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Abstract

Due to the increasing of individual mobility over the past decades, emissions of

noxious pollutant agents such as carbon dioxide and other greenhouse gases have

become a non-negligible issue to be deal with. In automotive sector, whereas from

a legislative perspective a new driving test procedure has been developed in order

to consider effective on-road emissions, the concept of vehicle hybridisation has be-

gun to spread as a possible and challenging solution for CO2 reduction problem. In

particular, electrical hybridisation allows the electrification of several actuators and

thus the increasing of the degrees of freedom available for vehicle control strategies.

As a result, the on-board energy management can be optimized in order to improve

the global efficiency of the vehicle, achieving the goal of fuel consumption reduction.

For this purpose, Advanced Driver Assistance Systems (ADAS) can play an impor-

tant role. They are based on the usage of on-board sensors and enhanced digital

map in order to improve driver safety and comfort. Moreover, since navigation sys-

tems are increasingly entering the vehicle, the available map data may not only be

used for routing purposes, but also to develop advanced in-vehicle features. Thus,

ADAS-provided data can support the reconstruction of the electronic horizon which

represents a detailed preview of the road ahead by mean of the knowledge of traffic

lights time-tables, possible cars accidents and along with others.

The present thesis is focused on the development of a predictive control strat-

egy oriented to battery thermal management for plug-in hybrid electric vehicles

(PHEVs). The basic principle of the strategy is to reduce as much as possible battery

energy usage related to power request from the respective cooling circuit actuators.

At this end, a thermo-hydraulic model of the in-vehicle battery cooling circuit has

been developed in AMESim environment. Then, it has been implemented in an al-

ready existing Simulink vehicle model, which includes components analytical models
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and control strategies. The predictive aspect of the novel strategy is related to the

evaluation of battery temperature over the electronic horizon on the base of input

signals such as vehicle speed and road slope profile. As a consequence of temperature

prediction, the developed strategy is able to establish in an energy-efficient way if

cooling power is either required or not. Results highlight the advantages of applying

the predictive strategy instead of a rule-based one, which is on-board implemented

in each vehicle. It is shown that major energetic benefits, related to the extension

of the all-electric range and the reduction of fuel consumption, take place at middle

environmental temperatures, at which battery cooling power request can seriously

make the difference on its drain rate. Therefore, project goal has been reached and

the results can be considered an interesting starting point for further development

and enhancing of predictive control strategies.

x



Abstract in lingua italiana

A causa dell’incremento della mobilità individuale negli ultimi decenni, le emis-

sioni di pericolosi agenti inquinanti quali l’anidride carbonica e altri gas serra sono

divenute un problema da affrontare non trascurabile. In ambito automotive, mentre

da un punto di vista legislativo una nuova procedura di omologazione di ciclo di

guida è stata messa a punto per tenere in considerazione delle reali emissioni su

strada, il concetto di ibridazione del veicolo ha iniziato a diffondersi come possibile

e interessante soluzione per risolvere il problema legato alla riduzione di CO2. In

particolare, l’ibridazione elettrica permette l’elettrificazione di numerosi attuatori e

quindi l’incremento dei gradi di libertà disponibili per le strategie di controllo veicolo.

Di conseguenza, la gestione dell’energia a bordo può essere ottimizzata per aumen-

tare l’efficienza globale del veicolo, raggiungendo l’obiettivo di ridurre il consumo

di combustibile. A tal scopo, sistemi avanzati di aiuto alla guida (ADAS) possono

avere un ruolo determinante. Essi sono basati sull’utilizzo di sensori a bordo e map-

pe digitali avanzate con lo scopo di migliorare la sicurezza e il comfort di guida del

conducente. Inoltre, poiché i sistemi di navigazione stanno crescentemente entrando

a far parte del veicolo, i dati di navigazione possono essere impiegati non solo per

scopi legati al tragitto da compiere, ma anche per sviluppare funzionalità avanzate

disponibili in veicolo. Quindi, le informazioni provenienti dai sistemi ADAS posso-

no supportare la ricostruzione di un orizzonte elettronico, il quale rappresenta una

anteprima dettagliata del tragitto da percorrere per mezzo della conoscenza della

fasatura dei semafori, di eventuali incidenti stradali e altro ancora.

La presente tesi è incentrata sullo sviluppo di una strategia di controllo predit-

tiva orientata alla gestione termica della batteria di veicoli ibridi elettrici plug-in

(PHEV). Il concetto di base della strategia è ridurre il più possibile l’utilizzo di

energia della batteria relativa alla richiesta di potenza da parte degli attuatori del
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relativo circuito di raffreddamento. A questo scopo, un modello termo-idraulico del

circuito di raffreddamento della batteria presente in veicolo è stato sviluppato in am-

biente AMESim. In seguito, esso è stato implementato in Simulink in modello già

esistente del veicolo, il quale include i modelli analitici dei componenti e le strategie

di controllo. L’aspetto predittivo della nuova strategia è legato al calcolo della tem-

peratura della batteria all’interno dell’orizzonte elettronico sulla base di segnali di

input come i profili di velocità del veicolo e di pendenza della strada. In conseguenza

alla predizione della temperatura, la strategia sviluppata è in grado di stabilire in

maniera energeticamente efficiente se sia necessario o meno asportare potenza termi-

ca. I risultati evidenziano i pregi dell’applicazione della strategia predittiva rispetto

a quelli dovuti ad una strategia a regole fisse, la quale è implementata a bordo di

ogni veicolo. Si è mostrato che i maggiori vantaggi in termini energetici, legati al-

l’aumento della distanza percorribile in puro elettrico e alla riduzione di consumo

di combustibile, si ottengono a medie temperature ambiente, alle quali la richiesta

di raffreddamento della batteria può fare la differenza sulla sua velocità di scarica.

Quindi, l’obiettivo del progetto è stato raggiunto e i risultati ottenuti possono esse-

re considerati come un interessante punto di partenza per sviluppi e miglioramenti

futuri di strategie di controllo predittive.
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Chapter 1

Introduction

1.1 Overview

In the last century the spreading of industrialization has led to an incessantly

growing emission of carbon dioxide (CO2) and other greenhouse gas (GHG) which

represents one of the most demanding challenges of present times, global warming.

This issues is even related to automotive sector, in which individual mobility has

been increasing over the past decades.

This issue, in conjunction with the large and growing proved discrepancies be-

tween laboratory (NEDC) and on-road emissions, especially for nitrogen oxide (NOx)

emissions from diesel cars, has led to the development of a real-driving emissions

(RDE) test procedure by the European Commission. Such a kind of test does not

replace the WLTP laboratory test, but complements it. In the RDE cycle, a car

is driven on public roads and over a wide range of different conditions which are

designed to be representative of driving conditions normally encountered on Euro-

pean roads [1]. On-board emissions measuring is performed by means of Portable

Emission Measuring Systems (PEMS) that provide a complete real-time monitoring

of the key pollutants emitted by the vehicle.

Moreover, in addiction to European legislations, a possible an interesting techni-

cal solution in order to overtake the global noxious emissions challenge can be rep-

resented by vehicle powertrain hybridization. In hybrid vehicles (HV), two or more
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1 – Introduction

power sources are employed in order to satisfy driver torque demand. As a con-

sequence, additional degrees of freedom concerning on-board energy management

are introduced, which implies the development of more complex control strategies.

Despite this disadvantage, several ways now can be pursued in order to optimize

energy use, with particular attention to fuel consumption minimization. Moreover,

the adoption of an hybrid architecture allows energy recuperation, which can be

achieved by regenerative breaking, for example. Even though several auxiliary en-

ergy sources have been taken into account for hybridization, the most widely-spread

hybrid vehicles are hybrid electric vehicles (HEV), which use a high-voltage battery

as an additional energy storage system. If the electric energy used for propelling can

be derived from renewable energy sources, this vehicle technology is a promising way

to reduce global warming. However, the biggest challenge for this kind of vehicles is

still the storage capacity of electric energy.

Concerning HEVs, three categories based on powertrain layout and thus energy

flow can be defined, which are

� series topology

it is similar to a pure electric drivetrain with the addition of the engine as an

auxiliary power unit;

� parallel topology

both the engine and the electric motor(s) can directly propel the vehicle;

� power-split topology

both series and parallel working modes can be applied.

With regard to HEVs parallel topology, several architectures based on electric

machines position within the driveline are possible. As shown in Fig. 1.1, they are

as follow

� P0

the motor is coupled to the engine by mean of a belt. In this case, the electric

machine is called BSG (Belt-driven Starter Generator);

� P1

the motor/generator is directly mounted on the crankshaft upstream of the

clutch. Here, the motor is an ISG (integrated Starter Generator)
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1.1 – Overview

� P2

the motor is decoupled from the engine by a clutch and pure electric drive is

now feasible;

� P3

the motor is mounted on the secondary shaft of the gearbox;

� P4

the motor is directly mounted on the front or rear axle.

Figure 1.1: Parallel hybrid architectures.

In the present work, the vehicle in exam is a P1-P4 plug-in hybrid electric vehicle

(PHEV), which is a hybrid electric vehicle that can be recharged directly from the

grid or by the in-vehicle generator as well as the engine. Therefore, an ISG is present

an two electric machines mounted on the front axle are available to supply wheels

torque demand. Compared to the other alternatives, a relevant benefit related to

P4 architecture is the higher efficiency of energy recuperation because of motors

are directly coupled to the wheels, avoiding power losses in the transmission during

regenerative brakings. This means the only efficiency to be considered is the electric

machines one.

1.1.1 ADAS and electronic horizon

Advancements in wireless communication technologies, sensor fusion, imaging

technologies, Big Data, and analytics have created opportunities for automotive
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1 – Introduction

manufacturers to discover a wide range of solutions for multiple applications. Minia-

turization of electronic components, advancements in navigation, and adoption of

smart devices is expected to fuel advancements in the vehicle-to-everything (V2X)

communications industry.

V2X technologies include:

� Vehicle-to-Vehicle (V2V)

� Vehicle-to-Infrastructure (V2I)

� Vehicle-to-Cloud (V2C)

� Vehicle-to-Pedestrian (V2P)

and it is expected to show high growth potential for the development of future

connected cars that will be able to interact with the environment around.

With regard to the actual self-driving car revolution, the concept of autonomy

levels has been proposed by the international Society of Automotive Engineers

(SAE) in [2]. In Fig. 1.2 a schematic representation of these levels is shown, which

span from no automation (Level 0) to full automation (Level 5).

Figure 1.2: Sae automation levels for self-driving vehicles [2].

To this aim, on-board vehicle sensors play a vital role on driving automation,

providing the spreading concept of data fusion in order to improve navigation data
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1.1 – Overview

availability as well as reconstruct an electronic horizon of the upcoming events. As

shown in Fig. 1.3, these sensors include

� LIDAR (LIght Detection And Ranging)

surveying method that measures distance to a target by illuminating that

target with a pulsed laser light;

� RADAR (RAdio Detection And Ranging)

object-detection system that uses radio waves to determine the range, angle,

or velocity of road objects;

� camera

a video sensor used to analyse the environment outside and inside the vehicle.

Figure 1.3: On-board vehicle sensors.

Since navigation systems are increasingly entering the automotive sector, the

available map data may not only be used for routing purposes but also to enable ad-

vanced in-vehicle applications. The area of potential features reaches from headlight

control up to active safety applications (ADAS1). With the ongoing development of

navigation based ADAS features the interface to access the so-called ADAS Horizon
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is of rising importance. At this end, Advanced Driver Assistant Systems Interface

Specifications (ADASIS) is an industrial platform where map provider and automo-

tive developers work together to standardize the map data. The method of how a

vehicle’s control unit could be provided with the navigation data is specified as well

in the ADASIS protocol [3].

The map data thereby dispose of a much greater range and complete the informa-

tion provided by common radar, video and ultrasound sensors. Therefore, eHorizon

is focused on integrating topographical and digital map data with sensors data for

predictive control of vehicle systems. The electronic horizon is based on the concept

of transceiver-receiver dualism. The first one corresponds to the horizon provider and

the receiver is called horizon reconstructor, which plays the role of data analyser.

They are strictly connected and able to communicate due to the ADAS standard-

ized protocol. As remarked in [3], in-vehicle advanced features can be pursued due

to enhanced map attributes, such as speed limits, road inclination, stop points and

more over. Predicted events, such as the uphill incline after the next corner, and in

the future even dynamic events, such as accidents or traffic jams, are exploited at

an early stage in order to optimize the vehicle’s response.

From this perspective, the objective of this work is the development of a predic-

tive control strategy based on navigation data in order to consume, for the thermal

management, as less electrical energy as possible and consequently decreasing the

fuel consumption and NOx emissions.

6



Chapter 2

State of art of Thermal

Management in PHEVs

2.1 Cooling and heating systems overview

As the major part of the current plug-in HEVs, the cooling system presents a

complex architecture due the high number of components to be cooled down. This is

all because the high level of electrification of such a kind of vehicles, which introduces

the problem of heat power losses due to the presence of current flows. In HEVs, and

especially in BEVs, cooling systems have to deal with electrical devices heating, both

for a matter of power supply (as in the case of the motors and the traction battery,

which efficiency is strictly influenced by their operating temperatures) and state

of charge depleting. The latter aspect is indeed taken into account for developing

a predictive thermal management control function in order to minimize the power

demand of certain cooling circuits actuator, especially the high-voltage compressor

which has a consistent impact on battery energy consumption, as later explained.

The latter component is employed in air-conditioning (AC) and battery cooling

circuits to perform a vapour compression refrigeration cycle which operates a ther-

mal energy removal from a low-temperature ambient to an high-temperature one.

The schematic of a single-stage vapour compression cycle is represented in Fig. 2.1

and the components of the circuit are showed in Tab. 2.1.

The operating fluid, called refrigerant, must have certain physical properties such
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2 – State of art of Thermal Management in PHEVs

Figure 2.1: Schematic of a single-stage vapour compression cycle-based circuit.

Table 2.1: Components of a single-stage vapour compression cycle-based circuit.

Index Description

A Electric compressor with magnetic clutch
B Condenser
C Accumulator with drier
D High-pressure switch
E High-pressure service connection
F Expansion device
G Heat exchanger
H Low-pressure service connection

HP High-pressure side
LP Low-pressure side

as low boiling point at ambient pressure in order to provide a better heat absorp-

tion at evaporation side, and environmentally-friendly suitable, thus depletion of

the ozone layer in the earth’s atmosphere. For these reasons, R134a (a fluorocar-

bon, FC) refrigerant is used, since R12 (a chlorofluorocarbon, CFC) was banned

due to its negative environment-related impact. Moreover, in recent times R1234yf

(a synthetic HFO refrigerant) has been developed as a successor to R134a for au-

tomotive air-conditioning applications. This innovative solution, which has similar

cooling capacity and energy efficiency to R134a, is proposed in order to overcome
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2.1 – Cooling and heating systems overview

the greenhouse gas emissions challenge and thus meet European and world environ-

mental standards. Nevertheless, R1234yf is not only more complex and expensive

to produce, but also and in particular is mildly-flammable gas. Therefore, for safety

and cost reasons, this alternative refrigerant is not yet widely employed in mobile

air-conditioning (MAC) systems.

Cabin cooling is obtained by means of the aforementioned circuit, in which the

in-coming air from the external environment is cooled down in the evaporator, a

vapour-liquid heat exchanger, by the refrigerant. A thermal expansion valve (TXV)

controls the refrigerant mass flow rate through the evaporator. This circuit is called

air-conditioning circuit.

Cabin heating can be whereas obtained in several ways. In general, for conven-

tional and hybrid vehicles, the huge amount of engine thermal power losses is used

to heat up the cabin. A specific valve (heater valve) of the engine cooling circuit

taps a certain engine coolant flow through an air-liquid heat exchanger (heater core),

positioned under the dashboard. A fan draws the environmental air from the outside

which gets heated flowing through the heater core.

The aforementioned cabin heating and cooling circuits are depicted in Fig. 2.2.

(a) In-vehcile architecture. (b) Particular: heater core.

Figure 2.2: Cabin cooling (AC) and heating circuits.

Another technical solution is based on resistive heating. Due to the absence of

an internal combustion engine, this approach is adopted in EVs and can be found

even in PHEVS in conjunction with the classic heating circuit in order to accelerate
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cabin heating. For this purpose, positive temperature coefficient (PTC) thermistors

are starting to be widely used in automotive applications. Over the majority of its

operating temperature range, PTC thermistors exhibit a slight negative tempera-

ture coefficient, similar to most of semiconductors. However, as the temperature

approaches a certain value, known as the switch temperature, the resistance begins

to rise very rapidly. Thus, the current flow through the component decreases and

the same do thermal power losses and component temperature. This produces a

self-regulating effect.

Despite the benefits of PTC heaters use, including no excess temperature pro-

tection required, fast thermal response, compact design and large temperature op-

erating range (from 50� up to 320�) [4], resistive heating implies high electric

power consumption, especially in winter scenarios when higher heating system per-

formances are required, leading to an unavoidable pure electric drive range reduction.

This represents a serious issues to deal with due to the limited battery energy stor-

age of present vehicles, in particular for EVs in which the high-voltage battery is

the only power and traction source. That is why recently heat pump systems are

being developed and are increasingly spreading as an innovative solution to contain

battery energy consumption.

A heat pump system is typically a vapour-compression refrigeration device that

includes a reversing valve and optimized heat exchangers so that the direction of

heat flow can be reversed. This valve switches the direction of refrigerant through the

cycle and therefore the heat pump may either supply or absorb heating power from

the cabin. Several technology configurations are possible, which may comprehends

the use of PTC heater [5], too.

Moreover, widely popular approaches focused on efficiency-improving targets

include different refrigerants, novel components and innovative system structures

which actually represents an interesting matter of research.

2.2 In-vehicle cooling system architecture

In order to clarify the structure of the vehicle cooling system, a classification

based on the nominal temperature values reached by each component can be made.

Thus, three temperature level-based cooling subsystems can be individuated, and
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2.2 – In-vehicle cooling system architecture

they are the following

1. Low Temperature (LT) cooling subsystem

2. Middle Temperature (MT) cooling subsystem

3. High Temperature (HT) cooling subsystem

With regard to the previous classification, the cooling circuits that have been

considered during the present work are listed in Tab. 2.2.

Table 2.2: List of the in-vehicle cooling circuits.

Subsystem Circuit(s)

Low Temperature Battery-AC integrated circuit

Middle Temperature
Front-axle cooling circuit
ISG cooling circuit

High Temperature Engine cooling circuit

The battery-AC integrated cooling circuit (Fig. 2.3) consists of the following

� battery cooling circuit

the coolant absorbs heat power from the HV battery flowing through cooling

plates and it is then cooled down by the refrigerant in gaseous state by means

of a chiller, a vapour-liquid heat exchanger. A thermal expansion valve (TXV)

controls the refrigerant mass flow rate through the chiller;

� air-conditioning circuit

the in-coming air from the external environment is cooled down in the evap-

orator, a vapour-liquid heat exchanger, by the refrigerant. A TXV with the

same purpose is present, as well.
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Figure 2.3: Battery-AC integrated circuit layout.

Table 2.3: Actuators and components of the battery-AC integrated circuit.

Type No. Name

Actuators

1 Electric pump
2 High-voltage compressor
3 Fan
4 TXV (cabin loop)
5 TXV (battery loop)

Components

6 Condenser
7 Chiller
8 Evaporator
9 High-voltage battery

10 Expansion tank
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2.2 – In-vehicle cooling system architecture

Figure 2.4: Front-axle cooling circuit layout.

Table 2.4: Actuators and components of the front-axle cooling circuit.

Type No. Name

Actuators
1 Electric pump (inverters loop)
2 Electric pump (motors loop)
3 Fan

Components

4 Radiator
5 Motors (P4)
6 Inverters
7 DCDC
8 Expansion tank
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Figure 2.5: ISG cooling circuit layout.

Table 2.5: Actuators and components of the ISG cooling circuit.

Type No. Name

Actuators
1 Electric pump
2 Fan

Components

3 Radiator
4 ISG (P1)
5 Inverter
6 Expansion tank
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Figure 2.6: Engine cooling circuit layout.

Table 2.6: Actuators and components of the engine cooling circuit.

Type No. Name

Actuators
1 Electric pump
2 Thermostat
3 Fans

Components
4 Radiators
5 Engine
6 Expansion tank
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2.3 Thermal management control strategies

The electrical battery pack in HEVs and BEVs must deal with important thermal

issues which can seriously compromise reliability, safety and ageing of the involved

components [6]. Consequently, an advanced battery control is needed. For this rea-

son, battery management systems (BMS) constantly estimate the state of charge,

equalize the charge and thermally manage the cells in order to enhance the safety,

cycle-life and performance of the component. Even though the components and the

layout of the battery cooling circuit may vary from vehicle to vehicle, their purposes

are usually the same, which is creating an efficient and robust system that is not

affected by internal and ambient temperature variations.

In particular, battery thermal management system (BTMS) plays a vital role on

battery ageing and performances due to the dependence of its efficiency and power

supply to the operating temperature, as shown in Fig. 2.7. Thus, its temperature

needs to be constantly monitored in order to avoid potentially dangerous conditions

as well as allow the component to operate in the most energy-efficient way. Con-

sequently, it is clear that battery temperature must be contained and limited in a

well-defined range (Tb ∈ [5,45]�), which represents an important thermal constrains

to be respected by battery thermal management control strategies. Moreover, in or-

der to avoid battery de-rating due too relevant thermal stresses, the upper limit

value of the previous range might be reduced to 40� [7].

Figure 2.7: Battery power supply as a function of its temperature [8].

Heat is generated and released from the cell during both grid charge and dis-

charge, as well. If the heat generated in the cell/pack is not removed efficiently, then

it is stored, raising the temperature of the cell and the total battery pack [9]. An

interesting predictive thermal strategy has been proposed and analysed in [8]. The

study is focused on the possibility to attain a certain cooling power reduction by
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2.3 – Thermal management control strategies

Figure 2.8: Battery thermal managament system (BTMS) architecture [9].

means of plugged-in battery thermal pre-conditioning. Results obtained by applying a

standard thermal management control strategy and the predictive one are compared

in Fig. 2.9. As shown in Fig. 2.9b, during grid charging active pre-conditioning is

realised by cooling down the battery to 15� and thus no cooling power has to be sup-

plied during the last driving cycles because of battery temperatures doesn’t reach

the upper threshold set for actuators activation. As a result, this energy-efficient

strategy allows a 133 kJ economy inside the battery on the second driving phase of

the sequence, with a consequent driving range extension of about 200–300 m, which

corresponds to around 2–3% of the whole travelled distance.

(a) No pre-conditioning. (b) Pre-conditioning.

Figure 2.9: Comparison between a standard battery control strategy and plugged-in bat-
tery thermal pre-conditioning [8].
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Such a kind of thermal management strategy can be employed in vehicles appli-

cations by means of the previous described ADAS system, which can provides several

navigation data for electronic horizon reconstruction. In other words, the plugged-in

battery thermal pre-conditioning can be actuated in the case of the driver is able to

set the route destination of the next trip with a certain advance. A typical common

situation is represented by a well-known trip which is performed every day to get

to the workplace. In this case, the benefit of a predictive strategy is reached once

the user set up the journey the night before going to work or when an on-board

machine learning-base adaptive system is able to recognize a well-known trip which

is recursively performed.

Several ways to employ route information for energy-efficiency targets are under

research. One of these is represented by the use of a Model-Predictive Control (MPC)

strategy in which a process model of the investigated system is developed in order

to fully describe the associated thermal dynamics. Such an accurate model is needed

to calculate the predicted control output at future instant as a function of several

input signals [10]. Thus, the control law can be obtained by optimizing an objective

function.

In [11] a control-oriented non-linear model is first developed for the system and

a Non-linear Model Predictive Control (NMPC) scheme is formulated to make it

possible to use the knowledge of the predicted future drive cycle and the battery

thermal system model for an efficient battery thermal management.

An interesting study has been conducted in [12] with the aim of developing an

MPC design as an alternative solution for thermal management cabin heating for

HEVs. The state variables of the model are the heater core power, the PTC heater

power and the incremental engine power request, which are manipulated in order to

achieve the best compromise between the following targets: total heat power sup-

plying, fuel consumption minimization and battery SoC preserving within a certain

range. The innovative aspect of this research can be individuated in the challeng-

ing possibility of the cabin thermal management to influence the vehicle energy

management by setting the torque split factor so as to distributing the workload

between the heater core and an the PTC heater in an optimal way, i.e. minimizing

fuel consumption.
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Chapter 3

Control-oriented modelling

The modelling of the previously described heating and cooling circuits is ex-

plained as follows.

At first, an overview on the AMESim modelling environment is presented. Then,

the physical models used for strategies development and simulations are briefly de-

scribed, with particular attention to the battery cooling circuit model and its vali-

dation.

An analytical HVAC model for cabin energy consumption evaluation has been

developed, as well.

Finally, the implementation of the aforementioned models in Simulink control

and simulation environment is described, paying attention to the Model-In-the-Loop

architecture and the AMESim-Simulink co-simulation mode.

3.1 LMS Amesim environment

LMS Imagine.Lab Amesim is a commercial simulation software for the modelling

and analysis of multi-domain engineering systems. Its name stands for Advanced

Modeling Environment for performing SIMulations of engineering systems.

The software package is a suite of tools used to model, analyse and predict the

performance of a system and offers plant modelling capabilities to connect to controls

design, helping user assess and validate control strategies. Models are described

using non-linear time-dependent analytical equations that represent the system’s
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hydraulic, pneumatic, thermal, electric or mechanical behaviour.

In order to create a simulation model for a certain system, a set of libraries

is used. They contain pre-defined physics components (for each different domain)

which are represented by icons. These have to be connected to each other and for

this purpose an icon has several ports, corresponding to inputs and/or outputs.

Causality is enforced by linking the inputs of an icon to the outputs of another one

(and vice versa).

3.1.1 Architecture

Software architecture is depicted in in Fig. 3.1

Figure 3.1: LMS Amesim architecture.

This software offers powerful platform features so that any user can easily create

an LMS Amesim model from the standard libraries or from user-defined ones, and

run it to get analysis results.

Platform facilities ensure the easy use of the models and allow the integration of
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3.1 – LMS Amesim environment

the software in the design process. These facilities includes graphical user-friendly in-

terface, Analysis Tools (table editor, plots, 3D animation, linear analysis – eigenval-

ues, modal shapes, transfer functions, root locus), Simulator Scripting (using MAT-

LAB, Scilab, Python, Visual Basic), MIL/SIL/HIL and Real-Time (co-simulations

with Simulink, Labview), 1D/3D CAE (CFD software co-simulation, FEA import

of reduced modal basis with pre-defined frontier nodes, MBS software co-simulation

and import/export).

3.1.2 Working modes

In order to built up a complete working model, the following sequential steps

must be followed:

1. Sketch mode

Initially, a schematic of the system must be built choosing icons from libraries.

Available libraries set is shown in Fig. 3.2. Each library consists of one or more.

A category is a collection of special component icons and mathematical models

of these components (referred to as component submodels). All the ports of the

components must be connected.

Figure 3.2: Libraries set in LMS Amesim version v1501.

2. Submodel mode

Every component in the system must be associated with a mathematical
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model. This is a collection of mathematical equations and their implemen-

tation as a piece of computer code. The particular mathematical mode used

to describe a particular component behaviour is called submodel (the term

model is reserved for the mathematical model of the entire system). Assigning

submodels must be performed for all the components;

3. Parametric mode

Parameters must be set for each submodel. User has to specify their values.

They can be real, integer, text type parameters and many more and can con-

cern geometrical design, working mode of the component, physical data, etc;

4. Simulation mode

The software performs various checks and creates an executable for the sys-

tem. The System Compilation window appears, showing technical information

about the equations it must solve to perform a simulation and the number of

involved state variables. Moreover, before running the simulation, run parame-

ters can be set (start and final time, single-run/batch simulation, standard/fixed-

step integrator, etc.).

3.2 Battery cooling circuit thermo-hydraulic model

All the cooling circuits described in § 2.2 were already modelled, calibrated and

validated in AMESim environment during a previous activity [13]. Only the high-

voltage battery cooling circuit have been modified and further developed in order

to make it adaptable for a control-oriented strategy.

Development

The latter model can be implemented in an integrated system considering the

HVAC system loop too, as happens in practice for in-vehicle design solutions. Never-

theless, the significant effort related to the physical development of such a complex

system is not hereby justified by the main objective of the present thesis activity,

which is the development of a predictive thermal management control function fo-

cused on battery thermal behaviour. Anyway, an attempt was made in [13] to model
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the integrated system without considering the air-conditioning circuit. For the same

aforementioned reasons, it was only developed and not validated. Such a physical

model has been taken into account as an important starting point for the develop-

ment of a control-oriented system. In addiction, an energy-based cabin model has

been developed independently from the battery cooling circuit, as explained in detail

in § 3.3. In view of this, for battery cooling circuit model is hereafter intended the

model including the chiller and the condenser loop.

In the developed cooling circuit, the high-voltage compressor, the pump and the

fan can be directly controlled with targeted strategies, described in Ch. 4. Only

the thermal expansion valve (TXV) is mechanically controlled due to the lack of

experimental data. This means that the valve rod lift is not evaluated by a control

unit, but by means of valve characteristic maps with the value of the measured

temperature and pressure of the refrigerant at chiller outlet as input.

Different libraries have been used for model development, in particular the Air

Conditioning library for the whole condenser loop and the Thermal and the Me-

chanical ones for the chiller loop. In the latter case, a thermal mass component has

been taken into account for battery thermal dynamics modelling. For the sake of

Figure 3.3: Thermal mass component in AMESim environment.

simplicity, an only thermal mass has been used. This component allows to computes

the temperature dynamics of a solid mass with respect to incoming heat fluxes [14],

which are represented in this case by the thermal power losses and the cooling power

supplied by the coolant. The temperature of the thermal mass is the same output
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at each port and is evaluated from the energy balance as

dT

dt
=

1

m · cp(T )

4∑
i=1

dhi (3.1)

where dhi is the input heat flux at the i-th port, m is the mass of the component,

cp is the specific heat of the material, expressed as a second-order polynomial in

function of the temperature of the component.

It must be clarified that temperature distribution within the battery is not ho-

mogeneous; it slightly varies from cell to cell. Because of in the interests of safety

the maximum battery temperature is to be taken into account by the BMS, this

parameter is here evaluated by supposing that it is 3� constantly higher than the

average temperature, which is the only temperature evaluated by the thermal mass

used.

Calibration

For a matter of simplicity, battery cooling circuit model has been calibrated in

Simulink environment with the modalities explained in § 3.4.

Battery specific heat capacity has been chosen as the only parameter to be

calibrated because of in the previous version of the model it was set on the base

of values proposed in literature. Thus, a further calibration step was needed, even

considering the several changes made to the physical model.

The calibration process is structured as follows:

� according to the previous value, a plausible range of variation is chosen for the

parameter to be calibrated

� several values within the aforementioned domain are considered and a simula-

tion is performed for each of them

� the optimal value is the one which minimizes a certain accuracy indicator

24



3.2 – Battery cooling circuit thermo-hydraulic model

In this case, the normalised root-mean-square error (NRMSE) is considered as es-

timator of the difference between the experimental and the simulated battery tem-

perature. It can be expressed as follows

NRMSE =
RMSE

T eb
(3.2)

where T eb is the mean value of battery experimental temperature and

RMSE =

√∑n
i=1(T

e
b,i − T sb,i)2

n
(3.3)

with n the number of calculated values for the temperature at each simulation, which

depends on the evaluation step time.

Results are shown in Fig. 3.5. In order to quantify the accuracy of the optimal

value, the relative percentage error (Fig. 3.4) between the experimental and the

simulated temperature related to that value is calculated, and it is

er =
T sb − T eb
T eb

100 (3.4)

Due to the lack of additional experimental data, validation phase for the model

in exam has not been performed and thus cabin model has not been used during the

simulations.
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Figure 3.4: Relative error between the experimental and simulated battery temperature.
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(a) Battery specific heat capacity calibration.

(b) NRMSE behaviour for each iteration of calibration.

Figure 3.5: Calibration of the battery cooling circuit model.
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3.3 Energy-based cabin thermal model

As discussed in Ch. 2, cabin cooling and heating play an important role in thermal

management control because of the intensive request for electric power to the high

voltage battery. Therefore, a cabin thermal model is strictly necessary to take into

account its effects on the battery temperature behaviour.

Objectives

The main aim of this modelling phase consists in the development of a simplified

cabin thermal model, in which heat power losses between the cabin and the external

environment are taken into account. The model focuses on the evaluation of cabin

thermal needs in order to properly compute the electrical power request of the

heating, ventilating and air-conditioning (HVAC) system.

In particular, the cooling system is composed by an electric compressor refriger-

ant cycle circuit in which heat exchange between refrigerant and cabin incoming air

is performed at evaporator side (under dashboard), while refrigerant is cooled down

by frontal air at condenser side (under-hood).

Different types of cabin models are proposed in literature.

One of the these are CFD models and they usually focus on cabin thermal com-

fort, thermal flows and heat distribution inside the cabin [15] and thermal effects

of several cabin configurations such as windows opening or components materials.

Lumped-parameters models, also called mono-zonal models have been developed [16,

17], as well. The cabin air is modelled using a single node and so the model can be

considered homogeneous, i.e. internal air temperature is considered a time-depending

parameter, not varying among the spacial domain defined by the cabin. Here, heat

transfer analysis is performed by means of a theoretical approach, which usually

comprehends convection and radiation equations as well as thermal inertia. A phys-

ical approach can be pursued, too, with the aid of a dedicated simulation software

such as AMESim [18].
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Development

The implementation of an integrated battery-HVAC system model would re-

quire a high developing effort as well as a non-negligible computational load during

the simulation phase due the advanced submodels of the air-conditioning library.

Moreover, because of only the energy evaluation requirements have to be fulfilled, a

simplified model based on the mono-zonal approach is investigated and developed.

Thermal balance inside the cabin gives

dTcab
dt

=
1

mair,in cpcab

(
dQHVAC

dt
− Q̇los

)
(3.5)

where dQHVAC/dt is the heat flow from the HVAC system to the cabin,, Q̇los is

the total thermal power losses, mair,in is the air mass inside the cabin, cpCAB
is the

equivalent heat specific capacity of the cabin, Tcab is the effective air temperature

inside the cabin.

In this case, the narrow range of variation of the cabin temperature allows to

assume cpcab = const.. Cabin thermal power losses according to [18] are considered.

This study implements an AMESim advanced cabin thermal model for mid-size

vehicle which takes into account the heat transfer between the cabin and the external

environment through windshield, side windows, rearshield, side panels and roof. The

behaviour of the cabin heat flows in different ambient temperatures are shown in

Fig. 3.6.

Moreover, heat flow rate provided by the HVAC system depends on the ambient

temperature and cabin temperature offset, Tcab,os, i.e. the difference between the cur-

rent cabin temperature and the target one. Although driver can set either manually

or automatically the target value of cabin temperature, in the present model this

boundary parameter is set to the constant value Tcab,t = 20�. The HVAC system is

designed in such a way that

Q̇HVAC =

Q̇max = 4 kW, if Tcab,os = 20�,

Q̇min = Q̇LOS, if Tcab,os = 0�.
(3.6)

This means that the maximum heating or cooling power Q̇max is supplied when a

threshold value for the offset temperature is reached. This value affects the HVAC
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Figure 3.6: Total heat power losses between the cabin and the external environment in
different ambient temperatures [18].

system design specifications. Once the reference target temperature is attained, the

HVAC system has only to balance the cabin thermal power losses.

Moreover, standstill effects on cabin initial temperature are considered, as well. In

order to analyse cabin thermal behaviour in this particular condition, the AMESim

cabin model was employed. It was developed in the first part of the thesis project

which was focused on the modelling of a HVAC system composed by an electric

compressor, a condenser, an evaporator, a short-orifice tube and an accumulator, as

suggested in [18], too. A summer and a winter scenario are considered. In Tab. 3.1,

parameters for each test conditions are listed, which are: ambient temperature, Tamb,

cabin wall temperature, Twall, and solar irradiance, Is [19]. Steady-state values of

cabin temperature due to the standstill phase are listed, as well.

In Fig. 3.7, cabin temperature behaviour as a function of ambient temperature is

depicted. Moreover, it follows that a standstill time of two hours is thus an adequate

value in order to attain cabin thermal balance.
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Table 3.1: Test conditions and cabin steady-state temperature values due to a 2 hours
standstill phase.

Scenario
Tamb Twall Is Tcab,ss

[°C] [°C] [W/m2] [°C]

winter
0 0 50 3.0

10 10 100 15.3

summer
25 25 300 38.0
35 35 400 51.5

Figure 3.7: Cabin temperature as a function of standstill time and ambient temperature.

3.4 Models implementation and software

co-simulation

All the 4 cooling circuit models developed in AMESim environment have been

implemented in Simulink environment. This solution is adopted because of the vehi-

cle analytical model and control already exists in the latter environment. Although

the ICE model has been implemented, it hasn’t been employed during the per-

formed simulations because of its limited reliability due to a lack of experimental

data which compromised model calibration. Thus, ultimately, the current status of

the developed models is summarized in Tab. 3.2.
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3 – Control-oriented modelling

Table 3.2: Current status of the developed models.

Model
Developing Imported

Working Employed
environment in Simulink

Battery c. c. m. AMESim yes yes yes
Front-axle c. c. m. AMESim yes yes yes
ISG c. c. m. AMESim yes yes yes
Engine c. c. m. AMESim yes no no
Cabin m. Simulink — no no

c. c.: cooling circuit; m.: model

Two ways of using AMESim models in Simulink environment can be followed:

Co-Simulation and Model Exchange. The main difference between these approaches

regards the used solver, which in the first case is the AMESim solver, while in

the latter is the Simulink one. As explained in [14], it is not advised to use model

exchange mode because it is considered deprecated and thus not reliable for models

implementation. Therefore, co-simulation approach (Fig. 3.8) has been chosen. In

this case, the only variables exchanged are the input and output variables and the

rate of exchange is set according to a user-defined parameter. As the name indicates,

the model is not entirely in the hands of a single piece of software (Simulink) but it

is a co-operation between two (or more) software packages. It is important to realize

that there is a loss of information by exchanging only input and output variables at

a given sample rate. Thus, a sample rate of 1 second has been set, consistent to the

slow thermal dynamics of the modelled components.

With regard to the chosen co/simulation mode, the Amesim to Simulink interface

enables to convert the physical model to a Simulink S-Function (Fig. 3.9a), which

can then be imported into Simulink and used within a Simulink system just like any

other S-Function. The interface is designed so that many of the Amesim facilities

can be used while the model is running in Simulink. In particular, parameters of the

physical model can be changed within the Simulink environment with a user-friendly

interface (Fig. 3.9b).

The employed simulation environment is represented by a Model-in-the-Loop sys-

tem. The latter is employed in the context of Model-Based Design (MBD), a method
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3.4 – Models implementation and software co-simulation

Figure 3.8: AMESim-Simulink co-simulation operating mode.

of addressing problems associated with designing complex control, signal process-

ing and communication systems. Model-in-the-Loop helps to identify functional and

non-functional issues in the early development stage, when verification complexity

is relatively lower than that of the final systems, in order to verify the accuracy and

acceptability using plant model of a control algorithm.

The architecture of the adopted MiL is such as to keep separated vehicle controls

from physical components. For this purpose, it is organised in a two-tier system

represented by

� a Controller block

comprehends all the control algorithms related to each modelled vehicle com-

ponent. The developed Rule-Based and eHorizon strategies are included, as

well;

� a Physical block

analytical and physical models are here implemented, including the thermal

management control-oriented models (Fig. A.6).
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3 – Control-oriented modelling

(a) Battery cooling circuit S-function block.

(b) Model parameters setting.

Figure 3.9: AMESim physical models implementation in Simulink environment.
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Chapter 4

Development of the thermal

management control strategies

In this chapter, the rule-based functions for the cooling systems are firstly ex-

plained. In particular, the control strategies of each cooling circuit actuators are

investigated in order to clarify the Boolean conditions behind the functions.

Then, the eHorizon strategy is developed, with particular attention to the pre-

dictive thermal management control function. It takes into account several inputs

such as speed and slope profile in order to estimate battery temperature behaviour

over a well-defined time domain related to thermal relevant event. In this case, only

city passages are considered and several assumptions are needed in order to identify

the start and the end of each event. Analytical equations involving vehicle dynamics

and battery thermodynamics are carefully explained, as well.

4.1 Rule-Based Strategies description

Heuristic thermal management is based on intuitive rules and correlations in-

volving various parameters, principally temperatures.

One guiding principle of such a kind of strategy is to preserve the temperature of

thermal-stressed components inside a restricted range of values, which are defined

upon maximum efficiency consideration. In order to achieve this objective, upper and

lower threshold temperatures are set after a calibration phase, which can turns out

35



4 – Development of the thermal management control strategies

to be an expensive task because of the choice of the best values is influenced by the

architecture of the examined cooling system. Despite this disadvantage, heuristic

control strategies are widely used in real-time controllers due to the low compu-

tational effort required. However, the lack of an analytical approach makes these

strategies not to perform optimal control from an energy-efficiency standpoint.

Two common approaches to implement these intuitive principles are the map-

based and the rule-based approach. In the map-based approach, the output set-points

are stored in multi-dimensional maps whose entries are the measured parameters on

which control is based. In the rule-based approach, several boolean conditions are

verified at each calculation task in order to establish if the activation of the actuator

is either needed or not.

The actuators involved in the developed heuristic control strategies are

� pumps

their control strategies follow the rule-based approach in order to prevent

components to reach too much high temperatures;

� high voltage compressor

it is controlled with the same approach of the pumps, with the only difference

that in this case several physical constrains are taken into account;

� fans

their control strategies follow the map-based approach and are focused on

coolant hot temperatures, i.e. the measured downstream the component to be

cooled down.

The rule-based control strategy of the battery cooling circuit pump is shown

in Fig. 4.1 by means of a flow chart and in Fig. 4.2 where battery temperature is

compared to the fixed threshold values related to pump activity.

36



4.1 – Rule-Based Strategies description

Figure 4.1: Flowchart for battery cooling circuit pump according to rule-based control
strategy.

Figure 4.2: Rule-based control strategy for the battery cooling circuit pump.
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4 – Development of the thermal management control strategies

4.2 eHorizon Strategy development

In this section, the development of the eHorizon Strategy is discussed.

Firstly, the architecture of the eHorizon Control Unit is described, taking into

account a possible in-vehicle implementation using ADAS provider. Then, an algo-

rithm developed in order to identify city passages in advance is presented. With the

knowledge of this information, a predictive thermal management control function

has been developed, as explained in the last section.

4.2.1 Architecture

As explained in Ch. 1, recent passenger cars are implemented with automobile

build-in navigation systems. A state-of-the-art approach is to employ an electronic

horizon provider, which provides several routing information [20].

Nevertheless, in real-world driving is not possible to know a priori the speed

profile of the vehicle using only map data. Consequently, a driver model must be

implemented in the eHorizon Control Unit (eHCU) in order to predict the velocity

of the car in each segment of the planned route. The model could be developed

in a way that driver behaviour is taken into account [20]. As a result, a predicted

vehicle speed trajectory for real-world driving cycle can be obtained. This kind of

approach is represented in Fig. 4.3a. Moreover, the data provided by the geographical

information system (GIS) can be used to detect important thermal-related events,

such as relevant slope sections and city passage. The latter has been here taken into

account and examined for function development.

Since e-horizon provider and map database haven’t been implemented in the

simulation environment used for this activity, a modern navigation system couldn’t

be recreated. In order to overcome, this issue, a RDE cycle has been used instead.

Speed limits have been reconstructed from the speed profile by mean of a City

Detection Algorithm (CDA).

4.2.2 City Detection Algorithm

As mentioned above, the reason why such an algorithm was needed is the lack of

routing information, except for speed and slope trajectories. Thus, the speed profile
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4.2 – eHorizon Strategy development

(a) On-board architecture. (b) Simulation architecture.

Figure 4.3: Comparison between a possible in-vehicle function architecture and the one
employed for function development.

is examined to deduce speed limit values at each time instant and then assign a road

category. The development of the algorithm is focused on a RDE cycle located in

Bologna (Fig. A.1), which means that a prearranged pattern of road categories is

pursued.

The main objective of the algorithm is recognizing city road type in order to

establish

� time instants related to city enters

at which the predictive thermal management function must perform the very

first evaluation task

� lengths of time of city events

which correspond to the operating window of the prediction function

The detection procedure is based on the following steps

STEP 1 Road index signal reconstruction (speed limits - based)

the speed profile input signal is analysed in order to establish trip patterns,

which are categorised by road indices as shown in Tab. 4.1 Initially, the as-
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Table 4.1: Speed limits for road sections.

Road index Road type Speed limits
[km/h]

1 Urban 60
2 Rural 90
3 Motorway 130

signment of road indices is only based on speed limits. The output of this step

is a time-based road index signal (Fig. 4.8);

STEP 2 Road index signal filtering

The aforementioned signal must be filtered in order to generate a homogeneous

and coherent one with the RDE pattern (urban-rural-motorway)(Fig. 4.8);

STEP 3 - City square and trigger signals generation (Fig. 4.5)

A city square signal is generated in order to clearly identify the city event. In

fact, the time instants related to city enter and exit and the city event time

extension are evaluated. The distances to the city enter and exit and the city

event length are evaluated, as well. Then, a city trigger signal is obtained from

the previous one in order to serve as an enabling signal for thermal/energy

management functions.
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4.2 – eHorizon Strategy development

Figure 4.4: Speed profile and road type assignment.
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Figure 4.5: CDA output signals for event defining and first function task triggering.

42



4.2 – eHorizon Strategy development

4.2.3 Predictive Thermal management Control Function

The informations provided by the city detection algorithm are the input of the

predictive thermal management control function, which has been developed for the

battery cooling circuit. It takes into account the following signal and parameters:

� input signals, i(t)

speed v(t) and slope sl(t) profile

� state variables, x(t)

high voltage battery temperature, τb

� control signals, u(t)

compressor, bcpr(t), and pump, bpmp(t), control bit

Initial conditions must be set in order to perform the temperature prediction, as

well. In this case, the values of battery state of charge, ξ0, and temperature, τb,0, at

each function callback are needed.

Moreover, several local constraints are taken into account. They mainly regard

physical parameters such as the maximum torque and power supplied by the electric

machines and the operating window of the state of charge. In the latter case, this

domain strictly depends on the type of the vehicle (HEV, PHEV, BEV) and conse-

quently on the driving mode. As explained in § 4.2.2, only city events are considered

to be thermal relevant in this project. Moreover, it is assumed that the city passage

is always driven in pure electric and, since the vehicle in exam is a PHEV, it is in

charge-depleting mode. Thus, although the initial state of charge ξ0 at each task ob-

viously depends on battery usage, namely the power request, its value at city enter

is fixed. The latter is provided by powertrain energy management control in such a

manner to make the driver capable to cover the entire distance of the chosen trip

in electric drive. On the base of the trip knowledge, this target could be achieved

by means of a specific electronic horizon function aimed at the optimization of the

instantaneous split factor, u(t), satisfying the power demand of the drive line in the

most energy-efficient way (see: Ch. 6).

The analytical equations concerning vehicle powertrain and high voltage battery

for temperature prediction are as follows.
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Analytical equations

As previously explained, the topology of the considered PHEV is P1-P4. In par-

ticular, P4 architecture means the usage of two different motors, directly connected

with the wheels. In this case, they are positioned on the front axle and although a

transmission is mounted between the motors and the front wheels, its gear ratio is

not considered as additional degree of freedom.

As shown in Fig. 4.6, the fundamental equation representing the longitudinal

dynamics of a vehicle in motion is the following

mv ·
d

dt
v(t) = Fmot(t)− Fres(t) (4.1)

where Fmot is the force supplied by the prime mover, here the electrical motors,

and Fres is the resistant force acting on the vehicle. The latter can be expressed as

follows

Fres(t) = Fa(t) + Fr(t) + Fg(t) + Fd(t) (4.2)

and thus takes into account the effects of

� air resistance

drag or aerodynamic force, Fa

� rolling resistance

rolling force, Fr

� gradient resistance

gravity force, Fg

air resistance (drag or aerodynamic force, Fa), rolling resistance (rolling force, Fr)

and gradient resistance (gravity force, Fg), and all the other not specified effects

(disturbance force, Fd). For the sake of simplicity, the latter is neglected.

Because of both air and rolling friction losses depend on vehicle speed, it is a

matter of practicality considering drag and friction forces not separately. In par-

ticular, their contributions can be gathered in a single polynomial expression as a

function of v(t) with coefficients depending on the considered vehicle and which can

be practically obtained by means of a coast-down test.
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Figure 4.6: Forces acting on a vehicle in motion.

As explained in [21], the test consists in driving the vehicle in a flat road at a

certain reference speed and then starting the coastdown deceleration phase, which

means the transmission shall be in neutral and the engine shall run in idle. Moreover,

the brakes shall not be operated during coasting. Experimental data of measured

vehicle speed are then fit with a regression curve, namely the total-resistance curve,

which has the following form

Fcd(t) = Fa(t) + Fr(t) = f0 + f1 · v(t) + f2 · v2(t) (4.3)

where f0 is the constant term [N], f1 is the coefficient of the first-order term

[N/(km/h)], f2 is the coefficient of the second-order term [N/(km/h)2].

The force induced by gravitational field on the vehicle when driving on a road

with non-null gradient is as follows

Fg(t) = mv · g · sinα(t) (4.4)

where α(t) is the slope angle [rad] of the road, which can be derived from percentage

slope α%(t) by the relationship

α(t) = arctan
α%(t)

100
(4.5)

45



4 – Development of the thermal management control strategies

Hence, the resistant force has the following expression

Fres(t) = f0 + f1 · v(t) + f2 · v2(t) +mv · g · sinα(t) (4.6)

By substitution of (4.3), (4.4) in (4.2), the fundamental equation (4.1) can be

written in the form of an inhomogeneous first-order non-linear ODE

d

dt
v(t) = k0 + k1 · v(t) + k2 · v2(t) + Fmot(t) (4.7)

with obvious meaning of the coefficients ki. Thus, the acceleration and the velocity of

the vehicle, which represent the output of the vehicle model, can be evaluated from

(4.7). Such a kind of approach is called forward-facing approach because of the source

of the energy flow is represented by the mover and the sink corresponds to the wheels,

at which velocity and acceleration are evaluated. These output signals are involved

in a closed-loop control (using a PI controller) operated by an effective driver model

with the role of following a target input signal, namely the speed profile of a certain

driving cycle. Thus, this approach can includes dynamics effects and consequently

performance- and drivability-focused simulation can be performed. The approach

based on the inverted path of the energy flow inside the vehicle is called backward-

facing approach. Here, the traction force, and consequently torque and power, are

evaluated on the base of the vehicle speed, so there is no closed-loop control on the

latter parameter, i.e. a driver model is not needed. Because of the main objective of

the predictive function is represented by the evaluation of the battery power request,

and thus the temperature behaviour, with no particular attention to the control of

the traction torque in the interests of energy management optimization problems,

the backward approach is used in the present activity.

Similarly to (4.1), torque balance applied to the front wheels gives:

Tw(t) = Tmot(t)− Tres(t) = Jeq ·
d

dt
ωw(t) (4.8)

where Tw is the net torque applied to the wheels, Tmot is the overall torque request,

Tres is the resistant torque acting on the vehicle, Jeq is the equivalent moment of

inertia, i.e. reduced to the wheel, and ωw is the revolution speed of the front wheels,

which are considered to be the same for both of them.
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The resistant torque is evaluated in correspondence of the front wheels, hence

Tres(t) = Fres(t) · rw,f (4.9)

The equivalent inertia moment is evaluated by reducing the entire system (the ve-

hicle) to the front and rear wheels; the system is assumed to be rigid, including the

wheels. It is as follows

Jeq = Jeq,f + Jeq,r (4.10)

where the quantities Jeq,f and Jeq,r are calculated by imposing the equivalence of

the kinetic energies of the initial and the reduced system

Eeq(t) = E(t) (4.11)

where for the front wheels one has

Eeq(t) =
1

2
Jeq,f ω

2
w,f (t)

E(t) =
1

2
(2 · Jw,f )ω2

w,f (t) +
1

2
mf v

2(t)
(4.12)

where mf is the front lumped mass of the vehicle, weighted on the distance of the

front axle from the vehicle centre of gravity. Equation (4.12) yields

Jeq,f = 2Jw,f +mf r
2
w,f (4.13)

and analogously for the rear wheels. Thus, the traction torque requested to the front

wheels can be obtained from equation (4.8) as follows

Tmot(t) = Tres(t) +

(
Jeq,f
rw,f

+
Jeq,r
rw,r

)
d

dt
v(t) (4.14)

Because of the front motors can be used in regenerative braking as electric power

generator in order to absorb the kinetic energy of the vehicle and thus to recharge

the high voltage battery, the actuated motor torque, i.e. the torque applied upstream
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of the transmission just before the wheels, can be

Ttr(t) =

 1
ηtr
· Tmot(t)
Nm γtr

, if Tmot(t) >= 0 (traction)

ηtr · Tmot(t)
Nm γtr

, if Tmot(t) < 0 (regenerative braking)
(4.15)

where ηtr and γtr are the constant values for the mechanical efficiency and the gear

ratio of the transmission, respectively, and Nm is the number of the traction motors

(in this case mounted on the front axle), here 2 (P4 architecture). The balance of

the actuated and requested torques applied to the motor gives

Tm(t)− Ttr(t) = Jm
d

dt
ωm(t) (4.16)

where the motor revolution speed is calculated as ωm(t) = ωtr(t) = γtr · ωw(t). In

order to quantify the efficiency of the motor-inverter group, a power losses map

is employed to evaluate the electrical power losses of the motor in function of the

requested torque and the revolution speed (generally expressed in rpm)

Pm,los(t) = f (Tm(t),nm(t)) (4.17)

Hence, the electrical power request of the motors can be written as

Pm,el(t) = Pm,mec(t) + Pm,los(t) (4.18)

where Pm,mec(t) = Tm(t) ·ωm(t) is the delivered mechanical power that can be either

positive or negative in case of traction or regenerative braking, respectively, and the

quantity Pm,los(t) is obviously assumed to be strictly positive at each working point,

according to (4.18).

The electric power requested to the high voltage battery is the sum of several

contributions, which are

� the power of the electric machines

in case of regenerative braking, the motor power request represents a nega-

tive demand to the battery, which means it gets charged by kinetic energy

dissipation due to vehicle deceleration;
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� the power of the DCDC converter for balancing the auxiliaries power request

to the low voltage battery

because of the low voltage battery must supply electric power to infotainment

system, several actuators (such as the electric pumps of the cooling circuits)

and other components (e.g. the headlights), its voltage is continuously main-

tained to a constant value (typically 12 V) thanks to the DCDC by power

absorption from the traction battery;

� the power of the ISG

in pure electric drive, a null power is requested from the ISG because of it

is employed for traction purpose only in performance drive cycles, which is

not the case of an RDE one. Moreover, due to the position of the traction

motors on the front axle in the present hybrid topology, regenerating power

during braking employing the P4 machines results in a more energy-efficient

solution than using the ISG. For these reasons, ISG power contribution is not

considered;

� the power amount of the high voltage compressor and the PTC cabin heater

the first one is employed for the cooling of both the traction battery and

the cabin, while the latter has the only purpose of cabin heating. As previ-

ously explained, cabin HVAC model is unavailable and thus the related power

request is not to be considered. Concerning the battery cooling circuits, the

power demand of the compressor isn’t take into account because of the cooling

power effects on battery temperature behaviour is not considered for a mat-

ter of simplicity of function development regarding heat transfers analytical

modelling.

Hence, the requested battery power can be stated as follows

Pb(t) = Nm Pm(t) + Pdc (4.19)

with Pdc = Paux/ηdc, where Paux is the auxiliaries power request to low voltage

battery and the converter electric efficiency ηdc is assumed to be constant.

In order to evaluate the temperature of the battery, the power losses, and con-

sequently the electric current, must be firstly calculated.

49



4 – Development of the thermal management control strategies

The electric current has the following form

ib(t) =
Vb,oc(t)−

√
V 2
b,oc(t)− 4Pb(t) ·Rb(t)

2Rb(t)
(4.20)

where the open circuit voltage Vb,oc(t) and internal resistance Rb(t) of the battery

are evaluated on the base of the same quantities referred to the single cell as follows

Vb,oc(t) = Nc,s · Vc,oc(ξ(t)) (4.21)

Rb(t) =
Nc,s

Nc,p

Rc(τb(t)) (4.22)

where Nc,s and Nc,p are the number of cells in series and parallel, respectively. The

open circuit voltage and the internal resistance of the cell strictly depends on the

state variables of the predictive function, i.e. the state of charge and the temperature

of the battery, respectively.

The state of charge of the battery is defined as the ratio of the remaining capacity

to the maximum available one. In symbols

ξ(t) =
C0 − C(t)

Cmax
(4.23)

where Cmax = Cc ·Nc,tot and C0 = ξ0 · Cmax is the initial battery capacity intended

as the maximum capacity weighted on the initial value of the SoC. Hence

ξ(t) = ξ0 −
Nc,s

∫
ib(t) dt

Cmax
(4.24)

Electric power losses are simply defined as

Pb,los(t) = Rb(t) · i2b(t) (4.25)

and are responsible of battery heating (Joule or resistive heating). Neglecting the

convective heat transfer between the battery and the surrounding air and not con-

sidering the cooling power supplied by the battery cooling circuit (as previously
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explained), the thermal balance applied to the battery gives

τb(t) = τb,0 −
Pb,los(t)

mb · cp,b
(4.26)

where τb,0 = τamb, i.e. the initial battery temperature corresponds to the ambient

one, which represents an important environment constrain, as discussed in Ch. 5.

Calibration and validation

The behaviour of the state variables has been examined. The comparison between

the effective and predicted battery state of charge and temperature are shown in

Fig. 4.7 and Fig. 4.8, respectively. It can be seen that the SoC is affected by a not so

high accuracy. This fact can be explained considering both the complexity of vehicle

dynamics and the simplified analytical approach at the base of function development.

Indeed, in order to achieve more accurate results, several control-based and physical-

based constraints should have been implemented in the predictive function, such as

torque wheel gradient limiter, torque smoothing during braking at low speeds, and

battery peak and continuous power limits both in discharging and recharging.

Such a developing would have compromised the simplified approach on the base

of which the function has been intended, with a consequent loss of generality es-

sential for function application to others hybrid topologies. Moreover, because of

the backward approach is followed and due to the importance of the prediction

of the only battery temperature, the accuracy of the evaluated parameters can be

considered acceptable.

In order to improve it, a remark can be made on the step size (equal to 1 s) of the

evaluation task performed by the function, which is much higher than the one set

for the Simulink vehicle model for a reason of computational effort reduction. This

parameter might be considered for further step of function validation and calibration.

Working principle

The function is enabled by a trigger signal every time an event occurs, i.e. at

city enter, in order to predict the temperature of the battery. Moreover, another
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Figure 4.7: Comparison between the effective and predicted state of charge of the battery.

prediction task needs to be performed in the case of maximum battery temperature

τb,max is higher than an upper limit value, established such as to avoid battery de-

rating as well as ageing. According to [7], a reasonable value of the limit temperature

could be Tb,ul = 40�.

Depending on the driving cycle, namely the speed and the slope profile, and the

ambient temperature, the two following situations can occur:
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Figure 4.8: Comparison between the effective and predicted temperature of the battery.

1. τb,max ≤ τb,lim

the predicted maximum battery temperature does not exceed the imposed

upper limit. This could be the case of

� a trip performed in cold scenarios, in which the environment plays an

important role to keep the battery cooled down due to favourable initial

thermal conditions

� a short trip, maybe due to a short city event or to a low initial value of
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the SoC, which causes the battery not to satisfy a power request for such

a long period to make the cooling required

Hence, battery SoH is not at risk and consequently cooling is not needed. The

actuators of the battery cooling systems are not activated, even in the case in

which the battery temperature has exceeded the upper limit value of the RBS

to make the pump and the compressor switched on. The output signal of the

predictive function are beHS
cpr = beHS

pmp = 0;

2. τb,max > τb,lim

the imposed upper limit temperature could be exceeded when

� middle/high ambient temperature is present, causing the battery to reach

faster a critical thermal condition

� a long trip maybe combined with an aggressive driving and steep-sloped

road sections

Consequently, after the very first task the actuators are activated: beHS
cpr =

beHS
pmp = 1.

Flowcharts related to temperature prediction and actuators control are depicted

in Fig. 4.9 and Fig. 4.10, respectively.

The operating mode described in case (1) during a city passage in the RDE

cycle located in Bologna is depicted in Fig. 4.11. In the latter case, because of

in (4.26) the contribution of the absorbed heat by the coolant is not taken into

account, several evaluation tasks are repetitively needed. This is the reason why

discontinuities characterizing the predicted temperature behaviour can be observed.

When the evaluation task is performed, the initial battery temperature corresponds

to the actual one, which can be considered an initial varying constrain for each

task. The main challenge of the predictive function is to apply the best thermal

management control during the event. The target of the function is to minimize the

difference of temperature between the effective battery maximum temperature and

the upper limit one. Indeed, the closest is the battery temperature to the thermal

limit, the less is the battery cooling request. Hence, in case (2) the eHorizon strategy

activates the pump and the compressor at the event start and make the battery
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Figure 4.9: Flowchart for battery temperature prediction.

Figure 4.10: Flowchart for battery cooling system actuator control.
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Figure 4.11: Function operating mode in case of no battery cooling request.

cooled down until its maximum predicted temperature is just right below the limit

one. Moreover, an SoC monitoring is implemented in the function, as well. The

purpose of this feature is taking into account the SoC behaviour during temperature

prediction in order to establish the effective length of the horizon to be reconstructed.

In case of an initial low value of the state of charge, city passage could not be

completed. Therefore, the temperature of the battery is no more estimated over the

time domain of the event, but considering the instant of time at which SoC drops
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Figure 4.12: Function operating mode in case of battery cooling request.

below the lower limit value as the instant corresponding to city end. It can be said

that the state of charge provides a virtual event end, which varies in function of the

particular drive cycle and initial conditions.
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Figure 4.13: SoC monitoring in temperature prediction.
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Chapter 5

Simulations and results

In this chapter, the results obtained comparing the Rule-Based and the eHorizon

Strategy are presented and discussed. The behaviour of the state of charge, the all

electric range (AER) and the fuel consumption (FC) are investigated in different

ambient conditions.

5.1 Test cases and conditions

In order to prove and evaluate the advantages achieved by applying an eHorizon

strategy instead of a rule-based one in the context of the thermal management

control of the battery cooling circuit, a set of simulations has been designed.

The testing conditions mainly concern the environmental temperature, which

value corresponds to the initial temperature of each component and fluid inside

the pipelines of the cooling circuits. Because of the efficiency of the high-voltage

battery, the electric motors and other thermal-stressed components depends on the

their temperatures, an operating thermal range must be pursued and achieved not

only for performances-based reasons, but also and above all for a matter of safety

and, consequently, of preserving the service life of the component.

As explained in Ch. 1, because of the New European Driving Cycle (NEDC)

is no more suitable for certifying exhaust emissions of light-duty vehicles, a RDE

cycle has been used to perform the simulations. In particular, the same used in

§ 4.2 to validate the Predictive Thermal management Control Function is taken into
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account.

A cabin thermal model has been developed and validated, as discussed in § 3.3.

Nevertheless, the HVAC system has been disabled in each simulation in order to

consider the only effects of the environmental temperature on the investigated pa-

rameters.

The main objectives of the performed set of simulations is to compare the method

of operating of the aforementioned strategies by analysing and comparing the results

obtained for the following parameters

� State of Charge

because of cooling circuits require power to the high-voltage battery, an energy-

efficiency thermal management control should minimize the battery energy

consumption which is expressed in terms of SoC, as evaluated in (4.24), § 4.2;

� All-Electric Range

the AER represents the distance covered by the vehicle using only the traction

power provided by the electric battery pack, before the ICE is to be switched

on. Hence, it starts at the beginning of the test cycle (i.e. at vehicle ignition)

and ends at the first engine ignition, due to the energy management control

strategy applied by the Hybrid Control Unit (HCU). Because of this supervisor

control unit makes this decision upon a minimum threshold level of the SoC,

the latter and the AER are deeply correlated;

� Fuel Consumption

because of this parameter is related to engine activity, FC is expected to vary

proportionally to the AER for a given torque split control strategy.

In order to investigate the behaviour of these parameters as a function of the

environmental temperature and the applied thermal management strategy, the fol-

lowing test cases are proposed

Test case 1 city passage

the first section of the RDE cycle corresponding to the city event is performed

in electric drive. The aim here is to compare the results for the SoC at city

exit;
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5.1 – Test cases and conditions

Test case 2 full RDE cycle

the whole drive cycle is simulated and charge-depleting and -sustaining modes

are sequentially applied, according to PHEVs operating strategy. As discussed

in § 4.2, the PTCF has been developed considering the high-voltage battery as

the only traction power source of the vehicle. Hence, the eHS is applied only

in charge-depleting mode, and then the RBS applies;

Test case 3 full RDE cycle with null slope

the whole drive cycle is performed one again imposing a zero slope profile.

As will be shown and discussed later on in § 5.3, the road gradient has an

intensive and non-negligible impact on the resistant torque.

The test cases and conditions related to the simulations’ set are summarized in

the following test matrix (5.1).

Table 5.1: Test matrix regarding the performed set of simulations.

Test cases
Tamb ξ0 Strategy No. of
[°C] [%] applied simulations

1) city passage
10, 20, 30, 35, 40, 45, 50 95 RBS, eHS 142) full RDE cycle

3) full RDE cycle
with null slope

A wide ambient temperature range is covered in order to observe in detail the

operating of both the strategies and their impact on the investigated parameters.

The initial value ξ0 = 95 % for the state of charge was chosen for the simulations’ set

because of the relevant thermal inertia of battery cooling and heating phenomena.

Let a(Tamb) be the generic investigated parameter as a function of the initial

environmental condition. For each test case, normalized values of the parameter are

listed, and they are evaluated as follows

a(Tamb) =
a(Tamb)

max(aRBS,aeHS)
100 (5.1)
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5.2 Test case 1 – City passage

In this test case, the driving mode is forced in pure electric and the eHorizon

strategy is active for all the trip long, when applied.

The behaviour of the maximum temperature and the SoC of the battery are

depicted in Fig. 5.2 and Fig. 5.3, respectively.

As can be seen in Fig. 5.3, the vehicle is able to perform the whole city passage

in pure electric mode with both the strategies applied and at every environmental

test condition.

Concerning battery maximum temperature, when eHorizon strategy applies, the

thermal management control acts in order to minimize the difference ∆Tb = Tb,lim−
Tb,max at city exit, as depicted in Fig. 5.2. Basing upon the PTCF working principle,

the lower is this temperature difference, the lower is the duty period of the battery

cooling system actuators. Therefore, once the pump and the high-voltage circuit

are activated at the beginning of the event, if battery cooling is needed, the eHS is

able to achieve the energy-efficiency target by switching off the actuators when the

temperature target is accomplished.

With regard to the behaviour of the state of charge as a function of ambient

temperature, it can be expected that the major advantages of the eHS in terms

of SoC values at city exit will take place at middle temperatures. The reason why

this should occur is that at low (Tamb ≤ 10�) and high ambient temperatures

(Tamb ≥ 50�) battery cooling is never or always demanded, respectively, by both

the strategies. The expected advantages of the eHS are hereby confirmed in Tab. 5.2,

which indicates that the state of charge of the battery at city exit obtained by

applying the predictive strategy is always higher than the one reached by the RBS,

except for extreme temperatures. The highest benefit is reached at Tamb = 30�.

Therefore, the value of SoC is supposed to decrease with increasing environmental

temperatures because of a growing amount of thermal power must be absorbed from

the battery by the cooling circuit. Nevertheless, one might notice that this trend is

not verified at Tamb = 20� for the eHS and at Tamb = 50� for both the strategies.

In the first case, this can be explained by considering the decreasing behaviour

of the cell internal resistance as a function of its temperature and then of the en-

vironmental one. The higher is the battery temperature, the lower are the internal
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Table 5.2: Test Case 1 – Results for the state of charge at city exit.

Tamb ξc,in ξRBS
c,out ξeHS

c,out

[°C] [%] [%] [%]

10 95 98.2 98.2
20 95 96.9 100.0
30 95 88.0 98.8
35 95 85.2 94.5
40 95 84.5 90.3
45 95 83.0 85.5
50 95 88.8 88.8

resistance and then the power losses, but at the same time the higher is the cooling

power request. From an energetic point of view, the obtained results show that in

the range Tamb ∈ [10,30] [�] the positive effect of ambient temperature on power

losses reduction is greater than the negative one related to the increasing amount

of heat power to be absorbed from the battery. In particular, the major benefit of

this tread-off is achieved at Tamb = 20�, at which the value of the battery internal

resistance is relatively low and no cooling power needs to be supplied, according to

the operating mode of the predictive function.

Moreover, the higher values of SoC at city exit at very high temperatures (Tamb =

50�) are related to the compressor control strategy, which acts on the component

speed in order to avoid dangerous excess pressures due to the high temperature

of the refrigerant. When its pressure exceeds an upper threshold, the compressor

is switched off and then on only when a lower pressure value is reached. This is

due to the fact that the component was not designed to absorb such a high thermal

power related to extremely high environmental temperatures. As a result, the overall

activity period of the compressor can be shorter, even if a major cooling power is

requested at higher ambient temperatures. Therefore, the total amount of battery

energy consumption due to the compressor activity starts to reduce over Tamb > 45�

(Fig. 5.1).
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Figure 5.1: Compressor operating mode at high refrigerant temperatures and pressures.
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5.2 – Test case 1 – City passage

(a) Rule-Based Strategy.

(b) eHorizon Strategy.

Figure 5.2: Test Case 1 – Behaviour of battery maximum temperature.
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(a) Rule-Based Strategy.

(b) eHorizon Strategy.

Figure 5.3: Test Case 1 – Behaviour of battery state of charge.
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5.3 Test case 2 – Full RDE cycle

The entire RDE cycle is performed, and the eHorizon strategy is applied from

the beginning of the cycle, i.e. at city enter, until the lower limit value of the SoC

allowable in charge-depleting mode is reached. When this occurs, the RBS is switched

on and remains active for the rest of the cycle. The control actuated by this strategy

on battery cooling circuit is clear considering the behaviour of the battery maximum

temperature (Fig. 5.6) after the beginning of the charge-sustaining mode, marked

with a small dot. In this case, it can be seen that the temperature of the battery

starts to decrease in consequence of the activation of the pump and the compressor

because of the battery temperature upper threshold set for the heuristic strategy is

exceeded for every test condition.

The behaviour of the battery state of charge is shown in Fig. 5.7, as well. The

results obtained for the AER and the FC in each simulation are listed in Tab. 5.3

and Tab. 5.4, respectively.

Table 5.3: Test Case 2 – Results for the all-electric range.

Tamb ξ0 AERRBS AEReHS

[°C] [%] [%] [%]

10 95 95.1 96.7
20 95 90.9 100.0
30 95 84.8 91.1
35 95 70.8 89.0
40 95 70.1 85.2
45 95 69.5 70.2
50 95 84.7 84.7

Concerning the all-electric range, it is clear that the behaviour of the SoC and

the one of the AER are strictly correlated because of the later charge-sustaining

mode starts, the longer is the trip performed in pure electric. In other words, as

analogously seen in the previous test case, the all-electric range decreases with in-

creasing environmental temperature, except for extreme ambient conditions. A sharp

reduction of the AER can be noticed, as well, at middle high-temperatures for both

the strategies. This fact is due to the relevant road gradient section which mainly

characterizes the rural trip of the Bologna RDE cycle. The influence of road slope
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Table 5.4: Test Case 2 – Results for the fuel consumption.

Tamb ξ0 FCRBS FCeHS

[°C] [%] [%] [%]

10 95 89.2 88.9
20 95 91.5 88.0
30 95 96.8 93.6
35 95 100.0 95.2
40 95 99.2 97.5
45 95 99.6 99.6
50 95 96.5 96.5

on the state of charge in this part of the cycle is depicted in Fig. 5.4. It can be

seen that by applying the RBS, at Tamb = 35� the energy consumption related to

battery cooling makes the state of charge not high enough to overcome an up-hill

section of the cycle, which is immediately followed by a down-hill one. Indeed, the

benefit of energy recovering due to regenerative breaking in negative gradient roads

is shown by the SoC behaviour at Tamb = 30�. In the same way, this happens apply-

ing the eHorizon strategy, too, but the unfavourable slope-related condition occurs

at higher ambient temperatures (Tamb = 45�) due to the energy-efficient thermal

management control operated by the predictive function during electric driving.

Furthermore, in order to neglect the effects of road gradient on the state of charge

and the all-electric range, an additional test case with a null slope profile was needed

to further investigate the parameters behaviour as a function of environmental tem-

perature.

With regard to the fuel consumption, it is expected to present a reverse trend

with respect to the behaviour of the all-electric range. That is why it is FCeHS(20�) <

FCeHS(10�) and FCeHS(50�) < FCeHS(45�). Moreover, the highest value for FC

obtained at Tamb = 35� with RBS active can be considered as an exception. As de-

picted in Fig. 5.5, the torque split control applied by the HCU is not the same in

each simulation because of several parameters are taken into account at each cal-

culation task. The instantaneous values of state of charge, wheels requested torque

and vehicle speed have a great impact on the torque split factor evaluation [22].
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Figure 5.4: Test Case 2 – Effects of road slope on the state of charge.
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Figure 5.5: Test Case 2 – Analysis of fuel consumption.
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5.3 – Test case 2 – Full RDE cycle

(a) Rule-Based Strategy.

(b) eHorizon Strategy.

Figure 5.6: Test Case 2 – Behaviour of battery maximum temperature.
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(a) Rule-Based Strategy.

(b) eHorizon Strategy.

Figure 5.7: Test Case 2 – Behaviour of battery state of charge.
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5.4 – Test case 3 – Full RDE cycle with null slope

5.4 Test case 3 – Full RDE cycle with null slope

The behaviour of the maximum temperature and the SoC of the battery are

shown in Fig. 5.9 and Fig. 5.10, respectively.

As expected, the values of the all-electric range (Tab. 5.5) and the fuel consump-

tion (Tab. 5.6) vary directly in response to the changes of the ambient temperature,

with the already known exceptions occurring at extreme environmental conditions.

Table 5.5: Test Case 3 – Results for the all-electric range.

Tamb ξ0 AERRBS AEReHS

[°C] [%] [%] [%]

10 95 97.1 97.9
20 95 93.7 100.0
30 95 85.6 94.7
35 95 81.7 91.1
40 95 80.8 87.7
45 95 80.2 82.9
50 95 83.3 83.6

Table 5.6: Test Case 3 – Results for the fuel consumption.

Tamb ξ0 FCRBS FCeHS

[°C] [%] [%] [%]

10 95 88.8 88.7
20 95 90.3 88.8
30 95 96.0 91.2
35 95 98.1 94.3
40 95 98.3 96.5
45 95 100.0 98.3
50 95 98.6 98.5

Moreover, even in this test case a relatively high value of the FC can be observed

at high temperatures (Tamb = 45�). As shown in Fig. 5.8, the major consumption

of fuel at that ambient temperature is due to engine On at an unfavourable instant,

in which the vehicle is facing a relevant acceleration phase. Consequently, in this

case the engine applied torque is higher than the compared ones, and as a results
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the fuel consumption strongly increases at engine ignition, especially because of cold

start.

Figure 5.8: Test Case 3 – Analysis of fuel consumption.
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5.4 – Test case 3 – Full RDE cycle with null slope

(a) Rule-Based Strategy.

(b) eHorizon Strategy.

Figure 5.9: Test Case 3 – Behaviour of battery maximum temperature.
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(a) Rule-Based Strategy.

(b) eHorizon Strategy.

Figure 5.10: Test Case 3 – Behaviour of battery state of charge.
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5.5 Conclusions

In order to compare the results over the all performed test cases, the maximum

advantages obtained by applying the thermal management-oriented eHorizon strat-

egy are summarized in Tab. 5.7.

Table 5.7: Maximum advantages of the eHorizon strategy compared to the Rule-Based
one.

Test cases
max ∆ξc,out max ∆AER max ∆FC

[%] [%] [%]

1) city passage +12.2% — —
(30�)

2) full RDE cycle — +25.80% 4.80%
(35�) (35�)

3) full RDE cycle — +11.59% 4.93%
with null slope (35�) (30�)

Finally, the following conclusions can be drawn

1. maximum performances of the eHS are obtained at middle-low ambient tem-

peratures for the examined driving schedule. In particular, results have shown

that for environmental temperatures up to Tamb = 30� the predictive strat-

egy allows to maintain the value of the SoC at city exit quite unchanged. This

is due to the benefit related to the decreasing battery internal resistance at

increasing environmental temperature, which makes the battery to deliver a

lower electrical power due to lower power losses. It therefore follows that re-

markable benefits in terms of AER extension can be achieved in cold scenarios

and in the major part of summer ones;

2. maximum advantages of the eHS compared to the RBS take place at middle-

high ambient temperatures, under which power from the battery is demanded

by the heuristic strategy in order to cool down the component until its temper-

ature drops below the lower threshold temperature related to pump activity;

3. same performances and then null advantages occur at extreme ambient tem-

peratures, mainly because of battery cooling is never or always demanded at

very low and high environmental conditions, respectively;
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4. performances of both the strategies are influenced by the executed driving

cycle. It has been proven that the road gradient has a strong impact on the

state of charge, and consequently on the all-electric range.

78



Chapter 6

Conclusion and future jobs

The present activity is focused on the development development of a predictive

thermal management function for plug-in hybrid electric vehicles. For this purpose,

the cooling circuits of the vehicle have been physically and analytically modelled.

Nevertheless, additional experimental data should be provided in order to accu-

rately validate the battery cooling circuit and cabin model. However, the accuracy

of temperature evaluation from the relative model has not compromised the present

work.

Moreover, the results obtained and discussed in the previous chapter have high-

lighted the possibility of overcoming the energy economy challenge in PHEVs by

means of a thermal management control strategy based upon navigation data. In

particular, the knowledge of trip-related data has proved to be an essential to make

the thermal control strategy to act in advance in a energy-efficient way.

Definitely, it can be said that the main goal of the present work has been achieved.

Nevertheless, the developed eHorizon strategy can be considered an interesting start-

ing point for further improving based on the following remarks

� enhance battery thermal dynamics modelling, maybe using a higher number

of thermal masses,

� perform cabin model validation and calibration in order to analyse HVAC

system impact on vehicle total energy consumption,
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� a HVAC system control function oriented to energy saving and fuel consump-

tion minimization might be developed, taking into account vehicle energy man-

agement (engine power request),

� improve the predictive thermal management control function by taking into

account the overall vehicle driveline. This means that engine torque request

and thus torque split factor are being evaluated, as well. The advantages of

this further enhancing of the control function is related to the possibility of

applying the eHorizon strategy not only in electric drive mode,

� improve the eHorizon strategy with a driver model in order to actually recon-

struct the speed profile of the vehicle of a given trip. Additional navigation

data can be used to achieve this objective on the base of ADASIS Protocol

guidelines, maybe taking into account traffic events, upcoming stop and much

more,

� extend the application of the eHorizon strategy to the middle and high tem-

perature cooling subsystems,

� perform a simulations set using a different drive cycle in order to confirm the

advantages reached by applying the eHorizon strategy,

� understand if implementing a slope event in the predictive thermal manage-

ment control function could help to minimize energy consumption.
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Appendix A

Tables

RDE Cycle

Fig. A.1: RDE cycle located in Bologna.

AMESim models layouts

� Fig. A.2: High-voltage battery cooling circuit model.

� Fig. A.3: Front-axle cooling circuit model.

� Fig. A.4: ISG cooling circuit model.

� Fig. A.5: Engine cooling circuit model.

AMESim models implementation in Simulink environment

Fig. A.6: Thermal management control-oriented models in MiL Physical block.
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Figure A.1: RDE cycle located in Bologna.
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Figure A.2: High-voltage battery cooling circuit model.
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Figure A.3: Front-axle cooling circuit model.
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Figure A.4: ISG cooling circuit model.
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Figure A.5: Engine cooling circuit model.
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