) & 0xFF00);

dTwo += (uint8_t)((artva_msg[8]) & 0xFF);

sens.d2 = dTwo;

int16_t aTwo = 0;

aTwo = (int16_t)((artva_msg[11] << 8) & 0xFF00);

aTwo += (uint8_t)((artva_msg[10]) & 0xFF);

sens.a2 = aTwo;

uint16_t dThree = 0;

dThree = (uint16_t)((artva_msg[13] << 8) & 0xFF00);

dThree += (uint8_t)((artva_msg[12]) & 0xFF);

sens.d3 = dThree;

int16_t aThree = 0;

aThree = (int16_t)((artva_msg[15] << 8) & 0xFF00);

aThree += (uint8_t)((artva_msg[14]) & 0xFF);

sens.a3 = aThree;

uint16_t dFour = 0;

dFour = (uint16_t)((artva_msg[17] << 8) & 0xFF00);

dFour += (uint8_t)((artva_msg[16]) & 0xFF);

sens.d4 = dFour;

int16_t aFour = 0;

aFour = (int16_t)((artva_msg[19] << 8) & 0xFF00);

aFour += (uint8_t)((artva_msg[18]) & 0xFF);

sens.a4 = aFour;

80 SECOND APPENDIX

sens.tx_det = (artva_msg[20]) & 0xFF;

sens.tx_count = (artva_msg[21]) & 0xFF;

return 0;

}

B.1.2 Data validation algorith

Parsing data

int parse_data() {

check_artva_topic();

check_yaw_topic();

// Determine the transmitter in use

if (sensor.d1 < threshold && sensor.d1 > 0) {
d_sample = sensor.d1;

a_sample = sensor.a1;

printf("Transmitter #1 detected.\n");

}
else if (sensor.d2 < threshold && sensor.d2 > 0) {

d_sample = sensor.d2;

a_sample = sensor.a2;

printf("Transmitter #2 detected.\n");

}
else if (sensor.d3 < threshold && sensor.d3 > 0) {

d_sample = sensor.d3;

a_sample = sensor.a3;

printf("Transmitter #3 detected.\n");

}
else if (sensor.d4 < threshold && sensor.d4 > 0) {

d_sample = sensor.d4;

a_sample = sensor.a4;

printf("Transmitter #4 detected.\n");

}
else {

d_sample = 65535;

a_sample = 0;

B.1. ARTVA SYSTEM INTERFACING 81

printf("No transmitter detected.\n");

}

// Update yaw value

yaw = pos.yaw;

// Define validity ranges

d_range = d_sample * 0.5;

a_range = d_sample * 0.05;

return 0;

}

First validation

int first_validation() {

while (first_val == false) {
parse_data();

d_ref = d_sample;

a_ref = a_sample;

int n = 1;

while (n > 0 && n < fk) {
parse_data();

// Consider the angle always positive for the check

if (a_ref >= 0) a_pos_ref = a_ref;

else if (a_ref < 0) a_pos_ref = - a_ref;

if (a_sample >= 0) a_pos_sample = a_sample;

else if (a_sample < 0) a_pos_sample = - a_sample;

// Check the validity of the new data

if (((d_sample < d_ref + d_range)

&& (d_sample > d_ref - d_range)

&& (a_pos_sample < a_pos_ref + a_range)

&& (a_pos_sample > a_pos_ref - a_range)

&& (d_sample < threshold))

|| ((d_sample < 300) && (a_sample == 0))) {

82 SECOND APPENDIX

// Data have passed the check, let’s

// increment the counter of consecutive good samples

d_ref = d_sample;

a_ref = a_sample;

n++;

}
else {

// Data have not passed the check,

// let’s restart the procedure

printf("After %d consecutive valid messages,

an invalid one has been found.\n"

"The first validation has to be restarted.\n", n);

n = 0;

return 0;

}
}

d_check = d_sample;

step_val = true;

first_val = true;

hesc_init();

printf("%d consecutive valid messages have been found.\n"

"First validation passed.\n", n);

}

return 0;

}

Step validation

int step_validation() {

parse_data();

// Check the validity of the new data

if (((d_sample < d_ref + d_range) && (d_sample > d_ref - d_range)

&& (d_sample < 65535)) || ((d_sample < 300) && (a_sample == 0))) {
// Data have passed the check and

// can be used to compute the set-point

B.1. ARTVA SYSTEM INTERFACING 83

d_ref = d_sample;

a_ref = a_sample;

last_val = true;

printf("Valid message found.

It can be used to compute the set-point.\n");

}
else {

// Data have not passed the check,

// let’s parse some other samples

int n = 1;

valid = false;

sp.p_rx = 0;

sp.p_ry = 0;

sp.v_rx = 0;

sp.v_ry = 0;

sp.gamma = 0;

sp.vref_mode = 0;

sp.hesc_mode = 0;

orb_publish(ORB_ID(sp_data), sp_topic_pub, &sp);

printf("A non valid message has been found.

Check the next message.\n");

while (valid == false) {
parse_data();

// Check the validity of the new data

if (((d_sample < d_ref + d_range)

&& (d_sample > d_ref - d_range) && (d_sample < 65535))

|| ((d_sample < 300) && (a_sample == 0))) {
// Data have passed the check and

// can be used to compute the set-point

d_ref = d_sample;

a_ref = a_sample;

last_val = true;

valid = true;

printf("Valid message found.

It can be used to compute the set-point.\n");

}
else {

84 SECOND APPENDIX

n++;

printf("Another consecutive non valid

message has been found.\n");

if (n == sk) {
// Too many wrong samples, the procedure

// will be restarted from the first validation

first_val = false;

step_val = false;

last_val = false;

valid = true;

printf("%d consecutive non valid

messages have been found.\n"

"The first validation must be repeated.\n", n);

}
}

}
}

return 0;

}

B.2 Algorithms implementation

Below is shown the code implementation of the two search algorithm.

B.2.1 Flux Line algorithm

int vref_gen() {

v_r0 = v_max * (d_ref / (sqrt(1 + pow(kd * d_ref, 2))));

theta = a_ref * M_PI / 180;

sp.gamma = 0;

// Direction check

printf("Check value: %d\n", d_check);

i++;

if (i == ck) {
if (d_sample > d_check) {

B.2. ALGORITHMS IMPLEMENTATION 85

printf("Change direction!\n");

sign = - sign;

change_sign = true;

}
d_check = d_sample;

i = 0;

}

// Yaw correction

if (a_ref < 6 && a_ref > -6) sp.gamma += 0;

else {
gamma_r0 = - gamma_max * (theta /

(sqrt(1 + pow(ka * theta, 2))));

sp.gamma += gamma_r0;

theta = 0;

}

// Velocity set-point computation in body frame

if (change_sign == true) {
v_rx = - v_rx;

v_ry = - v_ry;

}
else {

v_rx = sign * v_r0 * cos(theta);

v_ry = sign * v_r0 * sin(theta);

}

// Reference system transformation from body to hearth frame (NED)

sp.v_rx = v_rx * cos(yaw+sp.gamma) + v_ry * sin(yaw+sp.gamma);

sp.v_ry = - v_rx * sin(yaw+sp.gamma) + v_ry * cos(yaw+sp.gamma);

sp.vref_mode = 1;

orb_publish(ORB_ID(sp_data), sp_topic_pub, &sp);

change_sign = false;

return 0;

}

86 SECOND APPENDIX

B.2.2 HESC algorithm

int hesc_pos_gen() {

// FIFO update

int j = 0;

for (j = 0; j < m; j++) ARTVA_FIFO[m - j - 1] = ARTVA_FIFO[m - j - 2];

ARTVA_FIFO[0] = d_ref;

j = 0;

int k = 0;

theta = a_ref * M_PI / 180;

sp.gamma = 0;

// Direction check

if (i < ck) d_check += d_sample;

if (i == dk) {
d_check = d_check / ck;

printf("Check value: %d\n", d_check);

if (d_sample > d_check) {
printf("Change direction!\n");

sign = - sign;

}
d_check = 0;

i = -1;

}
i++;

// Yaw correction

if (a_ref < 6 && a_ref > -6) sp.gamma += 0;

else {
gamma_r0 = - gamma_max * (theta /

(sqrt(1 + pow(ka * theta, 2))));

sp.gamma += gamma_r0;

theta = 0;

}

// Jump map velocity computation

for (j = 0; j < m; j++) {

B.2. ALGORITHMS IMPLEMENTATION 87

w_x += ARTVA_FIFO[j] * sin(j*OMEGA_x);

w_y += ARTVA_FIFO[j] * sin(j*OMEGA_y);

if (ARTVA_FIFO[j] != ’\0’) k++;

}
w_x = w_x / k;

w_y = w_y / k;

// Flow map velocity computation

v_x = - k1_x * v_x - k2_x * w_x;

v_y = - k1_y * v_y - k2_y * w_y;

v_x = v_max * (v_x / (sqrt(1 + pow(v_x, 2))));

v_y = v_max * (v_y / (sqrt(1 + pow(v_y, 2))));

w_x = 0;

w_y = 0;

// Position set-point computation in body frame

H = ((kh * d_ref) / (sqrt(1 + pow(kh * d_ref, 2))));

p_x = sign * H * v_x;

p_y = sign * H * v_y;

// Reference system transformation from body to hearth frame (NED)

sp.p_rx = p_x * cos(yaw+sp.gamma) +

p_y * sin(yaw+sp.gamma) + RHO_x * cos(OMEGA_x * t);

sp.p_ry = - p_x * sin(yaw+sp.gamma) +

p_y * cos(yaw+sp.gamma) + RHO_y * sin(OMEGA_y * t);

sp.hesc_mode = 1;

orb_publish(ORB_ID(sp_data), sp_topic_pub, &sp);

t++;

return 0;

}

Bibliography

[1] L. Marconi, C. Melchiorri, M. Beetz, D. Pangercic, R. Siegwart, S. Leutenegger,

R. Carloni, S. Stramigioli, H. Bruyninckx, P. Doherty, A. Kleiner, V. Lippiello, A.

Finzi, B. Siciliano, A. Sala, N. Tomatis, “The SHERPA project: smart collabora-

tion between humans and ground-aerial robots for improving rescuing activities in

alpine environments”, 10th IEEE International Symposium on Safety Security and

Robotics, 2012.

[2] H. Brugger, B. Durrer, F. Elsensohn, P. Paal, G. Strapazzon, E. Winterberger, K.

Zafren, J. Boyd, “Resuscitation of avalanche victims: Evidence-based guidelines

of the international commission for mountain emergency medicine (ICAR MED-

COM)”, Resuscitation, Volume 84, Issue 5 , Pages 539-546, May 2013

[3] M. Silvagni, A. Tonoli, E. Zenerino, M. Chiaberge (2017), “Multipurpose UAV for

search and rescue operations in mountain avalanche events”, Geomatics, Natural

Hazards and Risk, 8:1, 18-33.

[4] N. Mimmo, M. Furci, F. Callegati, and Lorenzo Marconi, “A supervisory strategy

for quick localization of buried victims by aerial vehicles”, Department of Electrical,

Electronic and Information Engineering, University of Bologna.

[5] K. B. Ariyur, M. Kristic, “Real-Time Optimization by Extremum-Seeking Control”,

Wiley-Interscience, A John Wiley & sons, INC., publication.

[6] Y. Tan, D. Nesic, and I.M.Y.Mareels, “On non-local stability properties of Ex-

tremum Seeking Control”, the Department of Electrical & Electronics, the Univer-

sity of Melbourne, Parkview, VIC 3010.

89

90 BIBLIOGRAPHY

[7] R. Goebel, R. G. Sanfelice, and A. R. Teel, “Hybrid Dynamical Systems: Modelling,

Stability, and Robustness”, Princeton University Press, 2012.

[8] N. Mimmo and L. Marconi, “Hybrid Extremum Seeking Control for Avalanche

Victims Search”, Department of Electrical, Electronic and Information Engineering,

University of Bologna.

[9] Website of PX4: https://dev.px4.io

[10] Website of Sparkfun: https://learn.sparkfun.com

[11] Website of ROS: http://ros.org

