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Abstract

The Induced Gravitational Collapse (IGC) paradigm points to a binary origin for the
long-duration gamma-ray burst (GRBs) associated with supernovae (SN). In this one, a
carbon-oxygen core (COcore) explodes in a Type Ib/c SN in presence of a close neutron star
(NS) companion. The SN triggers an hypercritical accretion into the NS and depending on
the initial binary parameters, two outcomes are possible. In a first scenario, also referred
as binary-driven hypernova (BdHNe), the binary is enough tight, so the accretion rate
onto NS can be as high as 0.1 M⊙ s−1, the NS reaches its critical mass, and collapses to
a black hole (BH), emitting a GRB with Eiso > 1052 erg. A second scenario can happen
for binary systems with larger binary separations, then the hypercritical accretion onto
the NS is not sufficient to induce its gravitational collapse, giving place to a x-ray flash
(XRF) with energy Eiso < 1052 erg.

The first part of this thesis focus on the hypercritical accretion process in the IGC
paradigm. We constructed an analytical framework based on the Bondi-Hoyle accretion
formalism, in order to identify the separatrix of systems in which a BH is formed and the
ones where there is no BH formation and characterize the observational signatures of the
BdHNe and the XRF systems. We show that the material entering into the Bondi-Hoyle
region possesses sufficient angular momentum to circularize around the NS, forming a
disk-like structure. We estimate the maximum orbital period, Pmax, as a function of the
NS initial mass, up to which the NS companion can reach by hypercritical accretion the
critical mass for gravitational collapse leading to BH formation. We find that XRFs and
BdHNe are produced in binaries with P > Pmax and P < Pmax, respectively. One of the
most important results is that the presence of the NS produce large asymmetries in the
SN ejecta around the orbital plane that lead observational signatures in the SN emission
as well as in the afterglow of long GRBs. We also studied the hydrodynamics within the
accretion flow. We find that the temperature developed near the NS surface is around
1− 10 MeV, hence electron–positron annihilation into neutrinos becomes the main cool-
ing channel leading to accretion rates of 10−9 − 10−1 M⊙ s−1 and neutrino luminosities
of 1043 − 1052 erg s−1. Additionally, 3D numerical simulations of the IGC paradigm are
performed with the smoothed particle hydrodynamics (SPH) technique. The fate of the
binary system is explored for a wide parameter space including different COcore masses,
orbital periods and SN explosion geometry and energies. We determine whether the star
gravitational collapse is possible and assess if the binary holds gravitationally bound or
it becomes unbound by the SN explosion.

The second part of this thesis is about the evolution of postmergers remnants of white
dwarfs binary systems. The simulations of coalescence between white dwarfs have shown
that the final result consists of a central remnant made of the undisturbed primary star.
The secondary star is totally disrupted and about half of the material is accreted by the

iii



primary, forming a hot corona surrounding it, and the rest of the material forms a rapidly
rotating Keplerian disk, since little mass is ejected from the system during the coalescence
process. In this thesis the evolution of metastable, magnetized super-Chandrasekhar white
dwarfs formed in the aftermath of the merger of close binary systems has been modeled
taking into account the magnetic torques acting on the star, accretion from the Keplerian
disk, the threading of the magnetic field lines through the disk, as well as the thermal
evolution of the white dwarf core. We explore the binary parameters that lead the white
dwarf central remnant to evolve toward the gravitational collapse forming a neutron star
or toward explosive carbon ignition leading to a type Ia supernova.
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Introduction

Accretion processes release energy efficiently while matter falls into the gravitational field
of a compact massive object. A simple order of magnitude estimation of this energy can be
made calculating the change in the gravitational potential energy of a mass m falling onto
the surface of a body of mass M and radius R. Then, the energy that potentially can be
released is: ∆Eacc = GMm/R, i.e the more compact is the accreting object, the accretion
is more efficient. For instance, a white dwarf (WD) with M ∼ M⊙ and R ∼ 109 cm can
release ∆Eacc ≈ 1017 erg per each gram of matter accreted while a neutron star (NS) with
the same mass and R ∼ 10 km will release ∆Eacc ≈ 1020 erg per each gram of matter
accreted.

Accretion plays an important role in many astrophysical scenarios, e.g. protoplanetary
disks, circumstellar disks of dense gas surrounding newly formed stars [5], interacting
close binaries where a compact star accretes matter from its companion either via stellar
wind or Roche-lobe overflow (e.g. X-ray binaries [67], cataclysmic variables (CV) form by
a WD and a normal star [143]), active galactic nuclei (AGN), supermassive black holes
(> 106M⊙) in the centre of galaxies accreting from hot disks [152]. The work done along
the time of my PhD and presented in this thesis is centered on the accretion into compact
object in two specific scenarios: the hypercritical accretion onto a NS inside the framework
of the induced gravitational collapse (IGC) scenario [see, e.g., 90, 227, 231]; and the disk
accretion onto a magnetized WD as the remnant configuration of WDs binaries mergers
in the double degenerate model for SN type Ia progenitors [124, 304].

The IGC paradigm was formulated to explain the connection between gamma ray bursts
(GRBs) and supernovae (SN). GRBs are the brightest explosions in the universe with
isotropic luminosities between 1047 − 1054 erg s−1. Since its first detection in the late
1960s by the Vella Satellites [146], many efforts have been made in order to enrich the
understanding of these phenomena. The theory has advanced with the new knowledge
given by the observations. To mention some examples, with BATSE, as part of the
Compton Gamma-ray Observatory (CGRO) launched in 1991, was evidenced that GRBs
follow an isotropic distribution in the sky [173]; Beppo-SAX, put in orbit in 1996, detected
the first GRB afterglow, making possible to determined their cosmological origin in star
formation regions of galaxies [180, 294].

The relation between GRBs and SNs events was considered first with the detection of GRB
980425 associated with a broad line type Ic supenova, SN 1998bw [95], and the first truly
solid evidence came with the detection of GRB 030329 (z = 0.1685 [105]) with SN 2003dh
[172]. However, the SN-GRB connection has been also supported by the observation of a
SN-like bump in the optical GRB afterglow, e.g. of GRB 980326 [25] and GRB 970228
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[223]. Further clear spectroscopic evidences of GRB-SN connection have been found in
the cases of GRB 031203 [270, 278], GRB 060218 [38, 271], GRB 100316D [35, 47, 251],
GRB 120422A [9, 174], and GRB 130427A [175, 295, 315], all at relatively low redshifts
(z . 0.3). Due to observational constraints, photometric identification of Type Ibc SNe is
reasonable possible up to z . 1.2. To date, 46 GRB-SN associations have been confirmed
on spectroscopic and/or photometric grounds [40, 151].

Many models have been proposed as progenitors of long GRBs. The most popular among
the scientific community are the magnetar [292] and the collapsar models [167, 310]. In
the former, the energy source for GRBs comes from the spin down of a newly formed highly
magnetized rotating NS with an initial period of about one millisecond [179]. While in the
latter, the iron core of a rapidly rotating massive star (M > 20M⊙) collapses to a black
hole (BH), either directly or during the accretion phase that follows the core collapse, and
an accretion disk is formed around it. Three possible mechanisms have been proposed
to explain the GRB emission in the collapsar scenario: (a) neutrino/anti-neutrino (νν̄)
annihilation along the rotational axis may drive a jet [62, 192, 214, 310]; (b) magnetic
instabilities in the disk [23, 219]; and (c) magnetohydrodynamic (MHD) extraction of the
BH rotational energy [24, 157, 185].

As was said above, the first part of this thesis is focused on the IGC model, introduced
as an alternative progenitor of the subfamily of GRBs with energies Eiso & 1052 erg
associated with type Ic SN [90, 227, 231]. Within this paradigm, the SN explosion and
the GRB occur in the following time sequence taking place in a binary system composed
by a carbon–oxygen core (COcore) and a NS companion: (1) collapse and explosion of
the COcore; (2) hypercritical accretion onto the NS that reaches the critical mass; (3) NS
gravitational collapse to a BH; (4) emission of the GRB. This sequence occurs on short
timescales of ∼ 100 seconds in the source rest-frame, and it has been verified for several
systems, that have called binary-driven hypernovae (BdHNe), with cosmological redshift
from z < 1[210], all the way up to one of the farthest sources, GRB 090423, at z = 8.2
[241]. Recently, the model has been extended to include a second scenario where the
hypercritical accretion onto the NS is not sufficient to induce its gravitational collapse.
This scenario corresponds to the progenitors of a second subfamily of GRBs, the X-Ray
flashes (XRFs) with Eiso . 1052 erg [246].

In Chapter 1, in order to model the hypercritical accretion phase in the IGC scenario
and keep control on the parameter variation of the initial binary system, an analytical
framework based on the Bondi-Hoyle accretion formalism is constructed. This formula-
tion takes into account the angular momentum carried by the SN ejecta, and eventually
might transfer to the NS during the accretion process. A detailed computation of the
time evolution of both the mass and angular momentum of the accreting NS is given,
showing that the NS (1) reaches either the mass-shedding limit or the secular axisym-
metric instability in a few seconds depending on its initial mass, (2) reaches a maximum
dimensionless angular momentum value, [cJ/GM2]max ≈ 0.7, and (3) can support less
angular momentum than the one transported by SN ejecta, Lacc > JNS,max, hence there is
an angular momentum excess that necessarily leads to jetted emission.

In Chapter 2 is made a characterization of the initial binary system that gives BdHNe
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events and produces NS-BH binary, from the system giving XRF events in which the
final product is a new NS binary. This is done through the computation of the maximum
orbital period, Pmax (having fixed the other system parameters, i,e. NS initial mass, COcore

progenitor and SN outermost velocity) up to which the induced gravitational collapse of
the NS to a BH by accretion can occur. Possible evolutionary scenario leading to the IGC
in-state binary systems (COcore-NS) and the disruption of the final out-state systems are
also discussed.

During the hypercritical accretion on the NS, the neutrino emission at the based of the
NS surface dominates the cooling and allows the NS to increase its mass. Chapter 3 is
dedicated to the study of the hydrodynamics inside the NS accretion region. For accretion
rate between 10−2−10−4 M⊙ s−1, the range of temperature and density developed on the
NS surface are such that the e+e−-pair annihilation becomes the dominant channel for the
neutrino emission, reaching luminosities up to 1052 erg s−1 and mean neutrino energies of
the order of 20 MeV. These make the XRFs and the BdHNe astrophysical laboratories for
MeV-neutrino physics additional to core-collapse SN. In Chapter 3 is also discussed the
main features of the neutrino oscillation phenomenology from the bottom of the accretion
zone, where the neutrinos are created, until their escape to the outer space, i.e. outside
the Bondi-Hoyle region.

Chapter 4 focuses on the observational characteristics of the long GRBs and their the-
oretical origin in the context of the IGC paradigm. To contrast with observation, the
expected luminosities during the hypercritical accretion process are calculated. Addition-
ally, we show that the accreting NS produces asymmetries on the SN ejecta around the
orbital plane. In the case of XRFs, these asymmetries can influence the SN emission both
in X-rays and in the optical; and in the case of BdHNe, can be associated with the origin
of the early X-ray flares on the GRBs afterglow.

Up to this point, the study of the hypercritical accretion process in the IGC scenario
has been done following an analytical prescription based on the Bondi-Hoyle formalism.
However, due to the particular characteristics of the IGC scenario, e.g. its high time-
variable nature, the implementation of full hydrodynamical simulations of this process
becomes a necessity in order to validate the analytical estimations. In Chapter 5, the
first 3D hydrodynamics simulations of the IGC scenario are presented. These simulation
were done using the Smooth Particles Hydrodynamics (SPH) technique as developed in
the SNSPH code [89]. The simulations start from the moment that the SN shock front
reaches the COcore external radius. In order to determine whether the star collapse is
possible, a wide range of initial conditions for the binary system was covered, i.e. the
COcore progenitors, the binary initial separation and SN total energy and geometry have
been varied. For all the simulation, we follow the evolution of the SN ejecta, including
their morphological structure, subjected to the gravitational field of both the new NS
(νNS), formed at the center of the SN, and the one of the NS companion. Additionally,
we also follow the evolution of the binary parameters (e.g. the binary separation, period,
eccentricity) and compute the accretion rate of the SN ejecta onto the NS companion as
well as onto the νNS from SN matter fallback. We evaluate, for selected nuclear equations-
of-state of NSs, if the accretion process leads the NSs either to the mass-shedding limit,
or to the secular axisymmetric instability for gravitational collapse to a BH, or to a more
massive, fast rotating, but stable NS. We assess if the binary holds gravitationally bound
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or it becomes unbound by the SN explosion, hence we explore the space of initial binary
and SN explosion parameters leading to the formation of νNS-NS or νNS-BH binaries.
The consequences of our results for the IGC model of GRBs are also discussed.

In the last Chapter, we jump to the second topic of this thesis, the accretion on a WD.
The evolution of the remnant of the merger of two white dwarfs is still an open problem.
Furthermore, few studies have addressed the case in which the remnant is a magnetic
white dwarf with a mass larger than the Chandrasekhar limiting mass. Angular mo-
mentum losses might bring the remnant of the merger to the physical conditions suitable
for developing a thermonuclear explosion. Alternatively, the remnant may be prone to
gravitational or rotational instabilities, depending on the initial conditions reached after
the coalescence. Dipole magnetic braking is one of the mechanisms that can drive such
losses of angular momentum. However, the timescale on which these losses occur depend
on several parameters, like the strength of the magnetic field. In addition, the coalescence
leaves a surrounding Keplerian disk that can be accreted by the newly formed white dwarf.
In Chapter 6, we compute the post-merger evolution of a super-Chandrasekhar magnet-
ized white dwarf taking into account all the relevant physical processes. These include
magnetic torques acting on the star, accretion from the Keplerian disk, the threading of
the magnetic field lines through the disk, as well as the thermal evolution of the white
dwarf core. We find that the central remnant can reach the conditions suitable to de-
velop a thermonuclear explosion before other instabilities (such as the inverse beta-decay
instability or the secular axisymmetric instability) are reached, which would instead lead
to gravitational collapse of the magnetized remnant.
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BdHNe Binary Driven Hypernova

BH Black Hole

COcore Carbon-oxygen core

EOS Equation of state

GRB Gamma ray burst
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NS Neutron star

νNS New neutron star

SPH Smooth particle hydrodynamics

SN Supernova

WD White Dwarf

XRF X-ray flash

ZAMS Zero age main sequence
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1. The Induced Gravitational
Collapse

1.1. Introduction

Recently, Ruffini et al. [246] proposed a binary nature for the progenitors of both long
and short GRBs. The first five chapters of this thesis focus on long GRBs associated
with supernovae. For such systems the induced gravitational collapse (IGC) paradigm
[see, e.g., 90, 137, 227, 231, 240] indicates as progenitor a binary system composed of
a carbon-oxygen core (COcore) and a neutron-star (NS) in a tight orbit. Such a binary
system emerged first as a necessity for the explanation of a set of observational features
of long GRBs associated with type Ic supernovae [227]. Besides, it also appears in the
final stages of a well defined evolutionary path which includes the presence of interacting
binaries responsible for the formation of stripped-envelope stars such as COcores leading
to type Ic supernovae [14, 88, 227].

The core-collapse of the COcore produces a supernova (SN) explosion ejecting material that
triggers an accretion process onto the binary neutron-star companion. It was advanced
in Ruffini et al. [246] the existence of two classes of long GRBs depending on whether or
not a black-hole (BH) is formed in the hypercritical accretion process onto the NS (see
Chapter 4 for more detailed description):

• First, there is the subclass of binary-driven hypernovae (BdHNe) [BdHNe, see 242,
and references therein], long GRBs with isotropic energy Eiso & 1052 erg and rest-
frame spectral peak energy 0.2 . Ep,i . 2 MeV. Their prompt emission lasts up
to ∼ 100 s and it is at times preceded by an X-ray emission in the 0.3–10 keV
band lasting up to 50 s and characterized by a thermal and a power-law component
(i.e. Episode 1 in GRB 090618 in [137]). For all BdHNe at z . 1, an optical
supernova with luminosity similar to the one of supernova 1998bw [95] has been
observed after 10–15 days in the cosmological rest-frame [see, e.g., 175]. It has
been proposed that this class of GRBs occurs when the NS reaches its critical mass
through the above accretion process and forms a BH. This GRB subclass occurs in
compact binaries with orbital periods as short as P ∼ 5 min or binary separations
a . 1011 cm [90].

• Second, there is the subclass of X-ray flashes (XRFs), long GRBs with isotropic
energies in the range Eiso ≈ 1047–1052 erg; spectral peak energies Ep,i ≈ 4–200 keV
[2, 243, 246]. Their prompt emission phase lasts ∼ 102–104 s and it is generally
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characterized by a spectrum composed by a thermal component (with radii 1010–
1012 cm and temperatures 0.1–2 keV, 38) and power-law component. For all XRFs at
z . 1, an optical supernova with luminosity similar to the one of supernova 2010bh
[35], has been observed after 10–15 days in the cosmological rest-frame. These
sources have been associated within the IGC paradigm to binaries of a COcore core
and an NS in which there is no BH formation: when the accretion is not sufficient to
bring the NS to reach the critical mass. This occurs in binaries with orbital periods
longer than P ∼ 5 min or binary separations a & 1011 cm [14, 246].

It is clear that the observational properties of the IGC binaries are sensitive to the binary
parameters which can change the fate of the system. The first estimates of the accretion
rate and the possible fate of the accreting NS in an IGC binary were presented in Rueda
& Ruffini [227]. To obtain an analytic expression of the accretion rate, such first simple
model assumed: (1) a pre-SN homogeneous density profile; (2) an homologous expansion
of the density; (3) constant mass of the NS (≈ 1.4 M⊙) and the supernova ejecta (≈ 4–
8 M⊙). The first application of this model was presented in Izzo et al. [137] for the
explanation of the Episode 1 of GRB 090618.

More recently, Fryer et al. [90] performed the first more realistic numerical simulations of
the IGC by using more detailed SN explosions coupled to hypercritical accretion models
from previous simulations of supernova fallback [79, 83]. The core-collapse of the COcore

producing the SN Ic was simulated in order to calculate realistic profiles for the density
and expanding velocity of the supernova ejecta. The hydrodynamic evolution of the
material falling into the accretion region of the NS was there followed numerically up
to the surface of the NS. The accretion in these systems can proceed at very high rates
that exceed by several orders of magnitude the Eddington limit due to the fact that the
photons are trapped in the accreting material and the accretion energy is lost through
neutrino emission [see 90, and references therein for additional details].

Although all the above works have already shown that indeed the SN can induce, by
accretion, the gravitational collapse of the NS to a BH, there is still the need of exploring
systematically the entire, physically plausible, space of parameters of these systems, as well
as to characterize them observationally. Following this line of ideas, in this chapter, we’re
going to formulated an analytical approach base on the Bondi-Hoyle accretion formalism
for the IGC scenario. Contrary to the previous works that assume an spherical symmetry
approximation of the hypercritical accretion process, here we introduced the effects that
the angular momentum carried by the SN, and eventually transferred to the NS during
the accretion process could have on the evolution and final fate of the system.

This chapter is organized as follows: In Section 1.2 we present the framework of the
hypercritical accretion of the SN ejecta onto the NS: we compute the Bondi-Hoyle accre-
tion rate and estimate the angular momentum transported by the part of the SN ejecta
that enters into the gravitational capture region (Bondi-Hoyle surface) of the NS (Sec-
tion 1.2.1). Additionally, we show that the material entering into the Bondi-Hoyle region
possesses sufficient angular momentum to circularize around the NS, forming a disk-like
structure (Section 1.2.2). In Section 1.2.3, we extend the Bondi-Hoyle formalism in order
to introduce first an asymmetric SN expansion and then, consider an initial elliptic binary
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orbit. In Section 1.3 we give details on the computation of the time evolution of both the
mass and angular momentum of the accreting NS. The accretion process is assumed to
occur from an inner disk radius given by the most bound circular orbit around a rotating
NS or by the NS equatorial radius. We show that, depending upon the initial mass of the
NS and the efficiency of the angular momentum transport, the NS might reach either the
mass-shedding limit or the secular axisymmetric instability in a short time. In Section 1.4,
we calculate the mass and angular momentum flux of the SN ejecta that cross the NS
capture surface. Finally, in Section 1.5, we summarize the results of this chapter and, in
addition, show that the total angular momentum transported by the SN ejecta is larger
than the maximum angular momentum supported by a maximally rotating NS. There-
fore, we advance the possibility that such an excess of angular momentum constitutes a
channel for the formation of jetted emission during the hyperaccretion process of BdHNe
leading to possible observable non-thermal high-energy emission. In this last section, we
also give some perspective for future work.

1.2. Hypercritical accretion induced by the supernova

The accretion rate of the SN ejecta onto the NS can be estimated via the Bondi-Hoyle
accretion formula [27, 28, 121]:

ṀB(t) = πρejR
2
cap

√

v2rel + c2s,ej, (1.1)

where Rcap is the gravitational capture radius of the NS

Rcap(t) =
2GMNS(t)

v2rel + c2s,ej
, (1.2)

Here ρej and cs,ej are the density and the sound speed of the ejecta, MNS the NS mass,
~vrel = ~vej−~vorb, the velocity of the ejecta as seen from an observer at the NS, and G is the
gravitational constant. The orbital velocity is vorb =

√

GM/a, where M = MNS +MCO

is the total binary mass, MCO = Menv +MFe the total mass of the COcore which is given
by the envelope mass Menv and the central iron core mass MFe = 1.5 M⊙. The latter is
the mass of the new neutron-star formed in the core-collapse supernova process, hereafter
indicated as νNS and its mass MνNS, i.e. we adopt MνNS = MFe = 1.5 M⊙ in agreement
with the range of masses predicted under the convective supernova paradigm [82].

In order to integrate equation (1.1) and simulate the hypercritical accretion onto the NS,
we need to implement a model for the SN explosion from which we determine the velocity
and the density of the ejecta near the capture region of the NS. We shall adopt for such
a scope an homologous expansion of the SN ejecta, i.e. the velocity is proportional to the
radius:

vej(r, t) = n
r

t
. (1.3)
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Table 1.1.: Properties of the pre-supernova COcores

Progenitor ρcore Rcore Menv R0star m

MZAMS (M⊙) (108 g cm−3) (107 cm) (M⊙) (109 cm)

15 3.31 5.01 2.079 4.49 2.771

20 3.02 7.59 3.89 4.86 2.946

30 3.08 8.32 7.94 7.65 2.801

Note — COcores obtained for the low-metallicity ZAMS progenitors with MZAMS = 15, 20, and
30 M⊙ in . The central iron core is assumed to have a mass MFe = 1.5 M⊙, which will be the
mass of the νNS, denoted here as MνNS, formed out of the supernova process.

Thus, the outermost layer of the ejecta, which we denote hereafter as Rstar, evolves as:

Rstar(t) = R0star

(

t

t0

)n

, (1.4)

where t0 = nR0star/v0star > 0, being v0star the velocity of the outermost layer and n is the
so-called expansion parameter whose value depends on the hydrodynamical evolution of
the ejecta and the circumstellar material, i.e., n = 1 corresponds to a free expansion,
n > 1 an accelerated expansion, and n < 1 a decelerated one.

The condition of homologous expansion give us the density profile evolution [see 53, for
details]:

ρej(X, t) = ρej(X, t0)
Menv(t)

Menv(t0)

(

R0star

Rstar(t)

)3

, with X ≡ r

Rstar

, (1.5)

where Menv(t) is the mass expelled from the COcore in the SN explosion, and hence avail-
able to be accreted by the NS, and ρej(X, t0) is the density profile of the outermost layers
of the COcore (i.e., the pre-supernova profile). The CO envelope of such pre-supernova
configurations can be well approximated by a power law [see Figure 2 in 90]:

ρej(r, t0) = ρ0ej = ρcore

(

Rcore

r

)m

, for Rcore < r ≤ R0star , (1.6)

In Table 1.1 has been shown the properties of the COcore produced by low-metallicity
progenitors with initial zero-age main sequence (ZAMS) masses of MZAMS = 15, 20, and
30 M⊙ using the Kepler stellar evolution code [312]. In order to take into account the
finite size of the envelope, we modify the above density profile by introducing boundaries
to the SN ejecta through density cut-offs at the outermost and innermost layers of the
ejecta, namely:

ρ0ej = ρ̂core ln

(

r

R̂core

)(

Rstar

r
− 1

)m

, (1.7)

where R̂core < r < Rstar. The condition that the modified profile has the same ejecta mass
with respect to the unmodified power-law profile implies R̂core < Rcore. Figure 1.1 shows
the pre-supernova density profile described by equations (1.6) and (1.7) for the COcore

MZAMS = 30M⊙. For this progenitor we have R̂core = 0.31Rcore and ρ̂core = 567.67 g cm−3.

Introducing the homologous expansion for the description of the evolution of the SN
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Figure 1.1: Pre-supernova
density profile produced by
the MZAMS = 30 M⊙ pro-
genitor of Table 1.1. We
compare and contrast the
power-law density profile
(solid curve) with a modi-
fied profile (dashed curve)
with density cut-offs at the
outermost and innermost
ejecta layers following equa-
tions (1.6) and (1.7). The
two profiles have the same
envelope mass.

ejecta, equation (1.1) becomes:

µ̇B(τ)

(1− χµB(τ))M2
NS

=
τ (m−3)n

r̂m
ln

(

r̂

r̂cτn

)

(r̂s − r̂τ−n)
m

[1 + ηr̂/τ 2]3/2
, (1.8)

where

τ ≡ t

t0
, µB(τ) ≡

MB(τ)

ΣB

, r̂ ≡ 1− Rcap

a
, (1.9)

and the parameters χ, ΣB and η depend on the properties of the binary system before
the SN explosion:

ΣB =
4πρ̂cG

2M2
⊙t0

v3orb
, χ =

ΣB

M0
env

, η =

(

n a

t0vorb

)2

, (1.10)

where M0
env ≡Menv(t = t0) =Menv(τ = 1).

1.2.1. Angular Momentum Transport by the supernova ejecta

Now, we are in a position to give an estimate of the angular momentum transported by the
SN material to the NS during the IGC process. In doing so, we “extrapolate” the results
of Shapiro & Lightman [261] and Wang [297] for the accretion process from stellar wind
in a binary system. Due to the motion of the material and the orbital motion of NS, see
Figure 1.2, the material falls radially with a velocity vrel making an angle ϕ with respect
to the line that joins the stars centers of the binary (so, sinϕ = vorb/vrel). Introducing
Cartesian coordinates (y, z) in the plane perpendicular to ~vrel(a), and putting the origin
on the NS position, the angular momentum per unit time that crosses a surface element
dydz is:

d2L̇acc = ρej(y, z)vrel(y, z)
2y dydz. (1.11)
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Figure 1.2:

Scheme of the
IGC scenario:
the COcore

undergoes SN
explosion and
then the NS
accretes part of
the SN ejecta.

To first order in y, ρej and vrel can be written as:

ρej(y) ≃ ρej(a)(1 + ǫρy) , and vrel(y) ≃ vrel(a)(1 + ǫνy), (1.12)

and equation (1.11) becomes

d2L̇acc = ρej(a)v
2
rel(a)

[

y + (ǫρ + 2ǫν)y
2
]

dydz. (1.13)

Integrating over the area of the circle delimited by the capture radius

y2 + z2 = R2
cap =

(

2GMNS

v2rel(a, t)

)2

(1− 4ǫνy) , (1.14)

where we have applied cs,ej ≪ vej, we obtain the angular momentum per unit time of the
ejecta material falling into the gravitational attraction region of the NS

L̇acc =
π

2

(

1

2
ǫρ − 3ǫν

)

ρej(a, t)v
2
rel(a, t)R

4
cap(a, t). (1.15)

Now, we have to evaluate the terms ǫρ and ǫν of equation (1.15). Following Anzer et al.
[4], we start expanding ρej(r) and vej(r) in Taylor series around the binary separation
distance, r = a:

ρej(r, t) ≈ ρej(a, t)

(

1 +
1

ρej(a, t)

∂ρej
∂r

∣

∣

∣

∣

(a,t)

δr

)

, (1.16)

vej(r, t) ≈ vej(a, t)

(

1 +
1

vej(a, t)

∂vej
∂r

∣

∣

∣

∣

(a,t)

δr

)

, (1.17)
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where we assumed δr = |~r − ~rNS| ≪ 1, keeping only the first order terms. For the SN
material, the continuity equation implies ρ̇ej = −~∇ · (ρej ~vej), and therefore we obtain

ǫρ =

(

ρ′ej
ρej

)

(a,t)

sinϕ = −
(

2

r
+
v′ej
vej

+
1

vej

ρ̇ej
ρej

)

(a,t)

sinϕ. (1.18)

On the other hand, defining x̂ as a unit vector in the direction of ~vrel(a), the projection
of ~vrel(r) on x̂ is

x̂ · ~vrel(r) = vej cos(φ+ ϕ)− vorb cos(π/2− ϕ) (1.19)

In the limit when δr ≪ 1, also δr ≃ −y sinϕ and sinφ ≃ y/r cosφ (see Figure 1.2).
Then, the last expression together with equation (1.17) becomes

x̂ · ~vrel(r) ≃ vej(a) cosϕ+ vorb sinϕ

(

vej
r

+
∂vej
∂r

)

(a,t)

y cosϕ sinϕ. (1.20)

We can write the relative velocity to the NS of the ejected material as

vrel ≃ vrel(a, t) + δvrel, (1.21)

where

δvrel ≃ x̂ · [~vrel(r)− ~vrel(a)] = −
(

vej
r

+
∂vej
∂r

)

(a,t)

y cosϕ sinϕ.

Then, from a simple comparison of equations (1.12) and (1.21), we obtain

ǫν = −
(

vej
r

+
∂vej
∂r

)

(a,t)

cosϕ sinϕ

vrel(a)
. (1.22)

For the homologous explosion model adopted to describe the expansion dynamics of the
ejecta, the parameters ǫρ and ǫν , using equation (1.5) with (1.7) and equation (1.3),
respectively, are given by

ǫρ(t) = −1

a

[ −1

ln (1/r̂cτn)
+

m

1− 1/r̂sτn

]

vorb
vrel(a, t)

, ǫν(t) =
2

a

(

vej
vrel

)2

(a,t)

vorb
vrel(a, t)

.

Replacing the above equations in equation (1.15), the angular momentum per unit time
transported by the ejecta crossing the capture region is:

L̇acc = 8π ρ̂core
GM0

NSa
2

(1 + q)3
H(τ), (1.23)

where

H(τ) = ln

(

1

r̂cτn

)

(r̂sτ
n − 1)m (1− χµB)

τ 3n (1 + η/τ 2)−7/2

(

MNS(τ)

M0
NS

)4( −1

ln (r̂cτn)
− m r̂sτ

n

r̂sτn − 1
+

6η

τ 2 + η

)

.

Thus, the specific angular momentum will be given by: lacc =
L̇acc

ṀB

. Figure 1.3 shows the

time evolution of the Bondi-Hoyle accretion rate, obtained from the numerical integration
of equation (1.8), of the angular momentum transported by the ejecta, obtained from
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Figure 1.3.: Time evolution of the mass accretion rate (upper panel, in units M⊙ s−1), the angular
momentum per unit time transported by the SN ejecta (left bottom panel, in units g cm2 s−2), and
the Bondi-Hoyle capture radius of the NS (rigth bottom panel, in units of cm).The binary parameters
adopted were: expansion parameter n = 1, an ejecta outermost layer velocity vstar,0 = 2 × 109 cm s−1

and the SN ejecta profile is the one obtained for the COcore of the MZAMS = 30 M⊙ progenitor of
Table 1.1. For the above progenitor and velocity t0 = 3.825 s. Three selected orbital periods are shown:
P = 4.85 min, 80.0 min and 5.0 h which correspond to binary separation distances a = 1.48 × 1010 cm,
9.61 × 1010 cm, and 2.32 × 1011 cm, respectively. The solid line corresponds to a case in which the NS
reaches the critical mass and collapses to a BH (end point of the curve). In the two other cases, owing
to the longer orbital period, there is no induced gravitational collapse of the NS to a BH (see Sec. 1.3 for
further details).

equation (1.23), and of the capture radius given by equation (1.2) for selected orbital
periods. In these simulations we have adopted, for the sake of example, the MZAMS =
30 M⊙ COcore progenitor, an expansion parameter n = 1, a supernova ejecta velocity
v0star = 2 × 109 cm s−1, and an initial NS mass, MNS(t0) = 2.0 M⊙. Following Fryer
et al. [90], we adopt binary parameters such that there is no Roche lobe overflow prior to
the SN explosion. For the above COcore and NS parameters, such a condition implies a
minimum orbital binary period P0 = 4.85 min.
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We can see from Figure 1.3 that the shorter(smaller) the orbital period(separation) the
higher the accretion rate and the shorter the time it peak. In Appendix A.1 we derive,
following simple arguments, analytic formulas for the peak accretion rate and time which
can be useful to get straightforward estimates of these kind of systems.

In Figure 1.3 we can see that the evolution of the accretion rate has a shape composed
of a rising part, followed by an almost flat maximum and finally it decreases with time.
The rising part corresponds to the passage and accretion of the first layers of the ejecta.
The sharpness of the density cut-off of the outermost ejecta layer defines the sharpness
of this rising accretion rate. The maximum rate is given by the accretion of the ejecta
layers with velocities of the same order as the orbital velocity of the NS. These layers are
located very close to the innermost part of the supernova ejecta. Then, the rate start to
decrease with the accretion of the innermost layers whose density cut-off determines the
sharpness of this decreasing part of the mass accretion rate. See also Appendix A.1 for
further details.

1.2.2. Circularization of the Supernova ejecta around the NS

We turn now to the determination of weather or not the SN ejecta possess enough angular
momentum to circularize around the NS before being accreted by it. Since, initially, the
NS is slowly rotating or non-rotating, we can describe the exterior spacetime of the NS
before the accretion process by the Schwarzschild metric. A test-mass particle circular
orbit of radius rst possesses in this metric a specific angular momentum given by

lst = c

√

GMNSrst
c2

(

1− 3GMNS

c2rst

)−1/2

. (1.24)

Assuming that there are no angular momentum losses once the ejected material enters
the NS capture region, hence lst = lacc = L̇acc/ṀB, the material circularizes around the
NS at the radii:

rst =
1

2





l2acc
GMNS

+

√

(

l2acc
GMNS

)2

− 12

(

lacc
c

)2


 . (1.25)

The most bound circular orbit, rmb, around a non-rotating NS is located at a distance
rmb = 6GMNS/c

2 with an angular momentum per unit mass lmb = 2
√
3GMNS/c. The most

bound circular orbit is located outside the NS surface for masses larger than 1.78 M⊙,
1.71 M⊙, and 1.67 M⊙ for the GM1, TM1, and NL3 EOS, respectively [49]. It is easy to
check (see Figure 1.3) that the SN ejected material has an angular momentum larger than
this value, and therefore the ejecta entering into the NS capture region will necessarily
circularize at radii rst > rmb. We have obtained from our simulations, rst/rmb ∼ 10–103.

Even if the SN ejecta possess enough angular momentum to form a disk around the NS,
which would prevent it from falling rapidly onto the NS, the viscous forces (and other
angular momentum losses) might allow the material to be accreted by the NS when it
arrives at the inner boundary of the disk. In the α-disk formalism, the kinetic viscosity
is ν = η/ρ = αcs,diskH, where η is the dynamical viscosity, H the disk scale height, and
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cs,disk the sound velocity of the disk. Following Chevalier [46], the infall time in a disk at
radius r is

tfall ∼
r2st

αcs,diskH
∼ r

3/2
st

α
√
GMNS

√

1− 2GMNS

c2rst
, (1.26)

where it is assumed that H ∼ rst (thick disk) and cs,disk is of the order of orbital velocity
seen by an observer corotating with the particle. Finally, α ∼ 0.01–0.1 is dimension-
less and measures the viscous stress. In our simulations, we have obtained falling times
tfall/∆acc ∼ 10−3, where ∆acc is the characteristic accretion time. Therefore, the SN mater-
ial can be accreted by the NS in a short time interval without introducing any significant
delay.

1.2.3. Asymmetric Supernova and elliptic orbits

In this section, we extend the formalism of the Bondi-Hoyle accretion, presented in the
beginning of Section 1.2, in order to introduce first an asymmetric expansion of the SN
ejecta and then, an initial binary orbit with an eccentricity greater than zero. This with
the scope of evaluate the effects resulting on the hypercritical accretion process onto the
NS binary companion.

The observational evidence accumulated in the last years points strongly to SN asym-
metric explosions. The high average velocities (∼ 500 km s−1) present in the observed
distribution of pulsar velocities [118] is reconciled with asymmetric stellar collapses and
explosions explained by initial asymmetric pre-supernova density profiles [36, 255, 256].
The polarization in the spectra of Type II and Type Ib/c indicates asymmetric envel-
opes [159, 177, 296]. The double-peak profile of the oxygen emission line of Type Ib/c
SN is a distinct signature of an aspherical explosion [171, 282]. Additionally, jets have
been mapped for Cas A in the optical [73] and its spatial distribution of 44Ti observed by
NuSTAR space telescope shows a global asymmetry [104].

To introduce an asymmetric expansion of the SN ejecta, we assume an homologous evolu-
tion for each component of the SN ejecta velocity but with different expansion parameter,
i.e:

vej,x =
nxx

t
, vej,y =

nyy

t
, vej,z =

nzz

t
. (1.27)

Then, the outermost SN layer expands as:

Rstar(t)

R0,star

=

(

t

t0

)nx

√

√

√

√

(

cos2 θ +

(

t

t0

)−2nxβ

sin2 θ

)

sin2 φ+ cos2 φ , (1.28)

where φ is the polar angle and θ is the azimutal angle. We have assumed nx = nz and
β = 1 − nx/ny, that will be called the asymmetric parameter. Following equation (1.5),
the SN density profile, on the equatorial plane, evolves as:

ρej(r, θ, t) = ρ̂ej ln

(

r

R̂core(t)

)

(

Rstar(t)

r
− 1

)m
[

(t/t0)
−3nx

√

cos2 θ + (t/t0)−2nxβ sin2 θ

]3

(1.29)
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In order to use the Bondi-Hoyle accretion formula, equation (1.1), to estimate the mass
accretion rate on the NS, we also need to calculate the relative velocity of the SN ejecta
with the NS. Assuming that the NS follows a circular orbit around the SN center when
the C))core collapses, the NS position, ~rNS, and the NS orbital velocity, ~vNS, are:

~rNS = a [ cos θNS x̂+ sin θNS ŷ ] , ~vNS = vorb [ sin θNS (−x̂) + cos θNS ŷ ] , (1.30)

where θNS = θNS(τ) = (vorb/v0star) (R0star/a) τ . Thus, along the line that joins the SN
center with the NS position, the magnitude of the relative velocity equals to:

|~vrel|2 = v2orb

[

(

ηr̂

τ

)2
(

1 + β(β − 2) sin2 θNS

)

− 2βηr̂

τ
sin θNS cos θNS + 1

]

(1.31)

Using equation (1.31) and (1.29) is possible to integrate equation (1.1) and obtains the
time evolution of the Bondi-Hoyle mass accretion rate. The results of this integration
are shown in Figure 1.4. In these cases, we adopt the same initial binary parameters as
in Figure 1.3 and we consider three values for the asymmetric parameter: β = 0.0 (that
recovers the spherical expansion), β = 0.3 (with nx > ny) and β = −0.3 (with ny > nx).
For the longest binary periods, the NS suffers episodes of non-accretion while the SN
ejecta expands.

On the other hand, it is straightforward to introduce an initial elliptic orbit for the binary
system. In this case, the NS position, ~rNS, and velocity, ~vNS, are:

~rNS =
a(1− ǫ2)

1 + ǫ cos θ
[ cos θ x̂+ sin θ ŷ ] , ~vNS =

vorb√
1− ǫ2

[− sin θ x̂+ (ǫ+ cos θ) ŷ ] (1.32)

where ǫ is the eccentricity of the orbit and the evolution of the angular velocity is given
by:

dθ

dt
=

√

G(MCO +MNS)

a3(1− ǫ2)3
(1 + ǫ cos θ)2 (1.33)

Coming back to the spherical SN expansion (i.e. ~vej = n~r/t), the relative velocity of the
SN ejecta with respect to the NS is:

|~vrel|2 = v2orb

(

(

ηr̂

τ

)2

− ηr̂

τ

2ǫ sin θ√
1− ǫ2

+
1 + ǫ+ 2ǫ cos θ

1− ǫ2

)

(1.34)

The Bondi-Hoyle mass accretion rate can be computed integrating equation (1.1), having
replaced vrel by (1.34), simultaneously with equation (1.33). Figure 1.5 shows the evolution
of the mass accretion rate and the Bondi-Hoyle capture radius for different values of the
eccentricity: ǫ = 0.01, 0.2 and 0.4. An initial eccentricity for the binary orbit can increase
the accretion rate by at least one order of magnitude. The mass accretion could be
substantially changed, in magnitude and shape, depending of the initial angular position
of the NS. In Figure 1.5, we represent the cases with two different NS initial angular
position: θ(t0) = 0.0 (upper panel) and 3π/2 (lower panel).
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Ṁ
B
[M

⊙
s−

1
]

β = 0.0
β = 0.3
β = −0.3

101 102 103

t / t0

108

109

1010

1011

R
ca
p
[c
m
]

β = 0.0
β = 0.3
β = −0.3

Figure 1.4.: Time evolution of the mass accretion rate (left panel, in units M⊙ s−1) and the Bondi-
Hoyle capture radius of the NS (right panel, in units of cm). Here has been introduced an asymmetric
expansion for the SN ejecta following equations (1.27) and (1.28). It considers three values for the
asymmetric parameter: β = 0.0 (that recovers the spherical expansion), β = 0.3 (nx > ny) and β = −0.3
(ny > nx). The binary parameters adopted are the same as in Figure 1.3. Three selected orbital periods
are shown: P = 4.85 min (red line), 80.0 min (orange line) and 5.0 h (blue line).
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Figure 1.5.: Time evolution of the mass accretion rate (left panel, in units M⊙ s−1) and the Bondi-Hoyle
capture radius of the NS (right panel, in units of cm). Here has been introduced an initial elliptic orbit
for the binary system, this make that the accretion rate will depend also on the NS initial angular position
at the explosion moment. The binary parameters adopted are the same as in Figure 1.3. Three selected
orbital periods are shown: P = 100.0 mins (red line), 8.3 hrs (orange line) and 2.1 dys (blue line).
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1.3. Time Evolution of the Accreting NS

Our first estimate of the angular momentum transported by the SN ejecta has shown that
the material has enough angular momentum to circularize around the NS for a short time
and form a kind of thick disk. The viscous force torques in the disk (and other possible
torques) allow a sufficient angular momentum loss until the material arrives at the inner
boundary of the disk, Rin, then falling into the NS surface. Thus, the accreted material
will transfer both baryonic mass and angular momentum to the NS.

The equilibrium NS configurations form a two-parameter family given, for example, by the
mass (baryonic or gravitational) and angular momentum (or angular velocity). Namely
the NS gravitational mass, MNS, is in general a function of the NS baryonic mass, Mb,
and angular momentum, JNS. In a similar way the angular momentum contributes to the
mass of a BH [48]. It is then clear that the evolution of the NS gravitational mass is given
by:

ṀNS(t) =

(

∂MNS

∂Mb

)

J

Ṁb +

(

∂MNS

∂JNS

)

Mb

J̇NS, (1.35)

We assume that all the (baryonic) mass entering the NS capture region will be accreted
by the NS, i.e:

Mb(t) =Mb(t0) +MB(t), (1.36)

then Ṁb ≡ ṀB. The relation between the NS gravitational mass, the baryonic mass, and
the angular momentum for a rotating NS equilibrium configuration fully including the
effects of rotation in general relativity, as well as other NS properties, are summarized in
Appendix A.2.

The torque on the NS by the accreted matter is given by

J̇NS = ξl(Rin)ṀB, (1.37)

where Rin is the disk inner boundary radius, l(Rin) is the angular momentum per unit
mass of the material located at r = Rin, and ξ ≤ 1 is a parameter that accounts for
the efficiency of the angular momentum transfer. The precise value of ξ depends mainly:
1) on possible angular momentum losses (e.g. by jetted emission during accretion) and
2) on the deceleration of the matter in the disk inner radius zone.

The inner disk radius is given by the maximum between the radius of the last stable
circular orbit, rlso, and the NS radius, RNS. Namely, Rin = max(rlso, RNS). When the disk
extends until the NS surface, l(Rin) is given by the Keplerian orbit with radius equal to
the NS equatorial radius. On the other hand, if RNS < rlso, l(Rin) is given by the last
stable circular orbit. Summarizing:

l(Rin) =

{

lK(RNS), forRNS > rlso ⇒ Rin = RNS,

llso, forRNS ≤ rlso ⇒ Rin = rlso.
(1.38)

Here, we have worked with three selected NS nuclear equation of state (EOS): NL3, TM1
and GM1 [49]. For these EOS and assuming that the NS is initially non-rotating, we have

13



that rlso = 6GMNS/c
2 > RNS for MNS & [1.78, 1.71, 1.67] M⊙, for the NL3, TM1 and

GM1 EOS, respectively. For rotating NSs, the minimum mass over which the last stable
orbit lies outside the NS surface becomes a function of the NS angular momentum (see
[50] and Appendix A.2).

For the axially symmetric exterior spacetime around a rotating NS, the last stable circular
orbit, llso, for co-rotating particles, is well approximated by [14, 50]:

llso ≈ 2
√
3
GMNS

c

[

1− 1

10

(

jNS

MNS/M⊙

)0.85
]

, (1.39)

where jNS ≡ cJNS/(GM
2
⊙), and which is independent on the nuclear EOS.

On the contrary, when, rlso < RNS and thus Rin = RNS, we shall adopt for this case
the Hartle’s slow-rotation approximation. The angular momentum per unit mass of a
Keplerian orbit with a radius equal to the NS radius is, within this approximation, given
by [31]

lK (u) =
GMNS

c
√

u (1− 3u)

[

1− jNS
3 u3/2(1− 2u)

1− 3u
+ j2NS

u4(3− 4u)

(1− 2u)2(1− 3u)

]

, (1.40)

where u ≡ GMNS/(c
2RNS). This formula can be also obtained by taking the second order

slow rotation limit of the angular momentum of the last stable circular orbit around a
Kerr BH [29, 31, 222].

Therefore, by solving (numerically) simultaneously equations (1.8) and (1.37), with the aid
of equations (1.35)–(1.40), it is possible to follow the evolution of the NS mass and angular
momentum during the accretion process. The integration is continued until the NS gets
outside the stability zone or all the SN ejecta passes the NS capture radius. The stability
of the accreting NS is limited by two main instability conditions: the mass-shedding or
Keplerian limit, and the secular axisymmetric instability. Mass-shedding occurs when the
centrifugal force balances the gravitational one. Thus, for a given gravitational mass (or
central density), it is given by the rotating configuration with angular velocity equal to
the Keplerian velocity of test-particles orbiting at the star’s equator. In this limit the
matter at the surface is marginally bound to the star and small perturbations will cause
mass loss to bring the star stable again or otherwise to bring it to a point of dynamical
instability point [275].

At the secular axisymmetric instability point the star is unstable against axisymmetric
perturbations. It is expected to evolve first quasi-stationary to then find a dynamical
instability point where gravitational collapse takes place [275]. Using the turning-point
method [76], Cipolletta et al. [49] computed the critical mass due to this instability point
for the NL3, GM1 and TM1 EOS (see equation (A.14) in Appendix A.2).

In Figure 1.6, we show the evolution of the NS mass as a function of its angular momentum
during the accretion process for two selected efficiency parameter for the NS angular
momentum rate: ξ = 0.5 and ξ = 1.0, and for selected values of the initial NS mass:
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Figure 1.6.: NS mass as a function of its angular momentum gain for two selected efficient parameter:
ξ = 0.5 (upper panel) and ξ = 1.0 (bottom panel). Three evolutionary paths of the NS are shown, each
starting from a different initial NS mass M0

NS = 2.0, 2.25, and 2.5 M⊙, and without loss of generality we
have adopted the NL3 nuclear EOS. We use here the ejecta from the explosion of a COcore by the 30 M⊙

ZAMS progenitor, vstar,0 = 2× 109 cm s−1 and expansion parameter n = 1. The red color line represents
the configurations at which rlso = RNS: the configurations below this line have stable orbits down the
NS surface, while configurations above it have an external ISCO.
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M0
NS = 2.0, 2.25, and 2.5 M⊙. The NS fate will depend on the initial mass and the

efficient parameter. When the transfer of angular momentum to the NS is highly efficient
(ξ = 1.0), all the configurations reach the mass-shedding limit. Meanwhile, when ξ = 0.5,
we see how the NS starting with M0

NS = 2.0 M⊙ reaches the mass-shedding limit while,
for higher initial masses, the NS ends at the secular axisymmetric instability region. It’s
important to recall, that only the NSs that end at the mass-shedding limit, reach the
maximum possible value of the dimensionless angular momentum: cJNS/(GM

2
NS) ≈ 0.7.

The ones that become secularly unstable, do it with lower angular momentum.

1.4. Mass flux through the capture radius

Up to here, we have estimated the mass accretion rate on the NS in the IGC scenario
following the Bondi-Hoyle accretion formalism. However, as was pointed by Fryer et al.
[90], this formalism is valid in steady-state systems. Additionally, it is constructed assum-
ing spherical symmetry, with the accretor moving at constant speed through an uniform
medium [see 68]. Neither of these conditions are filled by the IGC scenario, then we need
to determinate the validity of the formalism presented in the last sections.

As a first step, in order to evaluate the accuracy of the Bondi-Hoyle accretion formalism
applied to describe the IGC scenario, we calculate the mass flux that crosses the NS cap-
ture radius during the expansion of the SN ejecta. The material that could be potentially
accreted by the NS would be the one that is bounded to its gravitational potential, i.e.
its kinetic energy is less that its gravitational potential energy:

1

2
|~vrel|2 ≤

GMNS

r
, (1.41)

being r the distant of the material to the SN ejecta center. If we assume that the NS
follows a circular orbit around the SN center and since the SN expansion is spherically
symmetric, without lost of generality, we can assume that the NS is static at ( a, 0, 0 )
with velocity ( 0, vorb, 0 ). Thus, the relative velocity of the ejecta material with respect
to the NS can be written as:

~vrel = vorb [α(τ)(x− 1) x̂+ (α(τ)y − 1) ŷ + α(τ)z ẑ ] , (1.42)

with α(τ) = (a/vorb) /(t0τ). The last expression is written in cartesian coordinates. The
NS capture surface is given by:

fcap(x, y, z) = − 2MNS(τ)/M
√

x2 + y2 + z2
+ α(τ)2

(

(x− 1)2 + y2 + z2
)

− 2α(τ) y + 1 = 0 . (1.43)

In the last two equations, the center of the reference system is on the NS position and
the spatial coordinates (x, y, z) are in units of the binary separation, a. The mass flux
through the capture surface is defined as:

ΦM(fcap) =

∫

S

ρej(x, y, z, τ) (~vrel − ~v) · d~S . (1.44)
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Figure 1.7.: Comparison of the evolution of the mass flux (left upper panel), angular momentum flux
(right upper panel) and capture radius (bottom panel) obtaining integrating equations (1.44) and (1.48)
(in orange lines) with results obtained with the Bondi-Hoyle formalism (in black lines). The COcore

progenitor and the initial binary parameters are the same as in Figure 1.3

Using equation (1.43), the surface element, d~S, is:

d~S =
~∇fcap
|~∇fcap|

ds =
(Bx− α2) x̂+ (By − α) ŷ +Bz ẑ

√

(B − α2)(3B(x2 + y2 + z2)− α2 + 1)
ds (1.45)

with

B =
MNS/M

(x2 + y2 + z2)3/2
+ α2 .

The second term in equation (1.43) is related with the change in time of the capture
surface, and is defined as:

~v ·
~∇fcap
|~∇fcap|

= − ḟcap

|~∇fcap|
, (1.46)

where

ḟcap =
2ṀNS/M

√

x2 + y2 + z2
+
α2

τ

(

x2 + y2 + z2 + 1
)

− α

τ
(2αx+ y) . (1.47)

17



In the same way, the flux of angular momentum crossing the capture surface is:

ΦL(fcap) =

∫

S

ρej(x, y, z, τ)|~r × vrel| (~vrel − ~v) · d~S

=

∫

S

ρej(x, y, z, τ)

√

(αy − x)2 + (1 + α2) z2 (~vrel − ~v) · d~S (1.48)

In Figure 1.7 is shown the evolution of the mass and angular momentum flux through the
NS capture surface obtained by the integration of equations (1.44) and (1.48). Also is
shown the evolution of the capture radius defined as the distance to the capture surface
at the equatorial plane. To compare, we have also plotted the results obtained using the
Bondi-Hoyle formalism presented in Section 1.2. The COcore progenitor and the initial
binary parameters are the same as in Figure 1.3. In general, the mass fluxes obtained
are around one order of magnitude smaller that the accretion rate given by the Bondi-
Hoyle formalism, but are still high enough to make the NS collapses in a short time
interval. On the contrary, the angular momentum flux is greater by more than three
order of magnitude. This can be explained in the fact that when we estimate the angular
momentum transported by the SN ejecta, as a first order approximation, we have assumed
that the capture radius is much smaller that the binary separation. In Figure 1.7, it can be
seen that the ration Rcap/a grows up to ∼ 0.1. It’s important to notice, that no matter our
estimations underestimate the angular momentum transported by the SN ejecta material,
the picture of the disk accretion is still valid in the IGC scenario and the NS will evolve
accreating from a disk.

1.5. Concluding remarks and perspectives

We have analysed the IGC paradigm of long GRBs associated with supernovae. The
progenitor is a binary system composed of a COcore and a NS in which the explosion
of the COcore as a SN triggers a hypercritical accretion process onto the NS. We have
estimated the accretion on the NS with the Bondi-Hoyle formalism and then and computed
the angular momentum transported by the SN ejecta expanding in the tight COcore-NS
binary system. We have shown that the angular momentum of the ejecta is high enough
to circularize, although for a short time, around the NS forming a kind of thick disk. We
have extended our model introducing an asymmetric expansion for the SN motion and an
initial eccentricity for the binary orbit.

We have computed both the evolution of the NS mass and angular momentum assuming
that the material falls onto the NS surface from an inner disk radius position given by
the mostly bound circular orbit around the NS or by the NS equatorial radius. The
properties of the mostly bound orbit, namely binding energy and angular momentum,
have been computed in the axially symmetric case with full rotational effects in general
relativity. We have computed the changes of these properties in a dynamical fashion
accounting for the change of the exterior gravitational field due to the increasing NS mass
and angular momentum. We have shown that the fate of the NS depends on its initial
mass. Only those NSs reaching the mass-shedding limit are spun-up up to the maximum
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value of the angular momentum, JNS,max ≈ 0.7G(MJ 6=0
crit )2/c. In the cases in which the NS

collapses, since the NS dimensionless angular momentum reaches a maximum value < 1,
the new BH formed out of the gravitational collapse of the NS is initially not maximally
rotating. Further accretion of mass and angular momentum from material kept bound
into the system might lead the BH to approach maximal rotation, however it is out of the
scope of this work to explore such a possibility and will be the subject of a forthcoming
works.

We can compute the total angular momentum transported by the SN ejecta material, Lacc,
by integrating the angular momentum per unit time L̇acc during the entire time interval
of the accretion process up to the point when the NS reaches the instability region. If
we compare the value of Lacc with the maximum possible angular momentum that an NS
can support, JNS,max, we have Lacc > JNS,max, see Figure 1.8, there is an excess of angular
momentum in the system With even a mild amount of angular momentum, this accretion
drives a strong outflow along the axis of angular momentum [79, 86], ejecting up to 25% of
the infalling material, removing much of the angular momentum. The ejecta may undergo
rapid neutron capture producing r-process elements [86]. Much more work is needed to
determine if there are any observation implications of these expelled materials.

To conclude, we have advanced the first estimates of the role of the angular momentum
transported by the SN ejecta into the final fate of the NS companion in the IGC scenario.
In order to keep the problem tractable and to extract the main features of these complex
systems, we have adopted a series of approximations. (1) We have applied the Bondi-
Hoyle-Lyttleton formalism to compute the accretion rate onto the NS; the IGC scenario
are time-varying systems that might challenge the validity of this framework which is valid
for steady-state systems [see 68, and references therein]. (2) We have adopted Taylor series
expansions of the SN ejecta density and velocity around the NS under the assumption that
the Bondi-Hoyle radius is small as compared with the binary separation; this has to be
considered a first order solution to the problem since for the conditions of the IGC scenario
we have Rcap ∼ (0.01–0.1) a. (3) We have adopted an homologous expansion model for the
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SN ejecta which could lead to the suspicion of producing artificially higher accretion rates
onto the NS due to the low-velocity inner layers of the ejecta. However, it was already
shown [see figure 3 in 90] that the homologous model leads to an accretion process lasting
for a longer time with respect to more realistic explosion models but with lower accretion
rates such that the time-integrated accretion rate leads to a lower amount of accreted
material by the NS. (4) We have adopted some characteristic values for the homologous
expansion parameter of the SN ejecta (n = 1), for the initial velocity of the outermost SN
ejecta layer (v0star = 2× 109 cm s−1), for the efficiency of the angular momentum transfer
from the circularized matter to the NS (ξ = 0.5 − 1.0). Thus, a systematic analysis of
simulations exploring the entire possible range of the above parameters as well as full 2D
and/or 3D of the SN explosion and accretion are required in order to validate and/or
improve our results.
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2. Family-1 (i.e. XRFs) and
Family-2 (i.e. BdHNe) for Long
GRBs

2.1. Introduction

In Chapter 1 was presented the IGC paradigm as progenitor of long-GRBs associated
with SNe Ib/c. The initial in-state configuration is a close binary system composed of a
COcore star and a NS. The SN explosion of the COcore triggers an hypercritical accretion
process on the NS companion. The out-state configuration from this process depends of
the initial binary parameter and the SN characteristics. Up to now, we have estimated
the accretion rate on the NS based on the Bondi-Hoyle accretion formalism and followed
its mass and angular momentum evolution during the accretion process. Below, we show
that exist limiting binary parameters leading to lower accretion rates onto the NS and to a
total accreted matter not sufficient to bring the NS to the gravitational collapse, namely,
not sufficient to reach the NS critical mass. The identification of such limiting parameters
introduces a dichotomy in the final product of COcore-NS binary, with consequent different
observational signatures [i.e. see 243, 246, and also see Chapter 4]: Family-1 long GRBs
(i.e. XRFs) in which the NS does not collapse to a BH, and the final system being a
new NSs binary or two runaway NSs, if the system remains bound or gets disrupted,
respectively; and Family-2 long GRBs (i.e BdHNe) in which the NS collapses to a BH,
leading to a new NS-BH binary [88].

We organize this chapter as follows. In Section 2.2, we continue the calculations of
Chapter 1 and compute the maximum orbital period, Pmax (having fixed the other system
parameters, i,e. NS initial mass, COcore progenitor and SN velocity) up to which the
induced gravitational collapse of the NS to a BH by accretion can occur, defining the
information family’s dichotomy. In Section 2.3, we discuss a possible evolutionary scen-
ario leading to the IGC in-state binary systems and compare and contrast our picture
with existing binary evolution simulations in the literature. We also discuss the disrup-
tions of the final configurations in the IGC scenario following Fryer et al. [88]. Finally, in
Section 2.4, we summarize our results.
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2.2. The Induced Gravitational Collapse of the NS

Base on the results of Section 1.3, we proceed now to calculate the binary parameters which
discriminate systems in which the NS can reach by accretion its critical mass (Mcrit) and
consequently collapse to a BH, from the systems in which the accretion is not sufficient
to induce such a collapse. Thus, a NS with initial mass MNS(t0) =M0

NS can reach Mcrit if
it accretes an amount of mass ∆Macc =Mcrit−M0

NS from the SN ejecta. Given the initial
NS mass, the COcore mass, and the SN ejecta profile and its velocity, the accretion rate
increases for shorter binary separation, namely for shorter orbital periods (see Figure 1.3
and [90]). Therefore, there exists a maximum orbital period, denoted here as Pmax, up to
which, given M0

NS (and all the other binary parameters), the NS can accrete this precise
amount of mass, ∆Macc.

For example, for a NS with an initial gravitational mass M0
NS = 2 M⊙ accreting the

ejected material from the SN explosion of the 30 M⊙ ZAMS progenitor (see Table 1.1),
v0star = 2 × 109 cm s−1, expansion parameter n = 1 and angular momentum transfer
efficiency ξ = 0.5, we find Pmax ≈ 26 min. Figure. 2.1 shows the evolution of such a NS
for two different binary periods, P = 5 min < Pmax and P = 50 min > Pmax. We can
see that only for the system with P < Pmax the NS accretes enough matter to reach the
critical mass for gravitational collapse, given by equation (A.14).

Figure 2.2 shows Pmax, obtained from our numerical simulations, for different values of
the NS initial gravitational mass, keeping all the other binary parameters fixed. In this
figure we show the results for two pre-supernova progenitors listed in Table 1.1: the COcore

progenitors with MZAMS = 20M⊙ (left panel) and 30M⊙ (right panel), and for two values
of the angular momentum transfer efficient parameter: ξ = 1.0 (upper panel) and ξ = 0.5
(lower panel); additionally we adopt a free expansion for the SN explosion (n = 1), and a
velocity of the outermost SN ejecta layer, v0star = 2× 109 cm s−1.

A few comments on Figure 2.2 are in order:

1. The increase of Pmax with the initial NS mass value M0
NS can be easily understood

from the fact that the larger M0
NS the lower the amount of mass needed to reach the

critical NS mass.

2. There is a transition in the behavior at M0
NS ≈ 1.7 M⊙. This occurs because config-

urations with M0
NS . 1.7 M⊙ have the disk extending up to the NS surface, corres-

pondingly we used the angular momentum per unit mass given by equation (1.40).
For larger initial masses, accretion occurs from the last stable orbit and we used
equation (1.39). Thus, the difference around this transition point are attributable
to the use of the slow rotation approximation for masses M0

NS < 1.7 M⊙.

3. In order to see the effect of the angular momentum transfer efficiency parameter we
adopted in the simulations the maximum possible value, ξ = 1, and a lower value
case, ξ = 0.5. Values of ξ lower than unity account for possible angular momentum
losses between the inner disk radius and the NS surface. This implies that the values
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Figure 2.1.: Left panel: time evolution of the baryonic mass accretion rate (black curve) obtained from
equation (1.8) and rate of increase of the NS gravitational mass (blue curve) obtained from equation (1.35).
Right panel: Evolution of the NS gravitational mass. We use Here the ejecta from the explosion of a
COcore left by the 30 M⊙ ZAMS progenitor, v0star = 2 × 109 cm s−1, expansion parameter n = 1 and
angular momentum transfer efficiency, ξ = 0.5. Two binary periods are here used: P = 5 min < Pmax

(solid curves) and P = 50 min> Pmax(dashed curves). For these binary parameters Pmax ≈ 26 min. It
can be seen only the NS in the system with P < Pmax accretes enough matter to reach the critical mass
(dotted line) for gravitational collapse.

of Pmax with ξ = 1.0, in Figure 2.2, are upper limits to the maximum orbital period
for BH formation. Namely, a value ξ < 1 leads to lower values of Pmax. For instance,
in the right panel of Figure 2.2 we see that for M0

NS = 1.8 M⊙ and the NL3 EOS,
Pmax ≈ 70 min when ξ = 1.0 and for the same initial mass and EOS, ξ = 0.5 would
instead lead to Pmax ≈ 20 min.

4. When it is adopted the highly efficient angular momentum transfer (ξ = 1), the NS
in the systems of Figure 2.2 ends at the mass-shedding limit. This is the reason why
the values for Pmax are the same, independently of the EOS adopted. In the case of
lower values of ξ, the NS might end directly at the secular axisymmetric instability
with a lower values of the critical mass with respect to the maximum mass along
the Keplerian mass-shedding sequence. We have checked, for instance in the case
of ξ = 0.5 and the NL3 EOS, that this occurs when the initial NS mass is close to
the non-rotating critical mass value, e.g. for M0

NS & 2.2 M⊙ [see Figure 1.6]. In this
case, the EOS leads to different values of the Pmax. Since the others EOS adopted
in this work (TM1 and GM1) give lower values of the critical NS mass with respect
to the NL3 EOS (see Table A.1 and [49]), the maximum orbital period to have BH
formation is longer for the same NS mass.

5. We studied here different progenitors. At first sight, it might appear contradictory
that the left panel of Figure 2.2, which is for a less massive COcore with respect to
the one the right panel, shows longer values of the maximum orbital period for BH
formation. The reason for this is as follows. First, the binary separation satisfies
a ∝ (MtP

2)1/3 where Mt is the total binary mass. Thus, for given NS mass and
binary period, a less massive COcore implies a less massive binary and a smaller
orbit by a factor a1/a2 = (Mt1/Mt2)

1/3. A tighter orbit implies a supernova ejecta
density at the NS position higher by a factor ρej,1/ρej,2 = (a2/a1)

3 =Mt2/Mt1, hence
the accretion rate which is proportional to the density [see equation (1.1)].
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Figure 2.2.: Maximum orbital period for which the NS with initial mass M0
NS collapses to a BH by

accretion of SN ejecta material. We have adopted a free expansion for the supernova ejecta (n = 1),
an outermost SN layer velocity v0star = 2 × 109 cm s−1. The plots of the left and right columns show
the results for COcores left by MZAMS = 20 M⊙ and 30 M⊙ progenitors, respectively (see Table 1.1).
For the plots at the upper panel were used the maximum possible value of the angular momentum
transfer efficiency parameter (ξ = 1.0) while for the bottom plots were assumed ξ = 0.5. The apparent
transition at M0

NS ≈ 1.7 M⊙ is explained as follows: configurations with M0
NS . 1.7 M⊙ have the disk

extending up to the NS surface, correspondingly we used the angular momentum per unit mass given by
equation (1.40), instead for larger initial masses the accretion occurs from the last stable orbit and we
used equation (1.39). Thus, the difference around this transition point are attributable to the use of the
slow rotation approximation for masses M0

NS < 1.7 M⊙.

Thus we have shown that in systems with P ≤ Pmax the induced gravitational collapse
of the accreting NS to a BH occurs. These systems explain the BdHNe [14, 88, 90]. In
systems with P > Pmax, the NS does not accrete enough matter from the SN ejecta and
the collapse to a BH does not occur. These systems explain XRFs. In both cases, after
the SN explosion the binary can either get disrupted or remain bound depending upon
the mass loss and/or natal kick imparted to the system [215]. In the case when the system
remains bound, the out-states of BdHNe are νNS-BH binaries, while for the XRFs are
binaries composed of a ∼ 1.4–1.5 νNS, and a massive NS which accreted matter from the
SN ejecta.

It is worth to mention that we do not simulate in this work the complex process of
gravitational collapse rather we assume BH formation at the moment when the NS reaches
the critical mass value. We also adopt the mass of the newly formed BH as given by the
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critical NS mass value.

2.3. The Evolutionary Scenario for the IGC Paradigm

With the knowledge of the proper set of parameters for which the gravitational collapse of
the NS to a BH is induced by accretion, and consequently, also the parameters for which
such a process does not occur, it becomes appropriate to discuss the possible progenitors of
such binaries. A possible evolutionary scenario was discussed by Rueda & Ruffini [227],
taking advantage of the following facts: (1) a viable progenitor for the IGC paradigm
systems is represented by X-ray binaries such as Cen X-3 and Her X-1 [108, 156, 221, 257,
280, 307]; (2) evolution sequences for X-ray binaries, and evolution scenarios leading to
systems in which two SN events occur during their life, had been already envisaged [see,
e.g., 135, 195].

In base of the evolutionary binary paths considered in [93, 197, 198, 215], the in-states
configurations of the IGC scenario could be get by following the evolution of an initial
binary system composed of two main-sequence stars, M1 and M2, with a mass ratio
M2/M1 & 0.4. Initially, the binary system formed by the two main sequence stars is
detached and each star is inside its own Roche Lobes. When the star 1, likely with
M1 & 11 M⊙, exhausts the hydrogen in its core, it leaves the main sequence, expands
and overfills its Roche lobe starting to transfer mass in a quasi-conservative and stable
way to its companion. When star 1 losses its hydrogen envelope the transfer of mass is
stopped and a naked helium core remains. Star 1 evolves and leaves a NS through a first
core-collapse event. The star 2, now with M2 & 11 M⊙ after some almost conservative
mass transfer, evolves filling its Roche lobe. Due to the large mass ratio of the binary
components, it then starts a spiral-in of the NS into the envelope of the star 2, i.e. a
common-envelope phase occurs. If the binary system survives to this common-envelope
phase, namely it does not merge, it will be composed of a helium star and a NS in a
tight orbit. The helium star then expands filling its Roche lobe and a non-conservative
mass transfer to the NS, takes place. After losing its helium envelope, the above scenario
naturally leads to a binary system composed of a COcore star and a massive NS whose
fate has been discussed in the present work.

It have been argued, that during the common-envelope phase the NS might accrete at
super-Eddington accretion rates (∼ 0.1M⊙ yr−1) [19, 46, 93, 120] and collapse to form
a BH [34]. However, as has been point by Brown et al. [34], the accretion on the NS
could be not so high in this phase, due to the angular momentum of the matter [see
also 168, 169]. Also, the NS magnetic field could introduce some caveat in this picture.
Moreover, the observation of double NS binaries systems with nearly equal mass and the
tight-orbit binary pulsar with CO white dwarf companions, that just could be formed by
a common envelope phase, seems to go contrary with this argument [285].

The above evolutionary path advanced by Rueda & Ruffini [227], see Figure 2.3, is in
agreement with the recent results of Tauris et al. [284], who performed simulations of the
evolution of a helium core in a tight binary with an NS companion. The helium envelope is
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Figure 2.3: Scheme of a
possible evolutionary scena-
rio leading to the IGC bi-
nary system progenitors as
outlined in [227].
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stripped-off during the evolution as a result of both mass-loss and binary interactions and
at the end it might lead to an SN of type Ib or Ic in the presence of the NS companion.
In the X-ray binary/SN community, these systems are called “ultra-stripped” binaries
and have been invoked to both explain the population of NS-NS binaries as well as a
growing set of low-luminosity and/or rapid decay-rate SNe. The “ultra-stripped” binaries
are expected to comprise 0.1–1% of the total SNe [283].

The simulations in Tauris et al. [284] show the possibility of having binaries with orbital
periods as short as ∼ 50 minute at the moment of the SN explosion. However, they
were interested in the so-called ultra-stripped SNe (whoose observational features cab be
matched by low-mass ejecta), and therefore they explored systems with helium stars of
low initial masses MHe = 2.5–3.0M⊙, less massive than the ones we expect for the COcores

in the IGC scenario.

Besides comparing the value of the pre-SN COcore mass, it is also instructive to compare
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the radii we have assumed for the pre-SN COcore with the ones obtained by Tauris et al.
[284]. For example, they obtained a radius of the metal core of the ≈ 3 M⊙ helium star
forming initially a binary of orbital period 0.1 day with an NS companion of 1.35 M⊙, is
R ≈ 0.024 R⊙. The most similar case we can compare with, corresponds to the COcore

formed by the MZAMS = 15 M⊙ progenitor (see Table 1.1), MCO ≈ 3.5 M⊙, for which we
have adopted a radius of ≈ 4.5 × 109 cm≈ 0.06 R⊙. This radius is ≈ 2.5 times larger
than the above 3 M⊙ helium star of Tauris et al. [284]. This implies that the assumption
in Fryer et al. [90] that, due to the 3-4 orders of magnitude of pressure jump between
the COcore and helium layer, the star will not expand significantly when the helium layer
is removed, seems to be appropriate. As was discussed there, differences of ∼ 2 in the
value of the radius could be due to the different binary interaction ingredients as well as
to subtleties of the numerical codes, e.g. between the MESA and the KEPLER codes.

On the other hand, the relatively long possible orbital periods we have obtained (with
respect to our minimum value P0) to have BH formation weakens the role of the precise
value of the COcore radius on the accretion process and the final fate of the system. If
the radius of the COcore is N times the radius of the core of the system with P = P0,
then the evolution of the system will be approximately the one of a system with orbital
period P = N3/2P0. For example, we have adopted a radius RCO ≈ 7.7×109 cm≈ 0.1 R⊙

for the COcore with mass MCO ≈ 9.4 M⊙ (see Table 1.1), and thus a minimum orbital
period (to have no Roche lobe overflow) of P0 ≈ 5 min, if it forms a binary with a 2 M⊙

NS companion. The maximum value of the orbital period for which we obtained BH
formation for those mass parameters was Pmax ≈ 26 min (for the NL3 EOS and adopting
an efficient for the transfer of angular momentum: ξ = 0.5), which would imply that even
with a COcore ≈ 52/3 ≈ 4 times larger, BH formation would occur. Despite this fact, the
precise value of the COcore mass and radius depends on the binary interactions, hence on
the evolutionary path followed by the system; therefore, it is appropriate to compute the
binary evolution proposed in this work to confirm or improve our estimates for the COcore

masses and radii.

2.3.1. Post-explosion orbits and formation of NS-BH binaries

We have determined that the most tightest COcore-NS binaries (a < 1011 cm) form the
progenitors of the BdHNe. In these systems, the SN explosion of the COcore leads a νNS
as remnant, and the hypercritical accretion of the SN ejecta on the NS companion induced
its gravitational collapse leading the formation of a BH. In Fryer et al. [88] was examined
the question if BdHNe can indeed form NS-BH binaries or, on the contrary, these systems
are disrupted by the SN explosion. Here we resume the main results of their study.

The mass ejected during the SN alters the binary orbit, causing it to become wider and
more eccentric. Assuming instantaneous mass loss, the post-explosion semi-major axis
will be given by [116]: a/a0 = (M0 − ∆M)/(M0 − 2a0∆M/r), where a0 and a are the
initial and final semi-major axes respectively, M0 is the total initial mass of the binary
system, ∆M is the change of mass (equal to the amount of mass ejected in the SN), and
r is the orbital separation at the time of explosion . For circular orbits, like the ones
expected for systems after going through a common envelope evolution, we find that the
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Figure 2.4.: Semi-major axis versus explosion time for 3 different mass ejecta scenarios: 3.5M⊙ (solid),
5.0M⊙ (dotted), 8.0M⊙ (dashed) including mass accretion and momentum effects. The COcore collapse
to form a 1.5M⊙ νNS and the companion NS has an initial mass of 2.0M⊙. If the SN explosion will be
instantaneous, all the system with ejecta mass above 3.5M⊙ would be disrupted. Instead, it seen that
all systems with explosion times above 0.7 times the orbital time are bound and the final separations are
on par with the initial separations.
NOTE — Figure taken from Fryer et al. [88]

system is disrupted if it loses half of its initial mass after a SN event, leaving two single
compact objects. In typical systems, most of the binaries become unbound during the SN
explosion owing to the ejected mass and momentum imparted (kick) to the νNS in the
explosion. In general, it is believed that the fraction of massive binaries that can produce
double compact object binaries is low: ∼0.001–1% [66, 93, 215].

However, for the close binaries progenitors of the BdHNe, a number of additional effects
can alter the above picture. First, for these close binaries, the SN explosion can no longer
be assumed to be instantaneous. The explosions follow a so-called homologous velocity
profile, and although the shock front is moving above 10,000 km s−1, the denser, lower-
velocity ejecta can be moving at below 1000 km s−1. Thus, the SN ejecta overcomes a
companion in a roughly time 10–1000 s and the orbital period, for these system, ranges
from only 100–1000 s. Also, the NS companion accretes both matter and momentum from
the SN ejecta, reducing the mass-loss from the system with respect to typical binaries with
larger orbital separations and much less accretion. In addition, as with common envelope
scenarios, the bow shock produced by the accreting NS transfers orbital energy into the
SN ejecta.

Figure 2.4 shows the orbital evolution during the SN expansion for three binaries with
different ejecta mass. The initial configuration consists of a COcore and a 2.0 M⊙ NS
companion with a initial orbital separation of 7× 109 cm. For these calculations, it was
assumed that 0.5M⊙ is accreted with the momentum of the SN material by the NS and
30% of the orbital velocity is lost per orbit. Not only do the systems remain bound even
for explosion times greater than the half of the orbital period but, if the explosion time
is long, the final semi-major axis can be on par with the initial orbital separation.
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For many of the kick mechanisms in the literature, the kick is often aligned with the
rotation axis ( e.g., see [85, 87] for the neutrino-driven mechanisms and [85, 92, 264] for
asymmetric explosions driven by convection ). However, it is still possible to have some
misalignment leading to some eccentricity and “tumbling” of the system with specific
signatures in the light curve following the prompt emission of the GRB. If the kick is
aligned with the orbital plane, the system can remain bound even with kick velocities as
high as 1000 km s−1. However, if the kick is in the same direction as the star is moving,
the systems can be disrupted if the kick is above 500–700 km s−1 if the accretion phase
is longer than an orbital period [see 88, for more details].

2.4. Concluding remarks and perspectives

Since the accretion rate decreases for increasing values of the orbital period, we have
shown that there exists a specific value of it over which BH formation is not possible
because the NS does not accrete sufficient matter to reach the critical mass. We denoted
this maximum period for gravitational collapse as Pmax and computed it as a function of
the initial NS mass for selected pre-supernova COcores and angular momentum efficient
parameter (see Figure 2.2). Therefore, in systems with P ≤ Pmax, BH formation occurs
and these systems, within the IGC paradigm, can explain BdHNe [14, 88, 90]. In systems
with P > Pmax, the NS does not accrete enough matter from the supernova ejecta and
the collapse to a BH does not occur: these systems, within the IGC paradigm, are used
to explain the nature of XRFs.

The complexity of the above processes leading to two possible outcomes can be sum-
marized schematically within the concept of Cosmic-Matrix (C-matrix) [228, 229, 243].
The C-matrix describes these systems as a four-body problem in analogy to the case of
particle physics (see Figure 2.5). The in-state is represented by the COcore and the NS
companion. The interaction between these two objects given by the hypercritical accre-
tion process triggered by the SN explosion onto the NS companion, and which is examined
in this work, lead to two possible out-states: in the case of a BdHNe it is formed by the
νNS, i.e. the neutron star left by the SN explosion of the COcore, and a BH formed from
the gravitational collapse of the NS companion of the COcore in the in-state. As we have
mentioned in XRFs the accretion is not enough to lead to the gravitational collapse of the
NS then the out-state is a νNS and another NS (of course more massive than the initial
one present in the in-state).

The relative rate of BdHNe with respect of XRFs can give us crucial information on
the value of the NS critical mass, hence on the stiffness of the nuclear EOS; and thus
population synthesis analyses leading to the theoretically inferred rated of event are needed
to unveil this important information [see, e.g 81, 244, for the complementary case of short
GRBs] . As a first starting point toward such analysis, we have discussed a possible
evolutionary scenario leading to tight COcore-NS binaries (see Figure 2.3).

Another important point for the IGC paradigm is to determine if their final out-states
remains bounded or the system is disrupted forming two single compact object after the
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Figure 2.5: Cosmic-matrix of XRFs
and BdHNe as introduced in Ruffini
[228, 229], Ruffini et al. [243]. See text
for details.
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SN explosion of the COcore. In the case of BdHNe, this question has been addressed by
Fryer et al. [88]. They have shown that, on the contrary to the canonical SN explosion
occurring in binary progenitors studied in population synthesis calculations, BdHNe re-
main bound even if a large fraction of the binary system’s mass is lost in the explosion.
Indeed, they might exceed the canonical 50% limit of mass loss without being disrupted.
This impressive result is the combined result of: (1) the hypercritical accretion onto the
NS companion which alters both the mass and momentum of the binary; (2) the explo-
sion timescale which is on par with the orbital period, hence the mass ejection cannot
be assumed to be instantaneous; (3) the bow shock created, as the accreting NS plows
through the supernova ejecta, transfers angular momentum acting as a viscosity on the
orbit.

It is interesting that in parallel to the above conclusions we can also draw some inferences
on the astrophysics of NS-NS binaries. Our results suggest that the systems in which the
accreting NS does not reach the critical mass (i.e the XRFs) are natural candidates to pro-
duce such binaries [246]. We have shown that this will occur for COcore-NS binaries with
long orbital periods; thus it is possible that many of these systems become unbound by the
SN explosion produced by the COcore. The XRF to BdHNe occurrence rate ratio can shed
light on the ratio of bound/unbound IGC binaries [88]. The short orbital periods P < Pmax

needed for BdHNe obtained from our theoretical model imply that XRF must be much
more common than BdHNe, as it is indeed observed [see, e.g., 107, 246, and references
therein]. The few systems which will keep bound become NS-NS binaries where at least
one of the components can be massive and with a rotation period in the millisecond region.
If the NS accretes from the LSO, then at the end of the process it will have an angular mo-
mentum JNS ∼ 2

√
3GMaccMNS/c ≈ 4.3 × 1048[Macc/(0.1M⊙)][MNS/(1.4M⊙)] g cm2 s−2,

where Macc is the total accreted mass. Thus, the NS will have a rotation period P =
2πINS/JNS ≈ 1.6 (0.1M⊙/Macc)(RNS/10

6 cm)2 ms, where INS ∼ 2/5MNSR
2
NS is the NS

moment of inertia. That known binary millisecond pulsars could be formed in XRFs is a
very exciting result that deserves further scrutiny.
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3. Physics inside the NS atmosphere
during the hypercritical accretion
process and neutrino emission

3.1. Introduction

In Chapters 1 and 2, we have studied the hypercritical accretion process in the framework
of the IGC paradigm. We estimated the accretion rate on the NS using the Bondi-
Hoyle formalism and showed that the longer the orbital period/larger binary separation,
the lower the accretion rate (see Figure A.1); hence the lower the accretion luminosity
and the longer the time at which peak luminosity occurs. These features confirm what
advanced in Becerra et al. [14], Ruffini et al. [243, 246], namely that less energetic long
GRBs correspond to the binaries with wider orbits. Specifically, XRFs correspond to the
binaries in which the NS does not reach the point of gravitational collapse to a BH. Since
there is a limiting orbital period, Pmax, up to which the NS can reach the critical mass
and collapse to a BH (these systems are the BdHNe 88, 90), the XRFs are the binaries
with P > Pmax (see Section 2.2 for details).

We turn, now, to analyse in detail the properties of the system inside the Bondi-Hoyle
accretion region. Figure 1.3 shows the mass accretion rate onto the NS of initial mass
2.0 M⊙. We can see that the accretion rate can be as high as ∼ 10−2 M⊙ s−1. To begin,
for these high accretion rates we can draw some general properties:

1. The NS magnetic field can be neglected [83, 227]. In spherically, symmetric ac-
cretion process, the magnetospheric radius is given by [287, see e.g.]: Rmag =
(

B2R6
NS/(ṀB

√
2GMNS)

)2/7

, with B the NS magnetic field. This relation comes

to equal the magnetic pressure with the random pressure of the infalling matter. If
we assume B = 1012 Gauss, that would be a high magnetic field and typical values
for the NS parameters, [RNS = 10 km and MNS = 1.4 ], the magnetosphere radius
lies inside the NS radius for ṀB > 2.6 × 10−8 M⊙ s−1. In the case of disk accre-
tion, the disk interior radius is given by Rin = kRmag, where k is an dimensionless
parameter determined by the flow structure. Analytical models predict values from
0.5− 1.0 [100, 300] while MHD simulations give 0.4− 0.72 [154, 163].

2. The photons are trapped in the accretion flow. The trapping radius, defined at
which the photons emitted diffuse outward at a slower velocity than the one of the
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infalling material, is [45]:

rtrapping = min{ṀBκ/(4πc), Rcap}, (3.1)

where κ is the opacity. For the COcore, Fryer et al. [90] estimated a Rosseland mean
opacity roughly 5 × 103 cm2 g−1. For the range of accretion rates, we obtain that
ṀBκ/(4πc) ∼ 1013–1019 cm, a radius much bigger than the NS capture radius which
is in our simulations at most 1/3 of the binary separation. Thus, in our systems the
trapping radius extends all the way to the Bondi-Hoyle region, hence the Eddington
limit does not apply and hypercritical accretion onto the NS occurs.

3. Under these conditions of photons being trapped within the accretion flow, the
gain of gravitational energy of the accreted material is mainly radiated via neutrino
emission [83, 90, 227, 239, 319].

During the hypercritical accretion on the NS in an IGC scenario, the neutrino emission at
the based of the NS surface dominates the cooling and allows the NS to increase its mass.
For accretion rate between 10−2 − 10−4 M⊙ s−1, the range of temperature and density
developed on the NS surface leads the e+e−-pair annihilation to be the dominant channel
for the neutrino emission, reaching luminosities up to 1052 erg s−1 and mean neutrino
energies of the order of 20 MeV. These make the XRFs and the BdHNe astrophysical
laboratories for MeV-neutrino physics additional to core-collapse SNe. The neutrinos
created in the accretion zone experience an interesting phenomenology before escaping
to the outer space, i.e. outside the Bondi-Hoyle region. The neutrinos density produced
in the hypercritical accretion process is such that the neutrino self-interactions, as in
the case of SNe, dominate the neutrino flavor evolution, giving rise to appearance of
collective effects. As a result, an entirely different neutrino flavor content emerges from
the Bondi-Hoyle surface.

In order to deepen the study of the neutrinos emission at the base of the NS into the IGC
framework, we organize this chapter as follow: in Section 3.2 we study the hydrodynamics
inside the NS accretion region. We build NS accreting atmospheres in order to determinate
the conditions of the neutrino emission on the NS surface. In Section 3.3 we introduce
the main features of the neutrino oscillation phenomenology for the IGC scenario and we
compare the final neutrino emission spectra with the one created near the NS surface,
based on the results obtained in Uribe et al. [291]. Finally, we present in Section 3.4 the
conclusions and some perspectives for future research.

3.2. Accretion zone structure and equation of state

We analyse the NS accretion zone following the theoretical framework established for SN
fallback accretion [45, 83, 120]. Figure 3.1 shows schematically the structure of the NS
atmosphere: the SN material entering the NS capture region shocks as it piles up onto the
NS surface. As the atmosphere compresses, it becomes sufficiently hot to emit neutrinos
allowing the matter to reduce its entropy and be incorporated into the NS.
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Figure 3.1: Structure of the NS acrretion atmos-
phere. The ejecta from the SN enter the NS cap-
ture region (red circle) at a distance r = Rcap

[see equation (1.2)] from the NS center and start
to fall to the NS surface. The material shocks as
it piles on top the NS surface. The shock decele-
rates the material while it moves towards the NS
and near the surface, at the neutrinosphere, it
looses energy by the emission of neutrinos. The
neutrino emission allows the material to reduce
its entropy to be finally accreted by the NS.

In order to model the evolution of the NS accretion zone, we assume that it passes through
a sequence of quasi-steady state envelopes, each characterized by the mass accretion rate
Ṁ , the NS mass, MNS and its radius RNS. The spacetime outside the NS is described by
the Schwarzschild metric:

ds2 = −
(

1− rsch
r

)

dt2 +
(

1− rsch
r

)−1

dr2 + r2
(

dθ2 + sin2 θdφ2
)

, (3.2)

where rsch = 2GMNS/c
2 is the Schwarzschild radius. The steady-state relativistic fluid

equations for mass, momentum and energy conservation in this geometry are:

1

r2
d

dr

(

r2ρu
)

= 0,

1

2

d

dr

(u

c

)2

+
rsch
2r

+
1

w

dP

dr

[

(u

c

)2

+ 1− rsch
r

]

= 0, (3.3)

d

dr

(

ρc2 + U
)

− w

ρ

dρ

dr
+
Qν

u
= 0,

where u is the radial component of the four-velocity, Qν is the total energy loss rate per
unit volume by neutrino cooling, w = ρc2 + U + P is the relativistic enthalpy, ρ is the
mass density, P is the pressure and U is the internal energy density.

The boundary conditions are determined by the conservation of mass, momentum and
energy flows through the shock front at r = rsh. These one are expressed by the Rankine-
Hugoniot conditions [155]:

ρpup − ρshush = 0, (3.4)

wpu
t
pup − wshu

t
shush = 0, (3.5)

wpu
2
p + Pp − wshu

2
sh − Psh = 0, (3.6)

where ut is the time component of the four-velocity, determined by the condition gµνuµuν =
−c2. The indexes ‘p’ and ‘sh’ denote the quantities in the pre-shock and post-shock zone,
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respectively. Outside the shock front, the material is in approximate free fall, thus:

up =

√

2GMns

r
, ρp =

Ṁ

4πr2vp
, Pp =

1

2
ρpv

2
p. (3.7)

We consider a gas of electrons, positrons, ions and photons. Then, the total pressure and
density energy are:

Ptot(ρ, T ) = Pγ + Pion + Pe− + Pe+ , (3.8)

Utot(ρ, T ) = Uγ + Uion + Ue− + Ue+ . (3.9)

For the pressure and the internal energy of the radiation field, we adopt a blackbody in
thermodynamic equilibrium:

Pγ =
1

3
aT 4, Uγ = 3Pγ, (3.10)

with a = 4σ/c = 7.56× 10−15 erg cm−3 K−4, where σ is the Stefan-Boltzmann constant.

For the ion gas, we assume a perfect gas:

nion =
ρ

Amu

, Pion = nionκBT, Uion =
3

2
Pion, (3.11)

where nion is the ion number density, mu = 1.6604× 10−24 g is the atomic mass unit and
κB is the Boltzmann constant.

Finally, the electrons and positrons are described by the Fermi-Dirac distributions:

ne± =
m3
ec

3

π2~3

√
2 β3/2

[

F1/2(ηe± , β) + βF3/2(ηe± , β)
]

, (3.12)

Pe± =
8m4

ec
5

3
√
2 π2~3

β5/2

[

F3/2(ηe± , β) +
1

2
βF5/2(ηe± , β)

]

, (3.13)

Ue± =
mec

2

π2

2
√
2m3

ec
3

~3
β5/2

[

F3/2(ηe± , β) + βF5/2(ηe± , β)
]

, (3.14)

where Fk(η, β) ≡
∫∞

0
xk(1+0.5xβ)1/2dx

ex−η+1
is the relativistic Fermi-Dirac integral, β ≡ κBT/(mec

2)
is the relativity parameter and η ≡ (µ − mec

2)/κBT is the degeneracy parameter, with
µ the chemical potential. Since the electrons and positrons are in equilibrium with radi-
ation (e+ + e− → γ + γ), their chemical potential are related by µe− + µe+ = 0 and then
ηe+ = −ηe− −2/β. For each value of density and temperature, ηe− is determined from the
charge neutrality condition:

ne− − ne+ =
Z

A

ρ

mu

= Znion. (3.15)
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3.2.1. Neutrino emission and shock position

We turn now to discuss the neutrino emission processes taken into account in our calcu-
lations. We follow the results reported in Itoh et al. [128] for the neutrino energy loss
rates computed within the Weinberg-Salam theory [252, 306]. We use here the formu-
las which fit the numerical results in the following regime of density and temperature:
100 g cm−3 < ρ < 1014 g cm−3 and 107 K< T < 1011 K [128].

We consider the following channels of neutrino emission. i) Pair annihilation: e+ + e− →
ν+ ν̄ [127, 190]; this neutrino energy loss rate is here denoted by ǫe−e+ . ii) Photo-neutrino
process: γ + e± → e± + ν + ν̄ [127, 190], denoted by ǫγ. iii) Plasmon decay: γ̄ → ν + ν̄
[148, 149], denoted by ǫpl. iv) Bremsstrahlung processes [129, 131–133], denoted by ǫBR,
which can be due to electron-nucleon interaction e± + N → N + ν + ν̄ or to nucleon-
nucleon interaction N + N → N + N + ν + ν̄. It is important to mention that two
different expressions for the total Bremsstrahlung emission are shown in Itoh et al. [128]
depending if the Coulomb parameter, Γ ≡ (Ze)2/(rikBT ) where ri = [3/(4πnion)]

1/3, is
higher or lower than the critical value Γ ≈ 180, over which the system crystallizes. So the
total energy loss rate per unit volume due to neutrino emission isQν = ǫe−e++ǫγ+ǫpl+ǫBR.

Since the infalling material is strongly decelerated by the accretion shock, the post-shock
kinetic energy is much less that the internal and gravitational energy. Then, assuming
a polytropic gas [P = (γ − 1)U ∝ ργ] and subsonic velocities inside the shock radius,
(v/c)2 ≪ 1, Eqs. (3.4) can be solved for the radial dependence of the fluid variables ρ, P
and u [120]:

ρ = ρshf(r)
1

γ−1 , P = Pshf(r)
γ

γ−1 , u =
ush
r2
f(r)

1
1−γ , (3.16)

with

f(r) ≡ (1− rsch/r)
−1/2 − 1

(1− rsch/Rsh)
−1/2 − 1

.

Since neutrinos are the main energy sink of the system, the position of the shock can be
estimated from the balance between the neutrino emission and the release of the potential
gravitational energy due to the accretion process, i.e.:

∫ Rsh

Rns

Qν

(

1− 2GMNS

c2r

)−1/2

2πr2dr = c2Ṁ

[

(

1− 2GMNS

c2RNS

)−1/2

− 1

]

, (3.17)

where we have assumed the rate at which gravitational energy is released as the kinetic
energy gained in the free fall from infinity, and we have considered the proper volume of the
cooling region and the proper cooling rate. Figure 3.2 shows the NS surface temperature
and the shock position as a function of the mass accretion rate for three different adiabatic
index: γ = 1.33, 1.4, 1.46. The position of the shock radius is determined by the value
og γ, but the temperature and density of the matter at the NS surface it’s independent
of it. The approximation of a polytropic equation of state was validated by numerical
simulations in Fryer et al. [83], who showed the infall NS atmosphere is well approximated
by a polytropic gas of index γ = 1.4. For acretion rate lying between ∼ 10−4−10−2M⊙ s−1,
we estimate neutrino temperatures lying between 5.4 − 9.2MeV (i.e. neutrino energies
Eν ≈ 3kBT ≈ 15 − 30MeV), predicting energies only slightly below those produced by
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detailed calculations [79].

Under the conditions (non-degenerate, relativistic, hot plasma) of our hypercritically ac-
creting NS, the most efficient neutrino emission is given by the e+e− pair annihilation
leading to neutrino-antineutrino (see Figure 3.5 below). In these T -ρ conditions, ǫe−e+

reduces to the simple expression [316]:

ǫe−e+ = 1.39× 1025
(

kBT

1MeV

)9

erg cm−3 s−1. (3.18)

Owing to the strong dependence of the neutrino emission on temperature, most of the
neutrinos are emitted from a spherical shell around the NS of thickness ∆rER. Thus, we
can approximate equation (3.17) to:





4πR2
NS∆rER

√

1− 2GMNS

c2RNS



Qν ≈ c2Ṁ

[

(

1− 2GMNS

c2RNS

)−1/2

− 1

]

, (3.19)

where ∆rER can be estimated as one temperature scale height, i.e.:

∆rER ≈ HT =
T

|(dT/dr)| , with
dT

dr
=

(

∂ lnT

∂ ln ρ

)

P

dln ρ

dr
+

(

∂ lnT

∂ lnP

)

ρ

dlnP

dr
. (3.20)

The thickness of the neutrino emission region is very poorly dependent on the accretion
rate; indeed equation (3.20) gives ∆rER ≈ 0.76–0.77RNS for Ṁ = 10−8–10−1 M⊙ s−1.
Using equation (3.19) instead of equation (3.17) leads to NS accreting atmosphere within
a 3% error.

For the sake of example, we show in Figure 3.3 the entropy, temperature, density and
pressure profile from the NS surface (we have assumed a NS of MNS = 2.0M⊙ with RNS =
106 cm) to the shock radius for a specific value of the mass accretion rate 10−2M⊙ s−1. For
the ions we adopt here Z = 6 and A = 12. It can be seen here that the entropy gradient
of the NS atmosphere is negative, and it is thus subjected to convective instabilities (see
Chapter 4).

3.2.2. Neutrino and photon optical depth

We have assumed that the neutrinos produced at the base of the NS surface are the main
sink of the gravitational potential energy gained by the infalling material. We proceed
now to assess the validity of this statement through the calculation of the neutrino opacity.

The total neutrino opacity is:
κν = κν,abs + κν,scat, (3.21)

where κν,abs and κν,scat correspond to the opacity produced by absorption and scattering
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log (Ṁ [M⊙ s−1 ])

0

1

2

3

4

5

6

lo
g
(
R

sh
/R

N
S
)

γ = 1.3
γ = 1.4
γ = 1.46

Figure 3.2.: Temperature of the NS surface (left panel) and ratio between the shock radius and the NS
radius (right plot) as a function of the mass accretion rate in the range Ṁ = 10−8–10−1 M⊙ s−1. It
has shown the results for three values of the polytropic index: γ = 1.33, 1.4 and 1.46. The shock radius
position increase with γ in order to the NS surface develops conditions to the neutrino emission becomes
efficient and takes away the gravitational energy gained during the accretion process
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(bottom plot) of a NS accreting atmosphere for Ṁ = 10−2 M⊙ s−1. It has been assumed γ = 1.4. The
pressure and density are normalized to PNS ≈ 8.27 × 1029 dyn cm−2 and ρNS ≈ 1.76 × 109 g cm−3,
respectively.
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processes. In general, the opacity can be written as

κ =
σini
ρ
, (3.22)

where ni is the particle density and σi is the process cross section. We adopt the following
scattering and absorption process:

Scattering processes : neutrinos transfer momentum to the matter by the scattering off
nuclei and electrons and positrons:

• Coherent neutrino nucleus scattering: ν + (A,Z) → ν + (A,Z) [290]

σA =
1

16
σ0

(

Eν
mec2

)2

A2

[

1− Z

A
+ (4sin2θw − 1)

Z

A

]2

with , (3.23)

with σ0 =
4G2

F (mec2)2

π(~c)4
≈ 1.71 × 10−44 cm2, where GF is the Fermi weak neutrino

coupling constant and θw is the Weinberg angle, sin2 θw ≈ 0.231 [202]. The scattering
is coherent in the sense that nucleus acts as a single particle and the initial and final
neutrino energy are nearly equal.

• Neutrino-electron scattering [32, 37]:

σe(E) =
3

8
σ0β

E

mec2

(

1 +
ηe
4

)

[

(Cv + Ca)
2 +

1

3
(Cv + Ca)2

]

(3.24)

where Cv = 1/2 + 2 sin2 θw for electron neutrino and antineutrino types, Ca = 1/2
for neutrino and Ca = −1/2 for antineutrinos.

Absorption processes : Since we have shown that the most efficient neutrino cooling
process near the NS surface is the electron-positron annihilation, the inverse process
namely the annihilation of neutrinos, ν + ν̄ → e− + e+, represents the main source of
opacity. The total average cross sections are given by [103]:

σν(Eν) =
4

3
Kνν̄σ0〈Eν〉〈Eν̄〉, σν̄(Eν̄) =

4

3
Kνν̄σ0〈Eν̄〉〈Eν〉, (3.25)

where Kνν̄ = (1 + 4 sin2 θw + 8 sin4 θw)/12 = 0.195. The energy of the neutrino and
antineutrinos are calculated through the second energy momentum (see equation (B.10)
in Appendix B.1):

〈Eν〉 = 〈Eν̄〉 =
ε1

ε0
= 4.1 kBT, and 〈E2

ν〉 =
ε2

ε0
= 20.8 (kBT )

2 . (3.26)

Then, the total neutrino opacity is:

κν =

[

σA

(

ρ

Amu

)

+ σe(Eν)ne− + σν(Eν)nν

]

/ρ, (3.27)
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The neutrino optical depth can then be obtained as:

d τν = κν ρ dr =
dr

λν
, (3.28)

where λν = (κν ρ)
−1 is the neutrino mean free path.

Thus, the optical depth at the base of the neutrino emission region can be estimated as:
τν,ER ≈ κν ρNS∆rER = ∆rER/λν,ER. Large values for the optical depth means (τν ≫ 1)
implies that the neutrinos are reabsorbed by the matter and cannot freely scape from the
system.

In order to verify that photons are trapped in the infalling material, we evaluate the
photon mean free path and photon emissivity:

τγ = κR ρ∆ rER, q̇γ ≈
1

∆ rER

σT 4

τγ
, (3.29)

where σ is the Stefan-Boltzmann constant, τγ is the photon optical depth, and κR is the
Rosseland mean opacity:

κR = 0.4 + 0.64× 1023
(

ρ

g cm−3

)(

T

K

)−3

g−1 cm2, (3.30)

being the first term due to the electron scattering and the second one to the free-free
absorption.

We show in Figure 3.4 the neutrino and photon optical depth profile in the NS accretion
region for three different values of the mass accretion rate. We can see the photon optical
depth is much higher than unity for photons, implying they are indeed trapped at any
radius. On the contrary, the neutrino optical depth is much lower than unity, implying
they efficiently cool the atmosphere which allows the system to proceed the accretion at
hypercritical rates.

We show in Figure 3.5 the T -ρ diagram of the NS surface for accretion rates Ṁ = 10−8–
10−1 M⊙ s−1 which covers both XRFs and BdHNe (see, e.g., Figure A.1). Higher temper-
atures and densities correspond to higher accretion rates. We show contours indicating
where the neutrino emissivities of the different neutrino emission processes are equal. It
can be seen from Figures 3.4 and 3.5 that: (1) pair annihilation neutrino process are
highly dominant over the other neutrino emission mechanisms; (2) neutrinos can effi-
ciently escape taking away most of the energy (high emissivity); (3) photons are trapped
hence they have negligible emissivity; (4) even for the largest accretion rates the neutrino
optical depth in the accretion zone is below unity and so the system is not opaque to
neutrinos.

As discussed in Fryer et al. [83], the neutrinos can balance efficiently the gravitational
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Figure 3.5.: Temperature-density dia-
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dominant neutrino processes, we show
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neutrino emission, ǫpl to the plasmon
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BdHNe (see Figure A.1). The arrow
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energy gain. The effective accretion onto the NS can be estimated as:

Ṁeff ≈ ∆MER
LER

EER

, (3.31)

where ∆MER, LER are the mass and neutrino luminosity in the emission region (i.e. ∆rER),
and EER = (1/2)GMNS∆MER/(RNS + ∆rER) is half the gravitational potential energy
gained by the material falling from infinity to theRNS+∆rER. Since LER ≈ 2πRNS∆rERǫe−e+

with ǫe−e+ the electron-positron pair annihilation process emissivity given by equation (3.18),
it can be checked that for MNS = 1.4 M⊙ this accretion rate leads to values Ṁeff ≈ 10−9–
10−1 M⊙ s−1 and LER ≈ 1048–1057 MeV s−1 for temperatures kBT = 1–10 MeV.

3.3. Neutrino oscillations in the IGC paradigm

We have shown that the neutrinos have an important role during the hypercritical accre-
tion of the IGC scenario. The high temperature developed on the NS surface leads to e+e−

pairs that, via weak interactions, annihilate into νν̄ pairs with neutrino luminosities of up
to 1052 erg s−1 for the highest accretion rates. Under these conditions, XRFs and BdHNe
become astrophysical laboratories for MeV-neutrino physics additional to core-collapse
SNe. In this section, following Uribe et al. [291], we extend the analysis of the above
neutrino emission to assess the occurrence of neutrino flavor oscillation in long GRBs, i.e.
in the hypercritical accretion process of XRFs and BdHNe.

3.3.1. Neutrino spectrum at the NS surface

During the hypercritical accretion process on the NS, the main source of neutrinos is
the e−e+ pair annihilation process (see Figure 3.5). From this fact, we can conclude
that neutrinos and antineutrinos are created in equal number. For the non-degenerate,
relativistic, hot plasma of the NS surface, the ratio of emission rates between electronic and
nonelectronic neutrino flavors can be express in terms of the weak interaction constants
(see equation (B.10) in Appendix B.1):

ε0e
ε0x

=
ε0e

ε0µ + ε0τ
=

C2
+,e

C2
+,µ + C2

+,τ

≈ 7

3
. (3.32)

Hereafter, we use only two flavors: the electronic neutrinos and antineutrinos νe, ν̄e, and a
superposition of the other flavors νx, ν̄x (x = µ+ τ). Being ncνi(ν̄i) and F c

νi(ν̄i)
the neutrino

(antineutrino) density and flux in the moment of their creation, respectively, from the last
result we have:

nCνi = nCν̄i , F
C
νi

= FC
ν̄i

∀i ∈ {e, µ, τ} and
nCνe
nCνx

=
nCν̄e
nCν̄x

=
FC
νe

FC
νx

=
FC
ν̄e

FC
ν̄x

≈ 7

3
. (3.33)
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Table 3.1.: Characteristics inside the neutrino emission zone and the neutrino spectrum for selected
values of the accretion rate ṀB . The electron fraction is Ye = 0.5 and the pinching parameter for the
neutrino spectrum is ηνν̄ = 2.0376

ṀB ρ kBT ηe∓ ne−− ne+ kBTνν̄ 〈Eν〉 FC
νe,ν̄e FC

νx,ν̄x nC
νeν̄e nC

νxν̄x

(M⊙ s−1) (g cm−3) (MeV) (cm−3) (MeV) (MeV) (cm−2 s−1) (cm−2 s−1) (cm−3) (cm−3)

10−8 1.46× 106 1.56 ∓0.325 4.41× 1029 1.78 6.39 4.17× 1036 1.79× 1036 2.78× 1026 1.19× 1026

10−7 3.90× 106 2.01 ∓0.251 1.25× 1030 2.28 8.24 3.16× 1037 1.36× 1037 2.11× 1027 9.00× 1026

10−6 1.12× 107 2.59 ∓0.193 3.38× 1030 2.93 10.61 2.40× 1038 1.03× 1038 1.60× 1028 6.90× 1027

10−5 3.10× 107 3.34 ∓0.147 9.56× 1030 3.78 13.69 1.84× 1039 7.87× 1038 1.23× 1029 5.20× 1028

10−4 8.66× 107 4.30 ∓0.111 2.61× 1031 4.87 17.62 1.39× 1040 5.94× 1039 9.24× 1029 3.96× 1029

10−3 2.48× 108 5.54 ∓0.082 7.65× 1031 6.28 22.70 1.04× 1041 4.51× 1040 7.00× 1030 3.00× 1030

10−2 7.54× 108 7.13 ∓0.057 2.27× 1032 8.08 29.22 7.92× 1041 3.39× 1041 5.28× 1031 2.26× 1031

Resuming, equation (3.33) implies that, in the specific environment of our system, of the
total number of neutrinos+antineutrinos emitted, Nν +Nν̄ , 70% are electronic neutrinos
(Nνe + Nν̄e), 30% are non-electronic (Nνx + Nν̄x), while the total number of neutrinos is
equal to the total number of antineutrinos, i.e. Nν = Nν̄ , where Nν = Nνe + Nνx and
Nν̄ = Nν̄e + Nν̄x . The distribution function of the neutrinos emitted at the NS surface
can be fitted by [291]:

fνi = fν̄e =
2π2 (~c)3 nCνi

(kBTνν̄)
3 F2 (ηνν̄)

1

1 + exp (E/kBTνν̄ − ηνν̄)
, (3.34)

with the neutrino density given by:

nCνi(ν̄i) = wνi(ν̄i)
Lν

4πR2
NS〈Eν〉〈v〉

= wνi(ν̄i)
ε0i∆rER
c/2

(3.35)

where the neutrino’s average radial velocity at r = RNS is 〈v〉 = c/2 [56], wνe = wν̄e = 0.35
and wνx = wν̄x = 0.35. The neutrino fluxes will be FC

ν(ν̄i)
= 〈v〉ncνi(ν̄i). The effective

neutrino temperature, Tνν̄ , and the effective neutrino parameter (known also as pinching
parameter), ηνν̄ , can be found solving:

4.1kBT = kBTνν̄
F3 (ηνν̄ , 0)

F2 (ηνν̄ , 0)
and 20.8 (kBT )

2 = (kBTνν̄)
2 F4 (ηνν̄ , 0)

F2 (ηνν̄ , 0)
(3.36)

For the range of temperature we are interested (see Figure 3.5) we find Tνν̄ = 1.1331T
and ηνν̄ = 2.0376. It can be checked that the distribution of equation (3.34) obeys:

∫

fνi
d3p

(2π~)3
= nCνi and

∫

Efνi
d3p

(2π~)3
= 〈Eν〉nCνi = ε1i (3.37)

For the range of accretion rates developed during the accretion process, in Table 3.1
we have collected the principal values that described NS accreting atmosphere and the
neutrino emission based of the NS atmosphere constructed in Section 3.2.

It is important to say, that the distribution functions give by equation (3.34) is not
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unique. A different solution based on a Maxwell-Boltzmann distribution can be found in
[74, 144, 184].

3.3.2. Neutrino oscillations phenomenology

The equations of motion (EoM) that govern the evolution of an ensemble of mixed neut-
rinos are the quantum Liouville equations:

iρ̇p = [Hp, ρp] ; i ˙̄ρp = [H̄p, ρ̄p] (3.38)

where we have adopted the natural units c = ~ = 1. In these equations ρp (ρ̄p) is the
matrix of occupation numbers. On the other hand, the Hamiltonian can be written as a
sum of three interaction terms:

H = Hvacuum + Hmatter + Hνν . (3.39)

The first term is the Hamiltonian in vacuum, the second term is the matter Hamilto-
nian and the last term the neutrino-neutrino interaction Hamiltonian. Each Hamiltonian
is characterized by its own potential: ωp,r, λr and µr, the vacuum, matter and self-
interaction neutrino potentials, respectively. All the interaction potentials depend on r,
the distance travel for the neutrino from the NS surface, and each effective potential
strength is parametrized as follows [56]:

ωp,r =
∆m2

2p〈vr〉
, (3.40)

λr=
√
2GF (ne−(r)− ne+(r))

1

〈vr〉
, (3.41)

µr=

√
2GF

2





∑

i∈{e,x}

nCνiν̄i





(

RNS

r

)2(
1− 〈vr〉2

〈vr〉

)

, (3.42)

with 〈vr〉 the average value of the neutrino projected velocity:

〈vr〉 =
1

2



1 +

√

1−
(

RNS

r

)2


 . (3.43)

The self-interaction neutrino potential has been written using the single-angle limit ap-
proximation. This consists in imposing a self-maintained coherence in the neutrino sys-
tem, i.e. it is assumed that the flavor evolution of all neutrinos emitted from an extended
source is the same as the flavor evolution of the neutrinos emitted from the source along
a particular path. Under this premise, the propagation angle between the test neutrino
and the background neutrinos is fixed.

For the NS accreting atmosphere constructed in Section (3.2), Figure 3.6 shows the beha-
vior of the effective potentials for two selected mass accretion rate: Ṁ = 10−2M⊙ s−1 and
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10−8M⊙ s−1. The neutrino self-interaction potential decays with the radial distance from
the NS faster than the matter potential, as can be predictive from equations (3.40)-(3.42).

For the high accretion rates (Ṁ > 5 × 10−5M⊙ s−1), we identify three different regions
along the neutrino trajectory inside the Bondi-Hoyle radius, in which the oscillations
are dominated by intrinsically different neutrino phenomenology. Just after the neutrino
creation in the regions of the accretion zone, very close to the surface of the NS the
potentials obey the following hierarchy: λr & µr ≫ ωr. Then, the neutrinos undergo
kinematic decoherence along the same length scale of a single cycle of the so-called bipolar
oscillations. Bipolar oscillations imply very fast flavor conversion between neutrino pairs
νeν̄e ↔ νµν̄µ ↔ ντ ν̄τ and, the oscillation length in this region can be so small as of the
order tens of meters (τ ≈ (0.05 − 1) km). Kinematic decoherence induces a fast flux
equipartition among the different flavors, i.e a few kilometres from the emission region,
we can assume νe : νµ : ντ = 1 : 1 : 1 [291].

After leaving the emission region, beyond r ≈ RNS + ∆rER, where ∆rER is the width
defined in equation (3.20), the effective neutrino density quickly falls in a asymptotic
behavior µr ≈ 1/r4 while the decay of λr is slower. Hence, very soon the neutrino flavor
evolution is determined by the matter potential. Matter suppresses neutrino oscillations
and we do not expect significant changes in the neutrino flavor content along a large
region. Nevertheless, the matter potential can be so small that there will be a region
along the neutrino trajectory in which it can be compared with the neutrino vacuum
frequencies and the higher and lower resonant density conditions will be satisfied, i.e.:

λ(rH) = ωH =
∆m2

2〈Eν〉
and λ(rL) = ωL =

∆m2
21

2〈Eν〉
, (3.44)

where ∆m2 and ∆m2
21 are, respectively, the squared-mass differences found in atmospheric

and solar neutrino observations. When the above resonance conditions are satisfied the
(Mikheyev-Smirnov-Wolfenstein) MSW effects [182, 308] happen and the flavor content
of the flux of electronic neutrinos and antineutrinos will be again modified. In Uribe
et al. [291] was followed the neutrino flavor evolution all the way from their emission on
the NS surface until they reach the Bondi-Hoyle radius. We present in Figure 3.7 the
relative fluxes Fν/FC

ν between the creation and emission fluxes for the specific case of
Ṁ = 10−2M⊙ s−1. Although no energy spectrum distortion is expected, the neutrino
flavor content emerging from the Bondi-Hoyle surface to the outer space is different from
the original one at the bottom of the accretion zone. The initial 70% and 30% distribution
of electronic and non-electronic neutrinos becomes 55% and 45% or 62% and 38% for
normal or inverted hierarchy, respectively. Since the ν ↔ ν̄ oscillations are negligible
[212, 213, 314] the total neutrino to antineutrino ratio is kept constant.

For accretion rates Ṁ < 5 ×10−5M⊙ s−1, either the matter potential is close enough to
the vacuum potential and the MSW condition is satisfied, or both the self-interaction
and matter potentials are so low that the flavor oscillations are only due to the vacuum
potential (see Figure 3.6). In both cases, bipolar oscillations are not presented and it is
not possible to guarantee that decoherence will be complete. The resonance region could
be located around closer to the NS surface, anticipating the MSW condition λr ∼ ωr.
This changes the neutrino flavor evolution and, of course, the emission spectrum. Hence,
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Figure 3.6.: Interaction potentials as functions of the radial distance from the NS center for two selected
accretion rates Ṁ = 10−2 M⊙ s−1 (upper panel) and 10−8 M⊙ s−1 (bottom panel), see Table 3.1. Each
plot runs from the NS surface to the Bondi-Hoyle surface. µr stands for the self-interaction neutrino
potential, λr is the matter potential and ωH and ωL are the higher and lower resonances corresponding
to the atmospheric and solar neutrino scales, respectively. Outside the Bondi-Hoyle region the neutrino
and electron densities depend on the direction of their path relative to the SN and the particular ejecta
density profile.

Note— Image taken from Uribe et al. [291]
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Figure 3.7.: Relative fluxes for different neutrino flavors between the creation neutrino flux, FC
ν , at the

bottom accretion zone due to e+e− pair annihilation and the emission flux, Fν , after past the region
with dominant neutrino-neutrino potential and the region with dominant neutrino-matter potential. It’s
presented the case for Ṁ = 10−2M⊙/s. Each column corresponds to a neutrino mass hierarchy: normal
hierarchy on the left and inverted hierarchy on the right.

Note— Image taken from Uribe et al. [291]

46



the signature neutrino-emission spectrum associated with the least luminous XRFs might
be different from the ones described here.

3.4. Conclusions and perspectives

Although, in Chapter 1 we show that the SN ejecta carry enough angular momentum to
form a disk-like structure around the NS before being accreted, here, in order to study
the hydrodynamics inside the accretion zone, we have assumed isotropic accretion on the
NS. We consider this study a first approximation to a more detailed picture, that has
allowed us to set the main framework and accounts for the general physical properties of
the system.

Explicitly, in order to solve the hydrodynamics equations, we have assumed: spherically
symmetric accretion onto a non–rotating NS, a quasi-steady-state evolution parametrized
by the mass accretion rate, a polytropic equation of state, and subsonic velocities inside the
shock radius. The matter is described by a perfect gas made of ions, electrons, positrons
and radiation with electron and positron obeying a Fermi-Dirac distribution. The electron
fraction was fixed and equal to 0.5. We considered pair annihilation, photo-neutrino
process, plasmon decay and bremsstrahlung to calculate neutrino emissivities. Under
the above conditions we have found that the pair annihilation dominates the neutrino
emission for the accretion rates involved in XRFs and BdHNe. The photons are trapped
within the infalling material and the neutrinos are transparent, taking away most of the
energy from the accretion (see Figures 3.4 and 3.5).

Future work could be made in order to relax some of the above assumptions, e.g. the
assumption of spherical symmetry to introduce a disk-like accretion picture. In this line it
is worth mentioning that some works have been done in this direction [see, e.g., 322, 323],
although in a Newtonian framework, for complete dissociated matter, and within the
thin-disk approximation. In these models disk heights of the order of H/r ∼ 0.1 are
obtained near the neutron star surface which suggests that the results might be similar to
the ones of a spherical accretion as the ones we have adopted. A generalization including
general relativistic effects in axial symmetry to account for the fast rotation that the NS
acquires during the accretion process is also needed. This was already implemented for the
computation of the accretion rates at the Bondi-Hoyle radius position in Chapter 1, but
it needs still to be implemented in the computation of the matter and neutrino density-
temperature structure near the NS surface. In addition, the description of the equation
of state of the infalling matter can be further improved by taking into account beta and
nuclear statistical equilibrium.

This first study of the accretion NS atmosphere, has allowed us, also, to identify key
theoretical and numerical features involved in the study of neutrino oscillations in the
IGC scenario of GRBs. From this understanding, we can infer that neutrino oscillations
might be markedly different in a disk-like accretion process. First, depending on the value
of the NS mass, the inner disk radius may be located at an rinner > RNS. On the other
hand, depending on the accretion rate, the density near the inner radius can be higher

47



than in the present case and move the condition for neutrino cooling farther from the inner
disk radius, at r > rinner. Both of these conditions would change the geometric set up
of the neutrino emission. Furthermore, possible larger values of T and ρ may change the
mechanisms involved in neutrino production. For example, electron-positron pair capture,
namely p+ e− → n+ νe, n+ e+ → p+ ν̄e and n→ p+ e−+ ν̄e, may become as efficient as
the e−e+ pair annihilation. This, besides changing the intensity of the neutrino emission,
would change the initial neutrino-flavor configuration.

It raises naturally the question of the possibility for the neutrinos emitted during the
hypercritical accretion process in XRFs and BdHNe to be detected in current neutrino
observatories. For instance, detectors such as Hyper-Kamiokande are more sensitive to
the inverse beta decay events produced in the detector, i.e. ν̄e + p → e+ + n [see 1, for
more details], consequently, the ν̄e are the most plausible neutrinos to be detected. Liu
et al. [161] have pointed out that for a total energy in ν̄e of 1052 erg and 〈Eν̄e〉 ∼ 20 MeV,
Hyper-Kamiokande would detect neutrinos up to a horizon distance of about 0.6 Mpc. In
the more energetic case of BdHNe we have typically 〈Eν,ν̄〉 ∼ 20 MeV (see Table 3.1) and
a total energy carried out ν̄e of the order of the gravitational energy gain by accretion,
i.e. Eg ∼ 1052–1053 erg. Therefore we expect BdHNe neutrinos to be detectable up
to distances ∼ 0.1–1 Mpc. These order-of-magnitude estimates need to be confirmed
by detailed calculations, including the vacuum oscillations experienced by the neutrinos
during their travel to the detector.

An IGC binary leading either to an XRF or to a BdHNe is a unique neutrino-physics
laboratory in which there are at least three neutrino emission channels at the early stages
of the GRB-emission process: (i) the neutrinos emitted in the explosion of the COcore as
SN; (ii) the neutrinos studied in this work created in the hypercritical accretion process
triggered by the above SN onto the NS companion, and (iii) the neutrinos from fallback
accretion onto the νNS created at the center of the SN explosion. It remains to establish
the precise neutrino time sequence as well as the precise relative neutrino emissivities from
all these events. This is relevant to establish both the time delays in the neutrino signals
as well as their fluxes which will become a unique signature of GRB neutrinos following
the IGC paradigm.
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4. Observational applications for the
IGC scenario for long-GRBs

4.1. Introduction

Gamma-ray bursts (GRBs) are the brightest explosions in the universe with isotropic lu-
minosities between 1047 − 1054 erg s−1. The first GRB was detected by the Vela satellites
on July of 1967, but its discovery was made public until 1973 [146]. Following, with the
launch of the Compton Gamma Ray burst Observatory(CGRO) in 1990 and the observa-
tions by the BATSE detector [173], a phenomenological classification based on the prompt
T90 duration was advanced: GRBs were classified into long GRBs with T90 > 2 s, and
short GRBs with T90 < 2 s [61, 145, 150, 286]. In 1997, for the first time, Beppo-SAX
satellites detected the x-ray afterglow of long GRBs [52] and an accurate localization of
these events allowed also the measurement of their optical/radio counterparts [75, 294].
This discovery made the determination of the GRBs redshift possible and the confirmation
of their cosmological nature, their high energies releases ≈ 1050−1054 erg and their origin
in star forming regions in host galaxies [180]. Beppo-SAX also detected the temporal and
spatial coincidence of GRB 980425 with SN 1998bw [95]. This observation suggested the
connection between GRBs and SNe, and was soon supported by many additional events
[see e.g. 59, 117, 311].

Nowadays, the study of GRBs continues with the detections of Swift [98] and Fermi [6]
missions. The Swift burst alert telescope (BAT), operating in the 15–150 keV energy
band, can detect GRB prompt emissions and accurately determine their position in the
sky within 3 arcmin. Within 90 s Swift can re-point the narrow-field X-ray telescope
(XRT), operating in the 0.3–10 keV energy range, and relay the burst position to the
ground. The Fermi satellite detects ultra-high energy photons from 20 MeV to 300 GeV
with the large area telescope (LAT), and detects photons from 8 keV to 30 MeV with the
gamma-ray burst monitor (GBM).

Long GRBs have been associated with the death of massive stars. It has been assumed
that these event originate from a “collapsar” [33, 166, 200, 310] which, in turn, originates
from the collapse of the core of a single massive star to a BH surrounded by a thick
massive accretion disk [209]; or a “magnetar” [292], powered by the spin-down of a newly-
formed, rapidly-spinning magnetar [321] .

Alternatively, it has been proposed the IGC paradigm as progenitor of long GRBs: a
COcore undergoes a SN explosion in presence of a NS companion in a tight binary system.
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This scenario was shown to be consistent with population synthesis analysis [88, 93]. The
SN explosion induces a hypercritical accretion of its ejecta onto the companion NS, leading
to the formation of a more massive NS, when the NS critical mass Mcrit is not reached, or
to the formation of a BH with the associated GRB emission in the opposite case [see, e.g.,
90, 227]. Two different sub-classes of long bursts originates from this picture, depending
on the distance between the COcore and the NS binary companion (see Chapter 2): the
XRFs, which clearly include low-luminous GRBs, such as GRB 060218 [38], when no BH
is formed, and the BdHNe, such as GRB 130427A [243], when a BH is formed. These
division is in agreement with the considerations by Guetta & Della Valle [107], Liang et al.
[160], Soderberg et al. [271] for a sub-classification of long bursts into low-luminous and
high-luminous GRBs.

The IGC paradigm have been supported by new astrophysical observations: the great
majority of GRBs are related to type Ic SNe, which have no trace of hydrogen and helium
in their optical spectra, and are spatially correlated with bright star-forming regions in
their host galaxies [77, 277]. Most massive stars are found in binary systems [268] where
most type Ic SNe occur and which favor the deployment of hydrogen and helium from the
SN progenitors [269], and the SNe associated with long GRBs are indeed of type Ic [59].
In addition, these SNe associated with long bursts are broad-lined Ic SNe (hypernovae)
showing the occurrence of some energy injection leading to a kinetic energy larger than
that of the traditional SNe Ic [165].

We organized this chapter as follows. We present in Section 4.2 estimates of the expected
luminosities during the hypercritical accretion process. In Section 4.3 we describe the
convective instabilities developed at the accreting NS atmosphere. We show in Section 4.4
the asymmetries that the accreting NS produces on the SN ejecta. In Section 4.5 and
4.6 we resume the principal observational properties and the theoretical interpretation
into the IGC paradigm for the subclasses of long GRBs: XRFs and BdHNe, respectively.
For the case of XRFs in subsection 4.5.3 we show how the radiation from the accretion
process as well as the asymmetries in the ejecta influence the SN emission both in X-rays
and in the optical. For the case of BdHNe, in subsection 4.6.3 we present the results of
the simulation of the interaction of the e+e−-baryon plasma with the high-density regions
of the SN ejecta and associate it as the origin of early X-ray flares in GRBs. Finally in
Section 4.7 we summarize the results of this chapter.

4.2. Accretion Luminosity

If we want to make a comparison with observed light-curves of XRFs and BdHNes systems,
we need to estimate the luminosity produced during the accretion process. The gain of
gravitational potential energy in the accretion process is the total one available to be
released e.g. by neutrinos and photons. The total energy released in the star in a time-
interval dt during the accretion of an amount of mass dMb with angular momentum lṀb,

50



is given by [see, e.g., 14, 265]:

Lacc = (Ṁb − ṀNS)c
2 = Ṁbc

2

[

1−
(

∂MNS

∂JNS

)

Mb

l −
(

∂MNS

∂Mb

)

JNS

]

, (4.1)

where we have used equation (1.35). This upper limit to the energy released is just the
amount of gravitational energy gained by the accreted matter by falling to the NS surface
and which is not spent in changing the gravitational binding energy of the NS. Since
Lacc ∝ Ṁb, it evolves with time similarly to ṀB.

The total energy release in the time interval from t to t + dt, ∆Eacc ≡
∫

Laccdt, is
given by the difference in binding energies of the initial and final NS configurations.
The typical luminosity will be Lacc ≈ ∆Eacc/∆tacc where ∆tacc is the duration of the
accretion process. Lacc is clearly a function of the NS initial mass and the NS critical
mass, Mcrit ∈ [ 2.2, 3.4 ]M⊙ depending of the EOS and the NS angular momentum (see
Appendix A.2).

The duration of the accretion process is given approximately by the flow time of the
slowest layers of the SN ejecta to the NS. If the velocity of these layers is vinner, then
∆tacc ∼ a/vinner, where a is the binary separation. For a ∼ 1011 cm and vinner ∼ 108 cm s−1

we obtain ∆tacc ∼ 103 s, while for shorter binary separation, e.g. a ∼ 1010 cm (P ∼ 5 min),
∆tacc ∼ 102 s, as validated by the results of our numerical integrations shown e.g. in
Figures. 1.3 and 2.1 and see also Appendix A.1.

We have shown in Figure 2.1 the evolution of both the baryonic mass Ṁb and the gravit-
ational mass ṀNS for a specific example. We see that these two quantities show a similar
behavior, therefore we should expect the difference between them, which gives the avail-
able energy to be released (4.1), evolves with time analogously. Besides, we can see that
the NS in the system with P = 5 min accretes ≈ 1 M⊙ in ∆tacc ≈ 100 s. With the aid
of equation (A.13) we can estimate the difference in binding energies between a 2 M⊙

and a 3 M⊙ NS, i.e. ∆Eacc ≈ 13/200(32 − 22) M⊙c
2 ≈ 0.32 M⊙c

2 leading to a maximum
luminosity Lacc ≈ 3× 10−3 M⊙c

2 ≈ 0.1Ṁbc
2.

Such an accretion power could lead to signatures observable in long GRBs [see, e.g.,
90, 137] since it could be as high as Lacc ∼ 0.1Ṁbc

2 ∼ 1047–1051 erg s−1 for accretion rates
in the range Ṁb ∼ 10−6–10−2 M⊙ s−1.

4.3. Convective instabilities

As the material piles onto the NS and the atmosphere radius, the accretion shock moves
outward. The post-shock entropy is a decreasing function of the shock radius position
which creates an atmosphere unstable to Rayleigh-Taylor convection during the initial
phase of the accretion process (see Figure 3.3). These instabilities can accelerate above
the escape velocity driving outflows from the accreting NS with final velocities approaching
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the speed of light [79, 86]. Assuming that radiation dominates (i.e. Ptot = aT 4/3), the
entropy of the material at the base of the atmosphere is [83]:

Sbubble ≈ 16

(

MNS

1.4M⊙

)7/8
(

ṀB

M⊙ s−1

)−1/4
( r

106 cm

)−3/8

, (4.2)

in units of kB per nucleon.

This material will rise and expand, cooling adiabatically, i.e. T 3/ρ = constant, for radi-
ation dominated gas. If we assume a spherically symmetric expansion, then ρ ∝ 1/r3 and
we obtain

kBTbubble = 195S−1
bubble

( r

106 cm

)−1

MeV. (4.3)

However, it is more likely that the bubbles expand in the lateral but not in the radial
direction [79], thus we have ρ ∝ 1/r2, i.e.

Tbubble = T0(Sbubble)
(r0
r

)2/3

, (4.4)

where T0(Sbubble) is given by equation (4.3) evaluated at r = r0 ≈ RNS.

This temperature implies a bolometric blackbody flux at the source from the bubbles

Fbubble = σT 4
bubble ≈ 2× 1040

(

MNS

1.4M⊙

)−7/2
(

ṀB

M⊙ s−1

)

×
(

RNS

106 cm

)3/2
(r0
r

)8/3

erg s−1cm−2 . (4.5)

In Fryer et al. [90] it was shown that the above thermal emission from the rising bubbles
produced during the hypercritical accretion process can explain the early (t . 50 s)
thermal X-ray emission observed in GRB 090618 [137, 138]. In that case Tbubble drops
from 50 keV to 15 keV expanding from r ≈ 109 cm to 6 × 109 cm, for an accretion rate
10−2 M⊙ s−1.

Also, from the above formulas we can explain the blackbody emission observed in XRF
060218 [38]. The observed temperature (kBT ≈ 0.2 keV) and radius of the emitter
(a few 1011 cm) are consistent with the temperature and surface radius of the above
bubbles formed in a system with a NS of initial mass 1.4 M⊙, supernova-progenitor of
MZAMS = 20M⊙, and orbital period 2.5 h: it can be easily checked via equation (4.4) that
for r ∼ 1011 cm and an accretion rate of the order of 10−6 M⊙ s−1, the bubbles would
have a temperature consistent with the one observed in XRF 060218. Further details on
this specific case and additional examples will be presented below.

It is worth mentioning the possibility that, as discussed in Fryer et al. [86], r-process
nucleosynthesis occurs in these outflows. This implies that long GRBs can be also r-
process sites with specific signatures from the decay of the produced heavy elements,
possibly similar as in the case of the kilonova emission in short GRBs [see, e.g., 281, and
references therein]. The signatures of this phenomenon in XRFs and BdHNe, and its
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comparison with kilonovae, deserves to be explored.

4.4. Supernova Asymmetries induced by the NS

Hypercritical accretion: first particle simulation

For isolated SN explosions, or for very wide binaries with negligible accretion rates, the
density of the SN ejecta would approximately follow the homologous evolution given by
equation (1.5) with constant ejecta mass, i.e. Menv(t) =M0

env, i.e. the density will decrease
with time following a simple power-law ρej(t) ∝ t−3n, with n the expansion parameter,
keeping its spherical symmetry about the explosion site (see, e.g., Figure 4.1). However,
for explosions occurring in close binaries with compact companions such as NSs or BHs,
the SN ejecta is subjected to a strong gravitational field which produces at least two
non-negligible effects: 1) an accretion process on the NS that subtracts part of the ejecta
mass, and 2) a deformation of the SN fronts closer to the accreting NS companion. As
we show below, the conjunction of these effects can generate large changes in the density
profile of the ejecta in a region around the orbital plane.

In order to visualize the above effects we have simulated the evolution of the SN layers
in presence of the NS during the accretion process (see Figures 4.1 and 4.2). Thus,
we followed the three-dimensional motion of N particles in the gravitational field of the
orbiting NS. We consider the gravitational field of the NS on the SN ejecta including
the effects of the orbital motion as well as the changes in the NS gravitational mass as
described above in Chapters 1 and 2 via the Bondi-Hoyle formalism. The SN matter is
described as formed by point-like particles whose trajectory was computed by solving the
Newtonian equation of motion:

d2~rsn(t)

dt2
= −GMNS(t)

~rsn(t)− ~rNS(t)

|~rsn(t)− ~rNS(t)|3
. (4.6)

We have also performed SPH simulation of this process (see next Chapter). The initial
conditions of the SN ejecta are computed assuming the SN layers move via homologous
velocity distribution in free expansion (i.e. evolving with n = 1). The initial power-
law density profile of the CO envelope is simulated by populating the inner layers with
more particles, as follows. The total number of particles is N = Nr × Nθ × Nφ and
for symmetry reasons, we simulate only the north hemisphere of the SN; thus the polar
and azimuthal angles are divided as ∆θ = (π/2)/Nθ and ∆φ = 2π/Nφ, respectively.
For the radial coordinate we first introduce the logarithmic coordinate x = log(r) and
∆x = (xs−xc)/Nr, where xs = log(Rstar) and xc = log(Rcore). Thus,the thickness of each
layer is ∆r = ri(10

∆x− 1), where ri is the location of the layer. The mass of each particle
of the i-layer is: mi = 4πr3i ln(10)∆xρ(ri)/(2NθNφ).

Let us assume, for the sake of example, the MZAMS = 30 M⊙ progenitor of table 1.1
which gives a COcore with envelope profile ρ0ej ≈ 3.1 × 108(8.3 × 107/r)2.8 g cm−3 and
R0

star = 7.65 × 109 cm. This implies that, for a total number of N = 106 particles in
the simulation, the particles of the innermost radius ri = Rcore = 8.3 × 107 cm with
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density ρ0ej(ri) = 3.1 × 108 g cm−3 have mass mi ≈ 2 × 10−5 M⊙ while, the particles of
the outermost radius ri = R0

star, would have mi ≈ 6 × 10−6 M⊙. In addition, we assume
that particles crossing the Bondi-Hoyle radius are captured and accreted by the NS so
we removed them from the system as they reach that region. We removed these particles
according to the results obtained from the numerical integration of equation (1.8).

Figure 4.1 shows in detail the orbital plane of an IGC binary at selected times of its
evolution. The NS has an initial mass of 2.0 M⊙; the COcore is the one obtained by
the MZAMS = 30 M⊙ progenitor (see Table 1.1), which leads to a total ejecta with mass
7.94 M⊙ and an iron core that left a νNS of 1.5 M⊙. The orbital period of the binary is
P ≈ 5 min, i.e. a binary separation a ≈ 1.5× 1010 cm, and we have adopted an angular
momentum transfer efficiency parameter ξ = 0.5. The evolution of the accretion rate and
the gravitational mass of the NS in this system are the ones shown in Figure 2.1. As it
can be seen, for the above parameters the NS reaches the critical mass and collapses to
form a BH (see also Figure 2.2).

In the simulation shown in Figure 4.1 we adopted two millions of particles per solar
mass of ejecta so in this simulation we have followed the three-dimensional motion of
N = 2× 106(M0

env/M⊙) ≈ 1.6× 107 particles in the gravitational field of the orbiting NS.
To estimate the ejecta density we have chosen a thickness ∆z around the orbital plane.
For the plots in Figure 4.1 we have adopted ∆z ≈ 0.05a ≈ 7.1× 108 cm.

The left upper panel shows the binary at the initial time of the process, i.e. t = t0 =
R0

star/vstar,0 = 3.82 s, the first instant of the ejecta radial expansion.

The right upper panel shows the instant at which the accretion process begins, namely
at t = tacc,0 ≈ a/v0,star = 7.7 s. Owing to their fast velocity, the accretion rate of the first
layers is low and they escape almost undisturbed, so the SN ejecta at these times keeps
its original spherical symmetry.

The left lower panel shows the binary at the instant in which the accreting NS reaches the
critical mass, hence the instant of formation of the BH, at t = tcoll = 254 s ≈ 0.85P . The
BH mass is thus set by the critical NS mass, i.e. MBH = Mcrit ≈ 3 M⊙ (see Figure 2.1).
This figure also evidences the asymmetry on the SN density as induced by the presence of
the companion and its increasing gravitational field due to the ongoing accretion process
onto it. Indeed, it can be seen how the SN ‘center’ has been shifted from the explosion site
originally at the (0, 0) position (see left upper panel), to the approximate position (0, 2).
Thus, the layers of the ejecta are displaced as a result of the gravitational attraction of the
orbiting NS. This can be understood as follows. When the NS passes over the northern
hemisphere, it attracts the northern region of the ejecta towards it. Consequently, that
part of the ejecta gain velocity in the northern direction. The same effect occurs in the
other regions of the orbit, however the effect is asymmetric because, by the time the NS
passes, say over the southern hemisphere, it attracts layers moving at slower velocity with
respect to the ones it had attracted in the northern hemisphere before. The reason for this
is that the southern fastest layers have moved further already while the NS were passing
the northern side. This effect is indeed incorporated in our simulation which follows the
trajectory of each of the 14 million particles.
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Figure 4.1.: Snapshots of the IGC binary system and the SN
ejecta density at selected times of the evolution. In this ex-
ample we have adopted the MZAMS = 30 M⊙ progenitor with
an ejecta mass of 7.94M⊙ and a core that left a νNS of 1.5M⊙.
We assume homologous evolution of the SN ejecta with ex-
pansion parameter n = 1 and ejecta outermost layer velocity
v0star = 2 × 109 cm s−1. For the NS we adopt an initial mass
2.0 M⊙. The binary has an orbital period P ≈ 5 min, i.e. a
binary separation distance a ≈ 1.5 × 1010 cm. The coordin-
ate system is centered on the νNS born in the SN: it is here
represented with a white-filled circle located at (0, 0). The
NS, represented by the gray-filled circle, is orbiting counter-
clockwise and its trajectory is indicated with a thin-dashed
circle. The colorbar indicates values of ejecta density. We
have chosen a thickness ∆z around the orbital plane to es-
timate the ejecta density: ∆z ≈ 0.05a ≈ 7.1 × 108 cm for
all these figures. Left upper panel: initial time of the process,
t = t0 = R0

star/vstar,0 = 3.82 s. The SN ejecta starts to expand
radially outward and the NS is located at the position (a, 0).
Right upper panel: beginning of the accretion process, i.e. pas-
sage of the first SN ejecta layers through the NS gravitational
capture region. Thus, this time is t = tacc,0 ≈ a/v0,star = 7.7 s.
Left lower panel: instant when the NS reaches, by accre-
tion, the critical mass and collapses to a BH. This occurs at
t = tcoll ≈ 254 s ≈ 0.85P . The BH, here represented by the
black-filled circle, has a mass set by the critical NS mass, i.e.
MBH = Mcrit ≈ 3 M⊙. It can be seen here the asymmetry
of the SN ejecta density induced that have been generated by
the nearby presence of the NS and the accretion process onto
it. Right lower panel: system 100 s after the BH formation,
namely t = tcoll +100 s = 354 s ≈ 1.2P . This figure shows the
new binary system composed by the νNS [white-filled circle at
the (0, 0) position] out of the SN, and a BH [at the (0.5, 1.7)
position] out of the gravitational collapse of the NS due to
the hypercritical accretion process. The asymmetry of the SN
ejecta is now even larger than the one showed by the left lower
panel figure. The asymmetry of the SN ejecta is such that its
‘center’ has been displaced, from the explosion site originally
at the position (0, 0), to the approximate position (0, 2), due
to the action of the orbiting NS.
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Figure 4.2.: Snapshot of an IGC binary system analogous to the one of Figure 4.1 but with an orbital
period of P ≈ 50 min (i.e. binary separation a ≈ 7× 1010 cm). In this case the accreting NS (gray-filled
circle), which is orbiting counterclockwise (thin-dashed circle), does not collapse to the BH. The νNS
left by the supernova is represented by the white filled circle at the position (0, 0). It is clear from this
figure the asymmetry of the supernova ejecta: indeed the supernova ‘center’ has been displaced, from the
explosion site originally at the position (0, 0), to the approximate position (0, 9), due to the action of the
orbiting NS. The snapshot corresponds to a time t = 2667 s ≈ 44 min, which corresponds to roughly 1/4
the total accretion process. To estimate the ejecta density we have adopted ∆z = 0.08a ≈ 5.3× 109 cm.

It can be also seen in this figure a stream of matter (one-armed flow) of negligible mass
with respect to the total mass escaping from the system. As we have mentioned above,
the NS attracts some layers increasing their velocity. As a result some material can reach
escape velocity to leave the binary system forming this unbound debris. The appearance
of a one-armed flow (instead of two-armed flows) is because the center-of- mass is located
roughly at the COcore position, thus the NS is in practice orbiting the COcore. If the
two masses were of comparable masses, (e.g. as in the case of binary NS mergers), they
would move around a common center-of-mass lying in between them. In such systems the
momentum transfer is more symmetric leading to a symmetric two-armed flow structure.
The one-armed flow in our system is, in this sense, more similar to the one that appears
in the tidal disruption of a small body by a supermassive BH.

The right lower panel shows the system 100 s after the BH formation, namely at t =
tcoll + 100 s =354 s ≈ 1.2P . Thus, this figure shows the new binary system formed by
the νNS, out of the SN, and the BH from the gravitational collapse of the NS. The νNS
is at the (0, 0) position and it is represented by the white filled circle. The BH is in this
instant of time located at the (0.5, 1.7) position and it is represented by the black filled
circle. It can be seen the increasing asymmetry of the SN ejecta around the orbital plane.
We note the presence of ejecta in the vicinity of the newly formed BH, the latter sited at
the approximate position (0.5, 1.5). It is interesting that part of these ejecta can indeed
cause a subsequent accretion process onto the newly formed BH. The possible outcomes
of this process deserve further attention.

56



We have shown above the evolution of an IGC binary with very short orbital period of
P ≈ 5 min, for which it occurs the gravitational collapse of the NS of the COcore. Besides
the formation of a BH, we have evidenced the asymmetry caused by the presence and
accretion onto the NS on the SN ejecta density. It is natural to ask if these asymmetries
also appear for less compact binaries. For comparison, we show in Figure 4.2 the results of
a numerical simulation for a binary with orbital period P ≈ 50 min, in which the NS does
not reach the critical mass during the entire accretion process (see Chapter 2, specifically
Section 2.2). The evolution of the accretion rate and the gravitational mass of the NS in
this system are shown in Figure 2.1.

In these kind of systems, all the ejecta layers passed the NS position. Thus, the total
duration of the accretion process, denoted here tacc, is approximately given by the time
it takes to the innermost layer of the ejecta to overcome the NS position, i.e. tacc ≈
a/vinner, where vinner = (R̂core/R

0
star)vstar,0 using the homologous expansion assumption.

The snapshot corresponds to a time t = 2667 s ≈ 44 min ≈ tacc/4. To estimate the ejecta
density we have chosen in this example ∆z = 0.08a ≈ 5.3 × 109 cm. It is interesting
that although the NS is in this case farther away from the COcore, it still induces a high
asymmetry on the SN ejecta. We shall investigate elsewhere if this mechanism could
explain the asymmetries observed in some type Ibc SNe [see, e.g., 279, 282].

4.5. X-ray Flashes (XRFs)

4.5.1. Observational feactures

In Table 2 in [246] has been listed some XRFs. Below, we listed the main general properties
of these events:

• The upper limit on the energetic of the XRFs is (7.3± 0.7)× 1051 erg as measured
in GRB 110106B.

• The isotropic energies are in the range (6.4±1.6)×1047 . Eiso . (7.3±0.7)×1051 erg
[see 2, 243].

• The spectral peak energies are in the range 4 . Ep,i . 200 keV [see 2, 243] and
increase monotonically with Eiso.

• The cosmological redshifts are in the range 0.0085 ≤ z ≤ 1.096, with an average
value of ≈ 0.43 (see Table 2 in [246]).

• The prompt emission phase has a duration ranging between ∼ 102–104 s (see Fig-
ure 4.3) with a spectrum generally characterized by a thermal component and power-
law component. The radii of the thermal emitter are in the range of 1010–1012 cm
and the temperatures vary in the range of 0.1–2 keV [see, e.g., 38], depending on
the values of the binary period and separation of the progenitor systems.

• The long lasting X-ray afterglow does not exhibit any specific common late power-
law behavior (see Figure 4.3).
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Figure 4.3.: Observed 0.3–10 keV XRT light-curves of some XRFs.

• For all XRFs at z . 1, an optical SN with a luminosity similar to the one of SN
2010bh [35], occurs after 10–15 days in the cosmological rest-frame.

• No high energy emission has ever been observed.

In Figure 4.3 we reproduce the rest-frame 0.3–10 keV luminosity light curves of three
selected XRFs: GRB 060218 associated with SN 2006aj [38, 271], GRB 061110A [71, 72],
and GRB 101219B [71, 72] associated with SN 2010ma [272].

4.5.2. Theoretical interpretation

In the IGC paradigm an XRF occurs when the COcore-NS binary separation, a, is so large
(typically a > 1011 cm, see Chapter 2) that the accretion of the SN ejecta onto the NS is
not sufficient for the NS to reach Mcrit. In Chapter 2, we anticipate that this happen for
systems with P > Pmax, being Pmax the maximum value of the orbital period for which
the NS collapses to a BH (e.g. Pmax ≈ 28 min for a NS with initial mass of 1.4 M⊙).

The hypercritical accretion of the SN ejecta onto the NS binary companion occurs at rates
< 10−2 M⊙ s−1 and can last from several hundreds of seconds all the way up to ∼ 104 s,
until the whole SN ejecta flies beyond the NS binary orbit. The photons are trapped in
the accreting material and the accretion energy is lost through a large associated neutrino
emission [see, e.g., 90, 227, 239, 319, and see Chapter 3].

The resulting emission, dubbed Episode 1, exhibits a spectrum composed of a thermal
component, possibly originating from the outflow within the NS atmosphere driven out
by Rayleigh-Taylor convection instabilities (see section 4.3), and a power-law component.
The shorter the binary period, the larger the accretion rate (see Appendix A.1) and the
values of Eiso and Ep,i, and correspondingly the shorter the prompt emission duration (see
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Figure 4.4.: Left panel: Evolution of the temperature (upper panel) and the surface radius (lower panel)
of the rising entropy bubbles, compared with the thermal emission observed in GRB 060218. Right panel:

comparison between the theoretical luminosity (accretion and rising bubbles) and the luminosity of GRB
060218. The orbital period of the system is 2.5 h and the data of GRB 060218 is taken form Campana
et al. [38].

Figure 4.3). The excess of angular momentum of the system necessarily leads to a jetted
emission, manifested in the power-law spectral component (see Chapter 1).

Let us apply now the model presented in Section 4.3 to the case of GRB 060218. Figure 4.4
compares the observed temperature and radius of the blackbody emission observed in GRB
060218 [38] with the temperature and surface radius evolution of the entropy bubbles in
the system with a NS of initial mass 1.4M⊙, SN-progenitor of MZAMS = 15M⊙, and
orbital period 2.5 h. In this example the radius expansion is consistent with an expansion
law r ≈ r0(t = t0)

2/5 and the dimensionality of the bubbles geometry is D = 1.7. Indeed
in the IGC simulations the typical radii inferred from the evolving thermal component
coincide with the observed ones of 1010–1012 cm. In the right panel of Figure 4.4 we
compare and contrast our prediction of the luminosity with the observed luminosity of
GRB 060218.

In the IGC paradigm the in-state is represented by an exploding COcore and a companion
NS. The out-state is multiple system composed of a massive NS, resulting from the accre-
tion of part of the SN ejecta onto the binary companion NS, a νNS, originating from the
SN event, and the remaining part of the SN ejecta shocked by the hypercritical accretion
emission of the XRF. This energy injection into the SN ejecta leads to the occurrence of
a broad-lined SN Ic [hypernova, see, e.g., 170] with a kinetic energy larger than that of
the traditional SNe Ic. The presence of 56Ni in the SN ejecta leads to the observed SN
emission after ≈ 10–15 days in the cosmological rest-frame which is observable for sources
at z . 1.

Clearly the absence of hard γ-ray and GeV emissions is implicit in the nature of the
hypercritical accretion process not leading to a BH and the corresponding rate of neutrino
emission.
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4.5.3. Influence of the Hypercritical accretion on the SN emission

In Figure 4.5 we compare and contrast the luminosity expected from the accretion process
given by equation (4.1) and from the accretion-powered SN, with the observed X-ray
luminosity of XRF 060218. The parameters characterizing the binary are: orbital period
of 2.5 h, SN velocity vstar,0 = 2 × 109 cm s−1, a pre-supernova core obtained from the
MZAMS = 20 M⊙ evolution which leads to a COcore envelope mass ∼ 4 M⊙ (see table 1.1),
and initial NS mass MNS(t0) = 1.4 M⊙. For these binary parameters, the NS does not
collapse to a BH, in agreement with the fact that XRFs, as GRB 060218, should be
explained by these kind of binaries. The duration of the accretion is shorter than the
one of the long-lasting X-ray emission (at times t ∼ 103–106 s). We shall show such a
long-lasting emission can be explained from the SN powered by the prompt radiation.

We now analyse the emission of the SN at early stages. Traditionally, the SN shock breaks
out of the star producing a burst of X-ray emission which, in a spherically symmetric
model, behaves as a sharp rise and equally fast decay as the forward shock cools. However,
in our models, the SN shock has distinct asymmetries caused by the accretion onto the NS
(see Figures 4.1–4.2). In addition, the X-rays emitted from this hypercritical accretion add
energy to the explosion. To calculate the shock breakout luminosity, we use the simplified
light-curve code described in Bayless et al. [11] and de la Rosa et al. [58]. This code
assumes homologous outflow for the ejecta velocities, modelling the radiative transport
using a single group diffusion scheme with prescriptions for recombination opacities and
energies. Energy released in the accretion onto the NS is injected as an energy source
at the base of the explosion. Because these calculations are 1-dimensional, we mimic the
asymmetry in the explosion by modelling a series of spherical explosions with different
densities. Each of these densities produces a different light-curve with the more massive
models producing later shock breakout times.

For GRB 060218, our model assumes an initial explosion energy of 2×1051 erg, ranging the
spherical equivalent-mass from 0.05–4 M⊙. Figure 4.5 shows light-curves rising quickly
at t . 104 s for the lowest mass to ∼ 105 s for the 4 M⊙ explosion. This maximum mass
corresponds to the ejecta mass from our supernova. The corresponding COcore mass of our
progenitor is this ejecta mass plus the mass of the νNS, roughly 5.4 M⊙. It is possible that
the mass is slightly larger for our progenitors, and the emission from the breakout could
be longer, but peak X-ray emission from shock breakout beyond a few times 105 s will be
difficult to achieve. The observed emission would come from the sum of this full range
of explosions. The close match of our models (fitted to our expected progenitor mass)
to this X-ray plateau demonstrates that this sequence of shock breakouts is certainly a
viable and natural explanation for this emission (see Figure 4.5).

We have shown that the X-ray plateau in the afterglow is powered almost entirely by a
sequence of shock breakouts and the expanding photosphere. We turn now to the optical
emission which is more complex. The optical emission can be powered by the expanding
photosphere, 56Ni decay and the energy deposited by the accreting NS. For GRB 060218,
the light-curve in the optical and UV exhibits a double-peaked structure suggestive of
multiple power sources and, using our light-curve code, we can test out different scenarios.
Just like the X-ray, geometry effects will modify the optical light-curve. Here we merely
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Figure 4.5.: Comparison of the accretion luminosity given by equation (4.1) and the SN luminosity with
the observed X-ray luminosity of GRB 060218. The binary system has the following parameters: SN
velocity v0star = 2 × 109 cm s−1, a pre-supernova core obtained from the MZAMS = 20 M⊙ evolution
(see table 1.1), initial NS mass MNS(t0) = 1.4 M⊙, and orbital period of 2.5 h. In this example the
initial explosion energy is 2× 1051 erg, ranging the spherical equivalent-mass from 0.05–4 M⊙. It can be
seen that at early times t . 104 s the luminosity is dominated by the accretion process. The SN X-ray
light-curves rise quickly at t ≈ 104 s for the lowest mass, to t ∼ 105 s for the 4 M⊙ explosion, which
corresponds to total ejecta mass from our SN.

2 3 4 5 6 7
log[t (s)]

42.0

42.5

43.0

43.5

44.0

lo
g[
L

op
t
(e

rg
s−

1
)]

V
B
with accretion source
no accretion + high Ni mass
no accretion + small Ni mass

Figure 4.6.: Optical and UV luminosity of GRB 060218 [207]. The light-curve shows a double-peaked
structure. The red dotted curve shows the SN optical emission without either 56Ni decay or accretion
energy; it can be seen that it explains only the first peak. The blue solid curve includes the energy
deposition from the accretion onto the NS (which is a power source of 4 × 1046 erg s−1 over a 2500 s
duration). This simulation reproduces both the first peak at ∼ 50, 000 s as well as the second peak at
∼ 500, 000 s. The dashed green curve shows that a second peak can also be produced without accretion
power by increasing the total 56Ni yield. However, even if we assume half of the total ejecta is 56Ni, the
produced second peak cannot explain the observational data.
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probe the different emission mechanisms to determine the viability of each to explain the
GRB 060218 optical light-curve.

Figure 4.6 shows the V and B band light-curves for GRB 060218 [207]. The light-curve in
both bands peaks first near 50,000 s and then again at 500,000 s. Using our 1M⊙ 1D model
from our X-ray emission, we simulate the V and B band light-curves. Without either 56Ni
decay or accretion energy, the SN explosion only explains the first peak. However, if we
include the energy deposition from the accretion onto the NS (for our energy deposition,
we use 4× 1046 erg s−1 over a 2500 s duration), our simulations produce a second peak at
roughly 500,000 s. A second peak can also be produced by increasing the total 56Ni yield.
However, even if we assume half of the total ejecta is 56Ni, the second peak remains too
dim to explain the observations.

The accretion energy in our model provides a natural explanation for the double-peaked
features observed in the optical emission of GRB 060218. However, our simple model
makes a series of approximations: e.g., we use gray transport, estimating the V and
B emission assuming a blackbody, we assume the opacities are dominated by electron
scattering, etc. Our simplified picture cannot reproduce accurately the first slowly rising
part of the optical data which can be due to a combination of 1) the low-energy tail of the
X-ray bubbles and 2) the geometry asymmetries which, just like for the X-rays, cause 1D
effective mass ejecta to be lower along some lines of sight leading to some optical emission.
The simulation of these details are out of the scope of the present article and will be the
subject of future simulations. We have shown that, although approximate, the accretion
mechanism can power the observed GRB 060218 light-curve.

4.6. Binary-driven Hypernovae (BdHNe)

4.6.1. Observational features

In table 3 of [236] can be found a list of BdHNe. Below we list their observational
properties:

• The lower limit on the energetic of the BdHNe is (9.2± 1.3)× 1051 erg as measured
in GRB 070611.

• The observed isotropic energies are in the range (9.2± 1.3)× 1051 . Eiso . (4.07±
0.86)× 1054 erg [see 2, 243] and are in principle dependent on the NS mass.

• The spectral peak energies are in the range 0.2 . Ep,i . 2 MeV [see 2, 243] and
increase monotonically with Eiso.

• The cosmological redshifts are in the range 0.169 ≤ z ≤ 9.3, with an average value
of ≈ 2.42 (see Table 3 of [236].

• The prompt emission phase of BdHNe exhibits a more complex structure than that
of XRFs (see Figure 4.7). Indeed three different regimes are found:
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Figure 4.7.: Left: Count light curve of GRB 090618 obtained from Fermi GBMdetector, with a bin time
of 1 s, and showing two-episode nature of the GRB. Right: Rest-frame 0.3-10 KeV luminosity light curve
of selected BdHNe. All these sources exhibit the overlapping of the late power-law decay, outlined in
[210] and a nested structured as outlines in [242]. Reproduced from [211]

a) A thermal emission with a decreasing temperature following a broken power-
law behavior, and an additional non-thermal spectral component (a power-
law), dominate the early emission in selected BdHNe [see, e.g., 138]. The
existence of this thermal component was first identified in the GRB BATSE
data by Ryde [248, 249]. It has been then shown to occur in the case of BdHNe
as GRB 090618 [138], GRB 101023 [204], GRB 110709B [203], and GRB 970828
Ruffini et al. [245]. The characteristic radii inferred from the cooling thermal
component are of the order of 109–1010 cm and the average expansion speed is
∼ 108–109 cm s−1.

b) This early emission is followed by the characteristic GRB emission, encom-
passing a thermal precursor, the P-GRB [237, 238], followed by the prompt
emission [230, 232, 236].

c) The prompt emission is followed by a steep decay, then by a plateau and a late
power-law decay (flare-plateau-afterglow (FPA) phase [247]). These features
have been first reported in Nousek et al. [199] and Zhang et al. [320].

• The late decay has typical slopes of −1.7 . αX . −1.3 [210] and shows a character-
istic power-law behavior both in the optical and in X-rays. When computed in the
source cosmological rest-frame, the late power-law decay in X-rays exhibits new fea-
tures: overlapping and nesting (see Figure 4.7). Overlapping has been proven in a
sample of six BdHNe: GRBs 060729, 061007, 080319B, 090618, 091127, and 111228,
[136, 210]. The nested property of the BdHNe has been discussed in Ruffini et al.
[242], where it has been shown that the duration (the luminosity) of the plateau
phase is inversely (directly) proportional to the energy of the GRB emission.

• For all BdHNe at z . 1, an optical SN with a luminosity similar to the one of SN
1998bw [95], occurs after 10–15 days in the cosmological rest-frame.

• A distinctive high energy emission observed up to 100 GeV shows a luminosity light
curve following a precise power-law behavior with index ≈ −1.2 [193]. The turn-
on of this GeV emission occurs after the P-GRB emission and during the prompt
emission phase.
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4.6.2. Theoretical interpretation

In the IGC paradigm a BdHNe occurs when the COcore-NS binary is more tightly bound
(a . 1011 cm). The larger accretion rate of the SN ejecta, e.g., & 10−2–10−1 M⊙ s−1,
leads the companion NS to easily reach its critical mass Mcrit [90, 227, and see Chapter 1],
leading to the formation of a BH.

The electrodynamical conditions encountered in the final accretion phase explain the
existence of a vacuum polarization process leading to the creation of an e+e− plasma
and to the formation of a Kerr-Newman BH. For the sake of clarity and independence
on the physical regime encountered, the activities of the BdHNe have been divided in a
numbered set of distinct Episodes.

Episode 1 of BdHNe originates in the same hypercritical accretion process as the cor-
responding one of XRFs. The corresponding spectrum exhibits an expanding thermal
component and a power-law function [138, 245].

Episode 2 corresponds to the GRB emission that coincides with the BH formation and
leading to the vacuum polarization process and the creation of an e+e− plasma. For
its theoretical description has been adopted the fireshell model [see 233–235]. The GRB
emission occurs at Lorentz factor at the transparency of Γ = 102–103 [138, 245] and the
spatial extension of the interaction of the fireshell with the circumburst medium goes all
the way up to ∼ 1016–1017 cm, reached at the end of Episode 2 [138]. The BdHNe have
Eiso & 1052 erg and their Ep,i & 200 keV is in the hard γ-ray domain.

Episode 3 in BdHNe originates from the SN ejecta [243]. In this case an extra energy
injection is delivered by the interaction of the GRB outflow with the SN ejecta resulting
in an isotropic energy emission of 1051–1052 erg. This interaction produces a flare at the
beginning of Episode 3 (typically at a rest-frame time of ∼ 102 s) with the typical signature
of an expanding thermal component in its spectrum. The radii inferred from this thermal
component are ∼ 1012–1013 cm and their evolution reveals a mildly relativistic expansion
at Γ ≈ 2 [242, 243]. In particular, the X-ray flare can be modeled by considering the
impact of the GRB on the SN ejecta and the propagation of the optically thick e+e−

plasma into a medium largely baryon-contaminated (see section below).

Episode 4, as predicted in the IGC paradigm and in analogy to XRFs, corresponds to
the optical SN emission observable in all BdHNe at z . 1 after ≈ 10–15 days in the
cosmological rest-frame. It is remarkable that these SNe have a standard luminosity, like
the one of SN 1998bw [see, e.g., 175].

Also for BdHNe the in-state is composed of an exploding COcore and a companion NS.
The out-state is again multiple system. First, there is a GRB composed of the P-GRB
and its prompt emission. Then there is a newly-formed BH, produced by the hypercritical
accretion of part of the SN ejecta onto the binary companion NS reaching Mcrit. Again,
there is a νNS originating from the SN explosion. Finally, there is the remaining part
of the SN ejecta shocked by the GRB emission. The energy injection into the SN ejecta
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from both the hypercritical accretion phase and the GRB emission leads also in this case
to the occurrence of a broad-lined SN Ic [hypernova, see, e.g., 170] with a kinetic energy
larger than that of the traditional SNe Ic.

4.6.3. Interaction of GRB on the SN ejecta in BdHNe

In Ruffini et al. [247] has been studied the early X-ray flares in the afterglow of GRBs
observed by Swift-XRT. The x-ray flares only occurred in BdHNe. After analysing a
sample of 16 GRBs (which have a well-determined early X-ray flare structure), they
found that the X-ray flare peak luminosity in the cosmological rest frame, their duration,
energy, X-ray luminosity are correlated with the GRB Eiso. Additionally, it was shown
that the x-ray flare occurs at radii ∼ 1011−1012 cm and expands with a mildly-relativistic
Lorentz factor (Γ . 4) and a black body flux from 1% to 30% of the total GRB flux.

The possibility that the energy of the X-ray flare component originates from a fraction of
the e+e− plasma energy interacting with the much denser medium of the SN ejecta with
10 . B . 102 was also examined in [247] [see also 176]. This was done, performing hy-
drodynamical simulations of the expansion of an initially pure e+e− plasma with Γ ∼ 100
through the SN ejecta using the 1-dimensional relativistic hydrodynamical (RHD) module
included in the freely available PLUTO1 code [181]. It was assumed spherical symmetry
and adopted a single-fluid approach, where all the involved particle species (baryons,
photons, electrons and positrons), are in local thermodynamic equilibrium (LTE).

The simulation was initialized using as initial conditions the results of the simulation
showed in Figure 4.1 , that corresponds to a system where the NS reaches the critical
mass and collapse to a BH. Figure 4.8 shows the SN ejecta mass that is enclosed within
a cone of 5 degrees of semi-aperture angle, whose vertex is at the position of the BH at
the moment of its formation (see Figure 4.1), and whose axis is along various directions
measured counterclockwise with respect to the line of sight. We can see from this plots
how the e+e− plasma engulfs different amounts of baryonic mass along different directions
due to the asymmetry of the SN ejecta created by the presence of the NS binary companion
and the accretion process onto it (see Section 4.4). Additionally, the initial conditions for
the e+e− plasma were chosen consistent with those of the BdHNe. At the initial time,
the e+e− plasma has Ee+e− = 3.16× 1053 erg, a negligible baryon load and is distributed
homogeneously within a region of radii on the order of 108–109 cm.

The evolution from these initial conditions leads to the formation of a shock and to its
subsequent expansion until reaching the outermost part of the SN. Here, we present the
results obtained in Ruffini et al. [247]. In the left panel of Figure 4.9 it is shown the radial
distribution profiles of the velocity and mass density ρlab in the laboratory frame inside
the SN ejecta as a function of r for B = 200 at two selected values of the laboratory time.
The velocity distribution peaks at the shock front (with a Lorentz gamma factor Γ . 4),
and behind the front it is formed a broad tail of accelerated material with 0.1 . β . 1.

1http://plutocode.ph.unito.it/
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Figure 4.8.: The SN ejecta mass enclosed within a cone of 5 degrees of semi-aperture angle, whose vertex
is at the position of the BH at the moment of its formation (see the lower left panel of Figure 4.1), and
whose axis is along various directions measured counterclockwise with respect to the line of sight. The
vertical axis on the right side gives, as an example, the corresponding value of the baryon loading B
assuming a plasma energy of Ee+e− = 3.16× 1053 erg.
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Figure 4.9.: Left: Distribution of the velocity inside the SN ejecta (above) and the the mass density of
the SN ejecta in the laboratory frame ρlab (below) at the two fixed values of the laboratory time: t1
(before the plasma reaches the external surface of the ejecta) and t2 (the moment at which the plasma,
after having crossed the entire SN ejecta, reaches the external surface). These particular profiles are
made using a baryon load B = 200. The dashed vertical lines corresponds to the two values of the
transparency radius Rph. In particular, we see that at t1 the shock front did not reach Rph yet and
the system is optically thick. Right: Lorentz Γ factor at the transparency radius Rph as a function of
the laboratory time for Ee+e− = 3.16 × 1053 erg and various selected values of the B parameter. Such
B values correspond to the expansion of the e+e− plasma along various selected directions inside the
remnant (see Figure 4.8). Along the red curve, corresponding to B = 200, there is marked the laboratory
time instant t2 represented in the right panel (at t1 the plasma did not reach Rph yet). We see that
these results are in agreement with the Lorentz gamma factor Γ . 4 inferred from the thermal emission
observed in the flare.
NOTE — Figures taken from Ruffini et al. [247]
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The right panel of Figure 4.9 shows the Lorentz Γ factor at the transparency radius Rph,
namely the radius at which the optical depth τ , calculated from the observer’s line of
sight, is equal to 1. If we assume to have a constant cross section, τ becomes Lorentz
invariant, and therefore we can compute it in laboratory coordinates in the following way:

τ =

∫ ∞

Rph

dr σT ne−(r), (4.7)

where σT = 6.65 × 10−25 cm2 is the Thomson cross section, and the electron density is
related to the baryon mass density by means of the formula ne− = ρΓ/mP , where mP is
the proton mass.

The relativistic expansion of an initially pure e+e− plasma interacting with a SN ejecta
with the above-described induced asymmetries (see Figure 4.1), leads to the formation of
a shock that reaches the outermost part of the ejecta with Lorentz gamma factors at the
transparency radius Γ(Rph) . 4. This is in striking agreement with the one inferred from
the thermal component observed in the flares [see 247].

4.7. Conclusions and perspectives

In this chapter, we have studied the observational properties of the XRFs and the BdHNe
within the IGC paradigm. In the XRFs, the hypercritical accretion is not sufficient to
push the NS beyond its Mcrit while in the BdHNe the hypercritical accretion process
triggers the gravitational collapse of the NS into a BH.

We have computed the luminosity during the hypercritical accretion on the NS and shown
that the presence of the NS in very compact orbit produces large asymmetries in the SN
ejecta around the orbital plane (see Figures 4.1 and 4.2). These asymmetries are the
combined effect of the accretion and of the action of the gravitational field of the NS on
the SN layers. The SN asymmetries lead to observable effects in the SN emission.

In the case of XRFs, we have shown how the radiation during the continuous accretion
process affects the SN emission both in X-rays and in the optical. The shocked material
becomes transparent at different times with different luminosities along different directions
owing to the asymmetry created in the SN ejecta by the orbiting and accreting NS (see
Figures 4.1 and 4.2). The sequence of shock breakout luminosities are thus influenced
by the asymmetries in the explosion: the light-curve produced along the more massive
directions produce later shock breakout times. We have shown that the observed long-
lasting, t > tacc, afterglow X-ray emission observed in XRFs can be powered by this
mechanism and the early emission (t < 103 s) is powered by the accretion luminosity. We
presented a specific example of GRB 060218 (see Figure 4.5).

The X-rays emitted from the accretion add energy to the SN explosion. We have simulated
the optical emission of the SN and compared and contrasted our theoretical expectation
with the optical luminosity of XRF 060218 which shows a peculiar double-peaked shape.
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Table 4.1.: Summary of the long GRB subclasses (XRFs, BdHNe and BH-SN) and of their observational
properties. In the first three columns we indicate the long GRB subclasses and their corresponding in-

states and out-states. In the following columns we list the ranges of T90 in the rest-frame, rest-frame
spectral peak energies Ep,i and Eiso (rest-frame 1–104 keV), the isotropic energy of the X-ray data Eiso,X

(rest-frame 0.3–10 keV), the isotropic energy of the GeV emission Eiso,GeV (rest-frame 0.1–100 GeV), the
maximum observed redshift zmax and the local observed number density rate ρGRB obtained in [246]

Subclass In-state Out-state T90 Ep,i Eiso Eiso,X Eiso,Gev zmax ρGRB

(Progenitor) (Outcome) (s) (MeV) (erg) (erg) (erg) (Gpc−3yr−1)

XRFs COcore-NS νNS-NS ∼ 2–103 . 0.2 ∼ 1048–1052 ∼ 1048–1051 − 1.096 100+45
−34

BdHNe COcore-NS νNS-BH ∼ 2–102 ∼ 0.2–2 ∼ 1052–1054 ∼ 1051–1052 . 1053 9.3 0.77+0.09
−0.08

BH-SN COcore-BH νNS-BH ∼ 2–102 & 2 > 1054 ∼ 1051–1052 & 1053 9.3 . 0.77+0.09
−0.08

References — Ruffini et al. [246]

We have shown that without either 56Ni decay or accretion energy, the SN explosion can
explain only the first peak. We then showed that the inclusion of 56Ni decay produces
indeed a double-peaked light-curve but with a second peak which is too dim to explain the
observed optical emission. This conclusion holds even adopting unphysical high amounts
of 56Ni mass of up to half of the ejecta mass. Instead, we demonstrated that the source
of energy given by the hypercritical accretion onto the NS provides a double-peaked
light-curve consistent with the observational data ( see Figure 4.6). Evidence that this
mechanism is also observed in additional XRFs will remain for future work.

In the case of BdHNe, the SN ejecta asymmetries are even more pronounced because this
system are more compact binaries and the NS, by accretion, reaches the critical mass
and collapses to a BH (see Figure 4.1). Besides the initial interaction of the SN with
the radiation from the accretion process, the SN interacts with the radiation from the
prompt radiation following the BH formation. The interaction of the electron-positron
pairs (moving with Lorentz factor Γ ∼ 102) with the SN material at a distance of r ∼
1012 cm and moving at Γ ∼ 1 can originate the flare observed around t ∼ 100 s after the
GRB trigger time in the X-ray data of BdHNe. We have presented the theoretical details
of this process that were addressed in Ruffini et al. [247]

In Table 4.1 is resumed the main observational properties of the XRFs and BdHNe. There,
we indicate the nature of their progenitors and final outcomes of their evolution of each
subclass of long GRBs, their rest-frame T90, their rest frame spectral peak energy Ep,i

and Eiso, as well as the isotropic energy in X-rays Eiso,X and in GeV emission Eiso,GeV,
and finally their local observed number density rate. In Table 4.1 we have considered an
additional subclass of long GRBs, BH-SN, based on the observation of source with energy
release up to ≈ 1054 , ergs (e.g. GRBs 080916C, 090902B, 110731A and 130427A). BH-SN
occur in close COcore-BH binaries [233] in which the hypercritical accretion occurs onto a
previously formed BH. Such BH-SN systems correspond to the late evolutionary stages of
X-ray binaries as Cyg X-1 [101], or microquasars [183]. If the binary survives to the SN
explosion, then the out-states of BH-SNe can be a νNS-BH or a BH-BH if the SN central
remnant directly collapses to a BH. However, the latter scenario is currently ruled out by
the observations of pre-SN cores which appear to have masses < 18M⊙, very low to lead
to direct BH formation [see, e.g., 266, 267, for details.].
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5. Smooth Particle Hydrodynamics
simulations of the Induced
Gravitational Collapse scenario of
long gamma-ray bursts associated
with supernovae

5.1. Introduction

Until now, the study of the hypercritical accretion process during the IGC scenario has
been done following the Bondi-Hoyle formalism (see Chapter 1). However, due the partic-
ular characteristics of the IGC scenario e.g its high time-variable nature, the implement-
ation of full hydrodynamical simulations of this process becomes a necessity in order to
validate the analytical estimations.

The physical picture of the IGC was first proposed in Ruffini et al. [233], formally for-
mulated in Rueda & Ruffini [227], and then applied for the first time for the explanation
of GRB 090618 in Izzo et al. [137]. The first 1-dimensional (1D) simulations of the IGC
process were presented in Fryer et al. [90]. These simulations included: 1) detailed SN
explosions of the COcore obtained from a 1D core-collapse SN code [84]; 2) hydrodynamic
details of the hypercritical accretion process; 3) the evolution of the SN ejecta material
falling into the Bondi-Hoyle accretion region all the way up to its incorporation into the
NS surface. Following the Bondi-Hoyle formalism, they estimated accretion rates exceed-
ing 10−3M⊙ s

−1, making highly possible that the NS reaches its critical mass and the BH
formation.

Later, we presented in Becerra et al. [13] (see also Chapter 4) a first attempt of a particle-
like simulation of the SN ejecta expansion under the gravitational field of the NS compan-
ion. Specifically, we described the SN matter formed by point-like particles and modeled
the initial power-law density profile of the COcore by populating the inner layer with more
particles and defined the initial conditions of the SN ejecta assuming an homologous ve-
locity distribution in free expansion, i.e. v ∝ r. The particles’ trajectory were computed
by solving the Newtonian equation of motion including the effects of the gravitational
field of the NS companion. We 1) assumed a circular motion of the NS around the SN
center; 2) implemented the changes in the NS gravitational mass owing to the accretion
process via the Bondi-Hoyle formalism following Becerra et al. [14] (see Chapter 1) and
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3) removed from the system the particles that cross the Bondi-Hoyle surface.

Already in Becerra et al. [13] we showed how of the asymmetric structure of the SN
ejecta, produced by the presence of the accreting NS binary companion, becomes crucial
for the inference of observable signatures in the GRB afterglow. In Ruffini et al. [247]
we show that the e+e− plasma, expanding at relativistic velocities from the newborn BH
site, engulfs different amounts of mass along different directions owing to the asymmetries
developed in SN density profile, leading to different dynamics and consequently to different
signatures for different viewing angles. The agreement of such a scenario with the observed
emission from the X-ray flares in the early GRB afterglow was shown in Ruffini et al. [247].

These results point to the necessity of a detailed knowledge of the physical properties of
the SN ejecta and in general of the binary system, in the 3D space and as a function
of time, for the accurate inference of the consequences on the X, gamma-ray and GeV
emission associated with BdHNe.

Here, we present the first 3D hydrodynamics simulations of the IGC scenario. We have
used the Smooth Particles Hydrodynamics (SPH) technique as developed in the SNSPH
code [89]. The SNSPH is a tree-based, parallel code that has undergone rigorous testing
and has been applied to study a wide variety of astrophysical problems [e.g. 64, 91, 318].
The SPH is a mesh-free code where the fluid is represented by a set of particles, which make
it to have has excellent conservative properties, i.e. energy, linear momentum, angular
momentum, mass, and entropy (if no artificial viscosity operates) are all simultaneously
conserved. Due to its lagrangian character, the local resolution of SPH follows the mass
flow automatically, convenient to represent the large density contrasts often encountered
in astrophysical problems as in the IGC scenario.

The simulation starts from the moment at which the SN shock front reaches the COcore

external radius and, besides to calculate the accretion rate onto the NS companion, we
also follow the evolution of the binary parameters (e.g. the binary separation, period,
eccentricity) in order to determined if the final configuration becomes disrupted or not.
This implies that we have introduced the gravitational effects of the remnant star, the
νNS formed at the center of the SN explosion, allowing us to calculate also the accretion
onto it via matter fallback.

This chapter is organized as follow. In Section 5.2 we describe the main aspects SNSPH
code [89] and the algorithm applied to simulated the accretion process. In Section 5.3 we
give the details on the construction of the initial binary configuration. Section 5.4 shows
the results of the simulations. We have covered a wide range of initial conditions for the
binary system, i.e. we have varied the COcore progenitors, the binary initial separation
and SN total energy and expansion geometry. In Section 5.5 we compute the evolution
of the binary stars and determine whether the stars’ gravitational collapse is possible. In
Section 5.6 we discuss the consequences of our results on future GRB analyses. Finally,
in section 5.7 we present our conclusions and perspectives for future work. Also, in
Appendix C.1 we present convergence test of the numerical simulations.
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5.2. SPH formalism

We use the 3D Lagrangian hydrodynamic code SNSPH [89] to model the evolution of the
binary system after the COcore collapses and the SN explosion occurs . The code follows
the prescription of the SPH formalism made in Benz [16]. Basically, the fluid is divided
by N particles with determined position, ~ri, mass, mi, and smooth length, hi. Physical
quantities for each particle are calculated through an interpolation of the form:

Ai(~ri) =
∑

j

Aj

(

mj

ρj

)

W (|~rij|, hij) (5.1)

where |~rij| = |~ri−~rj|, hij = (hi+hj)/2 is the symmetric smooth length between particles
i and j and W is the smoothing kernel, and must be defined so that:

∫

W (~r − ~r′, h) dr′ = 1 , and lim
h→0

W (~r − ~r′, h) = δ(~r − ~r′) (5.2)

The code allows to evolve the smooth length with time with [18] :

dhi/dt = −1/3(hi/ρi)(dρi/dt) . (5.3)

Additionally, the code set limits to the total number of neighbors of each particles (we
used a range ∼ 30 − 65 neighbors). On each time step, when the number of neighbors
falls above(below) these maximum(minimum) values, the particles smooth length, hi, is
lower(raise) by a configurable factor.

Then, the hydrodynamical equations of conservation of linear momentum and energy are
written as:

d~vi
dt

= −
N
∑

j=1

mj

(

Pi
ρ2i

+
Pj
ρ2j

+Πij

)

~∇iW (r, hij) + ~fg (5.4)

dui
dt

=
N
∑

j=1

mj

(

Pi
ρ2i

+
1

2
Πij

)

(~vi − ~vj) · ~∇iW (r, hij) (5.5)

where ~vi, Pi, ρi and ui are the particle velocity, pressure, density and internal energy,
respectively. In order to handle shocks, an artificial viscosity term is introduced through
Πij as in [187, 188]:

Πij =







− α(ci + cj)µij + 0.5βµ2
ij

ρi + ρj
if ~vij · ~rij < 0

0 otherwise

(5.6)

where ci is the sound speed, ~vij = ~vi − ~vj and :

µij =
hij ~ij · ~rij

|~rij|2 + ǫh2ij
(5.7)
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The form for the viscosity of equation (5.6) can be interpreted as a bulk and von Neuman-
Richtmyer viscosity parametrized by α and β viscosity coefficients. In the simulation is
usually used α = 1.0 and β = 2.0.

The last term of equation (5.4) refers to the fluid self-gravity force. The particles are
organized in a hashed oct-tree and the gravitational force is evaluated using the multipole
acceptability criterion (MAC) described in [302, 303]. The long-rage forces are replaced by
the monopole terms. The gravitational potential of the SPH-particles are softening with
an SPH-kernel-based smoothing [see 16, for instant]. In this approach, the SPH kernel
is interpreted as a three-dimensional density distribution, and the gravity is calculated
self-consistently according to this distribution.

Finally, the equation of state adopted treats the ions as a perfect-gas and takes into
account the radiation pressure:

P =
1

3
aT 4 + nionκT ; u = aT 4 +

3

2
nionκT , (5.8)

where nion is the number density of ions, T , the temperature and a the radiation constant.

The time integration is done with different methods, depending on the variable being up-
dated. For the specific internal energy of each particle, the second-order Adams-Bashford
method, a second-order method for first-order ordinary differential equations, is used:

ui+1 = ui + u̇i

(

dti +
dt2i

2dti−1

)

− u̇i−1

(

dt2i
2dti−1

)

(5.9)

For the smoothing length, a second-order leapfrog method is used:

hi+1 = hi + ḣi

(

dti + dti−1

2

)

(5.10)

and position and velocity are integrated using Press method, a second-order method for
second-order ordinary differential equations:

ẋi+1 =
xi − xi−1

dti−1

= ẍi

(

dti +
dti−1

2

)

(5.11)

xi+1 = xi + (xi − xi−1)
dti
dti−1

+ ẍi

(

dti(dti + dti−1)

2

)

(5.12)

For the first iteration of the simulation, it is assumed ui−1 = ui and xi−1 = xi − ẋidt.

5.2.1. Accretion Algorithm

In the simulation, the remnant of the COcore and the NS companion are model as two
point masses that only interact gravitationally with the other particles and between them.
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Their equation of motion will be:

d~vs
dt

=
N
∑

j=1

Gmj

|~rs − ~rj|3
(~rj − ~rs) +

GMs′

|~rs − ~rs′ |3
(~rs′ − ~rs) (5.13)

where subindex s and s′ make reference to the stars. In the same way, each particle of
the fluid will feel an additional force from the stars gravitational field:

~fs,i =
GMs

|~rs − ~ri|3
(~rs − ~ri) (5.14)

Additionally, these point particles can accrete other particles from the SN ejecta. Follow-
ing Bate et al. [10], the conditions that a particle j has to check to be accreted by the
star are:

• The particles is inside the star accretion radius, i.e :

|~rj − ~rs| < Rj,acc , with Rj,acc = min

(

ξ
2GMs

v2js + c2j
, hj

)

(5.15)

Usually in the simulation is used ξ = 0.05 − 0.1 (see section 5.5 for further details
of this parameter) .

• The gravitational energy between the star and the particle is greater than its kinetic
energy, i.e. :

GMsmj

|~rj − ~rs|
>

1

2
mj|~vj − ~vs|2 (5.16)

• The angular momentum of the particle relative to the star is less than the one it
would have in a keplerian orbit at Rj,acc, i.e. :

|(~rj − ~rs)× (~vj − ~vs)| <
√

GMsRj,acc (5.17)

These conditions are evaluated at the beginning of every time step. The particles that
fulfill them are removed from the simulation and in order to conserved the mass, linear
momentum and angular momentum, we update the properties of the star as:

Ms,new = Ms +
∑

j

mj (5.18)

~vs,new =
Ms~vs +

∑

jmj~vj

Ms,new

(5.19)

Ls,new = Ms,new

Ls~vs +
∑

jmj(~rs,j × ~vs,j)

Ms

(5.20)

The sum is over the particles accreted during the time step.
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5.3. SPH initial setup

Our calculations include a suite of pre-SN progenitors with zero-age-main-sequence (ZAMS)
masses ranging from 15 to 40M⊙ obtained via the KEPLER calculations [112]. The SN
explosions are simulated with the 1D core-collapse code described in Fryer et al. [84] and
the multi-parameter prescriptions introduced in Fryer et al. [80] to mimic the supernova
engine: the energy deposition rate and duration, the size of the convection cell above
the base of the proto-NS and the time after bounce when the convective engine starts.
These parameters are designed to include the uncertainties in the convection-enhanced
supernova engine [see 94, 114, 191, for details].

When the shock front reach the edge of the COcore, the configuration is mapped into a
3D SPH-configuration of about 1 million particles with variable mass. This is done using
weight Voronoi tessellation (WVT) as described in Diehl et al. [65].

The SPH configuration of the SN ejecta is constructed in the rotating reference frame
of the progenitor star. In order to translate it to the center of mass reference frame of
the initial binary system (COcore + NS), the position and velocities of the particles are
modified as follow:

~ri,new = R~ri − ~rCO (5.21)

~vi,new = R~vi − ~ri × ~Ωorb − ~vCO (5.22)

where R is a rotation matrix, ~rCO and ~vCO are the position and velocity of the COcore

before the explosion and Ωorb is the binary orbital angular velocity, that is determined
once the orbital separation and star masses are established :

Ωorb =

√

G(MCO +MNS)

a3
(5.23)

with MCO the COcore mass and MNS the NS mass. The equatorial plane of the binary
corresponds to the x-y plane, then the initial position of the stars (NS and νNS) are on
the x-axis and its motion is counter clockwise.

The minimum binary period that the system can have is given by the condition that the
compactness of the COcore is such that there is no Roche lobe overflow before the SN
explosion. Then, the minimum binary separation is given by [69]:

Rstar

aorb
=

0.49q2/3

0.6q2/3 + ln (1 + q1/3)
with q =

MCO

MNS

(5.24)

Since, we are interested in identifying the favorable conditions for which the NS com-
panion can accrete enough mass and collapse into a BH, we will explore different initial
conditions for the system. We have worked with four progenitor for the COcore that have
different ZAMS mass: MZAMS = 15, 25, 30 and 40M⊙. In Table 5.1 we present the main
proprieties of each of these progenitors at the mapping moment: the SN mass ejected,
Mej, the remnant star mass, Mrem, the SN ejecta innermost radius, Rcore, the COcore ra-

74



Table 5.1.: Proprieties of the COcore progenitor when the forward shock has reached the star radius.

MZAMS Mrem Mej Rcore Rstar Vstar Egrav mj

(M⊙ ) (M⊙ ) (M⊙ ) ( 108 cm ) ( 109 cm ) ( 108cm s−1 ) ( 1051 erg ) ( 10−6M⊙ )

15 1.30 1.606 8.648 5.156 9.75 0.2149 0.2− 4.4

25 1.85 4.995 2.141 5.855 5.43 1.5797 2.2− 11.4

30a 1.75 7.140 28.33 7.751 8.78 1.7916 1.9− 58.9

30b 1.75 7.140 13.84 7.830 5.21 1.5131 1.9− 58.9

40 1.85 11.50 19.47 6.529 6.58 4.4305 2.3− 72.3

Note — Each progenitor was evolved with KEPLER stellar evolution code [112] and then was
exploded artificially using the 1-dimensional core-collapse code [84].
a
Esn = 1.09× 1052 erg

b
Esn = 2.19× 1051 erg
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Figure 5.1.: Density (left panel) and velocity (right panel) profile of the SN ejecta when the forward
shock has reached the carbon-oxygen edge for the MZAMS = 15, 25, 30 and 40M⊙ progenitors (see
Table 5.1). At this moment, the 1D simulations (with the core-collapse code used in [84]) is mapped to
a 3D SPH-configuration and continue the expansion of the ejecta material.

dius when the collapse happens, Rstar and the forward shock velocity, Vstar. In the last
two columns of Table 5.1 we specify the gravitational energy of the star, Egrav, and the
maximum and minimum masses of the SPH particles, mj. Figure 5.1 shows the density
profile (left panel) and velocity profile (left panel) of each progenitor at the moment of the
mapping to the 3D SPH-configuration (when the shock front of the explosion has reach
the star surface). We have two models for the 30M⊙ progenitor, each with different SN
explosion energy.

It is important to notice that we are working with progenitors that were evolved as isolated
stars, i.e without taking into account that they are part of a binary system. However, as it
was indicated in Fryer et al. [90], there is a 3–4 order of magnitude pressure jump between
the COcore and helium layer, this means that the star will not expand significantly when
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the helium layer is removed: the COcore can be 1.5–2 times larger [see 189], then the
minimum period of the system might increase by a factor of 1.8–2.8 (see Chapter 2).

The final fate of the system also will depend on the characteristics of the SN explosion.
We run simulations varying the explosion energy of the SN. Rather than produce a broad
range of explosion energies (as we did with the MZAMS = 30M⊙ progenitor), we scaled
the kinetic and internal energy of the particles behind the forward shock by a factor η.
In this way, the internal structure of the progenitor doesn’t change, just its velocity and
temperature.

In order to study the effect of an asymmetric SN explosion [see 139] we adopt a single-lobe
prescription Hungerford et al. [122] following [123, 318]. Namely, the explosion is modified
to a conical geometry parametrized by Θ, the opening angle of the cone, and f , the ratio
of the velocities between the particles inside and outside the cone. The velocities of the
SPH particles behind the forward shock are then modified as:

Vin−cone = f

[

1− f 2

2
cosΘ +

1 + f 2

2

]−1/2

Vsymm (5.25)

Vout−cone =

[

1− f 2

2
cosΘ +

1 + f 2

2

]−1/2

Vsymm (5.26)

where Vsymm is the radial velocity of the original explosion. This prescription conserves
the kinetic energy of the symmetric explosion, and to conserves the total energy of the
supernova we scale the particles internal energy in the same way.

In the next section, we will present the results of our SPH-simulations.

5.4. SPH simulation results of the IGC scenario

In Table 5.2 we summarize the properties of the SN and the parameters that character-
ized the state of the initial binary systems with the different COcore obtained with the
progenitors of Table 5.1. We specify the η factor by which the SPH-particles velocities
and internal energy are scaled, the sum of the ejecta kinetic and internal energy, Ek + Ui
(computed in the binary system center of mass frame), the initial orbital period Porb,i as
well as the initial binary separation, aorb,i.

For each model, we first run a simulation of the SN expansion assuming that the COcore

collapses and explodes as an isolate star, i.e. without the NS companion. In Table 5.1, we
summarize the final mass of the νNS, indicated as mνNS,fb, and the magnitude of the νNS
kick velocity, Vkick. This last variable comes from the linear momentum of the particles
that have made fall-back and were accreted.
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Table 5.2.: SPH Simulations

Model η Ek + Ui porb,i aorb,i mνns,fb Vkick mνns mns VCM porb,f aorb,f e mbound bound

( 1051 erg ) ( s ) ( 1010 cm ) (m⊙ ) ( 104 cm/s ) (m⊙ ) (m⊙ ) ( 107 cm/s ) ( s ) ( 1010 cm ) (M⊙ )

MZAMS = 15M⊙ Progenitor

15m1p07e 0.7 1.395 395.33 1.361 1.302 3.99 1.302 2.003 4.05 1141.29 2.437 0.443 2.7× 10−6 yes

15m1p05e 0.5 1.101 395.33 1.361 1.303 4.83 1.303 2.006 4.02 1109.63 2.393 0.433 4.8× 10−5 yes

15m1p03e 0.3 0.607 395.33 1.361 1.304 18.93 1.315 2.023 3.91 953.92 2.182 0.398 6.9× 10−4 yes

15m1p01e 0.1 0.213 395.33 1.361 2.478 6.62 1.916 2.199 0.39 182.56 0.773 0.233 0.098 yes

15m1p005e 0.05 0.135 395.33 1.361 2.731 1.73 2.649 2.034 0.08 355.36 1.257 0.036 0.029 yes

15m2p03e 0.3 0.607 704.46 2.000 1.304 18.93 1.304 2.007 0.39 − − 1.192 5.8× 10−3 no

15m2p01e 0.1 0.213 704.46 2.000 2.478 6.62 2.238 2.101 0.08 778.58 2.068 0.419 0.0759 yes

15m3p01e 0.1 0.213 1056.69 2.000 2.478 6.62 2.405 2.057 0.32 871.15 2.249 0.1032 0.0313 yes

MZAMS = 25M⊙ Progenitor

25m1p1e 1.0 3.14 288.4 1.352 1.924 1.35 1.963 2.085 7.49 7011.01 8.747 0.866 0.081 yes

25m1p09e 0.9 2.84 288.4 1.352 1.935 2.97 2.013 2.162 7.17 2297.51 4.199 0.744 0.043 yes

25m1p08e 0.8 2.53 288.4 1.352 1.953 3.57 2.081 2.441 6.09 986.34 2.454 0.600 0.075 yes

25m1p07e 0.7 2.22 288.4 1.352 2.172 41.30 2.371 2.621 3.77 259.83 1.043 0.381 0.160 yes

25m2p1e 1.0 3.14 513.8 1.988 1.924 1.35 1.929 2.029 6.46 − − 1.005 0.073 no

25m3p1e 1.0 3.14 707.8 2.605 1.924 1.35 1.924 2.024 5.76 − − 1.086 0.025 no

25m4p1e 1.0 3.14 951.6 2.984 1.924 1.35 1.916 2.014 5.34 − − 1.096 0.013 no

25m2p07e 0.7 2.22 513.8 1.988 2.172 41.30 2.352 2.522 3.43 602.61 1.812 0.454 0.185 yes

25m3p07e 0.7 2.22 707.8 2.605 2.172 41.30 2.178 2.320 3.25 1410.23 3.11 0.477 0.138 yes

25m5p07e 0.7 2.22 1190 3.463 2.172 41.30 2.166 2.401 3.24 1666.15 3.49 0.526 0.0051 yes

25m15p07e 0.7 2.22 3569 7.203 2.172 41.30 2.088 2.208 2.72 19288 17.41 0.639 3.4× 10−3 yes

25m2f20tz 1.0 3.14 288.4 1.352 1.931 1.18× 103 2.009 2.161 7.31 2852.15 4.849 0.774 0.065 yes

25m2f20tx 1.0 3.14 288.4 1.352 1.931 1.18× 103 1.959 2.142 7.13 8225.79 9.772 0.892 0.056 yes

25m2f20t-x 1.0 3.14 288.4 1.352 1.931 1.18× 103 2.002 2.182 7.82 3170.17 5.209 0.801 0.054 yes

25m4f20tz 1.0 3.14 288.4 1.352 2.826 5.08× 103 2.382 2.424 5.16 456.51 1.496 0.438 0.189 yes

25m2f40tz 1.0 3.14 288.4 1.352 2.364 5.38× 103 2.316 2.395 5.84 529.37 1.643 0.589 0.105 yes
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Model η Ek + Ui porb,i aorb,i mνns,fb Vkick mνns mns VCM porb,f aorb,f e mbound bound

( 1051 erg ) ( s ) ( 1010 cm ) (m⊙ ) ( 104 cm/s ) (m⊙ ) (m⊙ ) ( 107 cm/s ) ( s ) ( 1010 cm ) (M⊙ )

MZAMS = 30M⊙ Progenitor - exp 1

30m1p1ea 1.0 8.43 363.8 1.667 1.756 40.80 1.757 2.007 9.67 − − 1.701 0.0 no

30m1p07ea 0.7 5.95 363.8 1.667 1.755 39.36 1.758 2.015 9.58 − − 1.647 9.6× 10−4 no

30m1p05ea 0.5 4.26 363.8 1.667 1.758 96.20 1.764 2.031 9.46 − − 1.501 0.012 no

30m1p03ea 0.3 2.59 363.8 1.667 2.178 3.93× 103 1.869 2.455 7.79 6090.81 8.137 0.852 0.168 yes

30m2p03ea 0.3 2.59 648.23 2.449 2.178 3.93× 103 1.837 2.192 7.21 − − 1.095 0.0854 no

MZAMS = 30M⊙ Progenitor - exp 2

30m1p1eb 1.0 3.26 363.8 1.667 4.184 141.30 3.675 2.382 3.59 727.929 2.209 0.5686 0.331 yes

30m1p12eb 1.2 3.91 363.8 1.667 2.462 147.79 2.515 2.376 5.86 2764.53 5.0092 0.733 0.133 yes

30m2p12eb 1.2 3.91 623.27 2.410 2.462 147.79 2.621 2.228 4.85 9425.47 11.3017 0.848 0.029 yes

30m1p2eb 2.0 6.45 363.8 1.667 1.771 13.89 1.783 2.077 9.50 − − 1.447 5.7× 10−3 no

30m1p31eb 3.14 10.02 363.8 1.667 1.766 5.21 1.768 2.017 9.95 − − 1.712 6.5× 10−4 no

MZAMS = 40M⊙ Progenitor

40m1p1e 1.0 10.723 209.54 1.295 1.871 176.43 1.874 2.119 13.68 − − 1.845 0.038 no

40m1p09e 0.9 9.670 209.54 1.295 1.872 141.38 1.881 2.274 13.35 − − 1.538 0.027 no

40m1p08e 0.8 8.618 209.54 1.295 1.873 242.93 1.886 2.545 12.52 − − 1.276 0.016 no

40m1p07e 0.7 7.506 209.54 1.295 1.879 464.82 2.095 3.033 10.12 5157.3 7.7118 0.881 0.051 yes

40m1p06e 0.6 6.513 209.54 1.295 6.568 69.73 3.784 3.209 4.57 145.31 0.792 0.612 1.053 yes

40m1p05e 0.5 5.145 209.54 − − 0.91 5.430 3.642 − 3.586 0.339 0.243 1.250 yes

40m2p1e 1.0 10.723 373.47 1.295 1.871 176.43 1.873 2.046 10.79 − − 2.194 6.13× 10−3 no

40m2p07e 0.7 7.506 373.47 1.295 1.879 464.82 2.064 2.755 8.757 264493 104.26 0.984 0.078 yes

40m4p07e 0.7 7.506 746.95 3.022 1.879 464.82 1.959 2.507 7.799 − − 1.1804 0.0744 no

40m2p06e 0.6 6.513 373.47 1.295 6.568 69.73 5.581 2.961 2.58 347.329 1.523 0.648 0.509 yes
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Figure 5.2.: Snapshots of the SPH simulation of the IGC scenario. The initial binary system is formed by a Ccore, which progenitor is a MZAMS = 25M⊙ and a
2M⊙ NS with an initial orbital period of around 5min (Model 25M1p1e of table 5.2). In the upper panel is shown the surface density on the binary equatorial
plane, at different times of the simulation, while the lower panel corresponds to the plane transversal to the binary orbital plane. The reference system was rotated
and translated in a way that the x-axis is along the line that joins the binary stars and the origin of the reference system is at the NS position. At t = 40 seconds
(first frame from left to right), it sees that the particles captured by the NS have formed a kind of tail behind it, then this particles star to circularized around
the NS and a kind of thick disk can be seen at t = 100 seconds (second frame from left to right). The material captured by the gravitational field of the NS
companion is also attracted by the νNS and start to be accreted by it as can be seen at t = 180 second (third frame). After around one initial orbital period, at
t = 250 seconds, around the both stars have been form a kind of disk structure. The νNS is along the x-axis at: −2.02, −2.92, −3.73 and −5.64 for t = 40, 100,
180 and 250 s, respectively.
NOTE — This figure and all the snapshots figures where done with the SNsplash visualization program [217]
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Then, we run simulations of the SN expansion with the COcore as part of a binary system
with a 2M⊙ NS as companion. In Table 5.2 we summarize the parameters that character-
ized the final outcomes of these simulations: the νNS final mass, mνNS, the NS companion
final mass, mNS, the velocity of the final binary system center-of-mass, period, VCM, the
final orbital period, Porb,f , the major semi-axis and eccentricity of the final system orbit,
aorb,f and ef , respectively, and the amount of mass bounded to the binary stars when the
simulation was stopped, mbound.In the final column of Table 5.2, we have specified if the
system remains bound as a new binary system or if it is disrupted in the explosion.

5.4.1. Canonical model: 25MZMAS progenitor

We are going to take the 25MZMAS progenitor star for the COcore and a 2M⊙ NS as our
canonical initial binary system in order to describe the main features of the simulation
while the SN expands with the NS companion presence, (model 25m1p1e of Table 5.2).
This binary system has a minimum orbital period of about 4.86 minutes, that corresponds
to a binary separation of 1.34 × 1010 cm. Later, we will change one by one the initial
conditions and compare the outcomes with the ones of this canonical system.

Figure 5.2 shows snapshots of the mass density in the x-y plane, the binary equatorial
plane (upper panel) and x-z plane (lower panel) at different time of the simulation. In
the plot, the reference system has been rotated and translated in a way that the x-axis is
along the line that joins the stars of the binary system (νNS-NS) and the origin is at the
NS companion position. In general, when the SN starts to expand, the faster outermost
particles of the SN will pass almost without being disturbing by the NS gravitational
field. The slower-moving material is gravitational capture by the NS, initially formig a
tail and ultimately forming a thick disk around it. In addition, there are particles from
the innermost layers of the SN-ejecta, that do not have enough kinetic energy to scape,
leading fallback accretion onto the νNS. Then, at some point, the material that have been
capture by the NS companion start to be also attracted by the νNS and being accreted
by it.

To confirm the formation of the disk around the NS companion, in Figure 5.3 has been
calculated the angular velocity profile with respect the NS companion position at different
times and for two different directions: the line that joins the binary stars with the νNS
in the −x direction labeled as θ = 0; and the line perpendicular to this last on the orbital
binary plane, labeled as θ = π/2. The angular velocity of the particles closed to the
NS companion (r/a0 < 0.25) superpose the keplerian angular velocity. This confirms the
estimations from analytical approximations made in [14, see also Chapter 1], where it was
shown that the SN ejecta have enough angular momentum to circularize around the NS
before being accreted. Figure 5.4 shows the mass accretion rate as a function of simulation
time on the binary system stars: the NS companion (red line), on the νNS (blue line),
also called the fallback accretion rate, and the sum of both mass accretion rate (green
line). Either the fallback accretion rate or the NS accretion rate are much greater that the
Eddigton limit. The NS is allowed to accrete at this high rate by the emission of neutrinos
at its surface via e+e− pair annihilation that is the most efficient neutrino emission process
at the density and temperature conditions developed [see 13, and Chapter 3 for more
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Figure 5.3: Angular velocity
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Figure 5.4: Mass-accretion rate
on the NS (red line) and the νNS
(blue line) during the SPH simu-
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of both accretion rates. The ini-
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the one of Figure 5.2. The do-
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fallback mass accretion on the ν-
NS when the COcore collapses in
an single-star configuration, i.e.
without the presence of the NS
companion.

details]. This allows the matter to cool enough fast to be incorporated to the star and
therefore, to evolve the star masses, we can add the mass of the particles that fulfill the
accretion conditions (see Section 5.2 and equations 5.20). As we have shown the SN ejecta
might transport a high amount of angular momentum and form a thick disk around the
NS before accretion take place. There, the densities and temperatures are not high enough
to cool the matter by neutrino emission and outflows might occur [see, e.g., 22, 60, 147].
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Up to 25% of the infalling matter can be ejected in strong outflows removing much of the
system angular momentum [79, 86]. This means that the mass-accretion rate calculated
here might overstimate the actual accretion rate onto the star but up to a factor of order
unity. It is also important to notice that the accretion rate depends directly on the value
adopted for the ξ parameter in equation (5.15). For this simulation, we adopted ξ = 0.1.
In the next section, we are going to vary this parameter and establish the influence of it
on the system final fate.

As we anticipated, we have also run the simulation of the SN ejecta expansion without the
NS companion, in order to calculate the fallback accretion rate (black line in Figure 5.4)
and compare it with the accretion rate onto the νNS in the binary simulation. At the
beginning of the simulation, there is no different between both accretion rates: an almost
flatter high accretion phase at early time and then a decline proportional to t−5/3 [60, 324].
However, at around t/Porb ≈ 1.0, there is a jump in the fallback accretion rate of the binary
simulation, that can be associated to the time at which the νNS start to accrete the
material decelerated by the NS companion. The high early time accretion rate calculated
here, is due to the fallback of those particles that did not have enough kinetic energy to
escape from the νNS gravitational field. This can occur, either because after the forward
shock is launched, the proto-NS cools and contracts, sending a rarefaction wave to the
ejecta, that decelerates it [51], or because the SN shock is smoothly decelerated when it
goes outward pushing the star material out [78, 313].

5.4.2. SN explosion energy

In the following, we start to change systematically the initial parameters that will affect
the fate of the final configuration. We will do it one by one, in order to determinate
the most favorable conditions that increases the accretion rate on the NS companion
and could induced its collapse. Figure 5.5 shows the mass accretion rate onto the NS
and onto the νNS for different energies of the SN explosion, with the same progenitor
star for the COcore: the MZAMS = 25M⊙ of Table 5.1. As was explained in Section 5.3,
in these simulations we scale the kinetic energy and the internal energy by a factor η
(i.e. the velocities of the particles were multiplied by

√
η) once we map the 1D exploded

configurations to the 3D one. As expected, the total mass accreted by the NS companion
is lager for low energetic SN than for high energetic ones, and then more favorable to the
collapse of the NS (see models from 25m1p1e to 25m1p07e in Table 5.2). On the other
hand, the energy of the SN explosion needs to be high enough, otherwise a considerable
part of the ejected mass causes fallback and can instead induce the collapse of the νNS to
a BH. This is a novel and alternative possibility not considered in the original version of
the IGC scenario [see, e.g., 90, 227]. Additionally, the energy of the SN explosion seems
to do not have a big influence on magnitud of the peak of the mass-accretion rate but
do have on its shape. The NS companion acretes more mass in the weakest SN explosion
(η = 0.7) because the accretion rate it maintains almost constant for a longer time than
in the strongest explosion (η = 1) where a clear peak appears.

As we did before, we calculate now for these explosions the fallback accretion rate onto
the νNS for the isolate progenitors and compare and contrast it with its binary system
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Figure 5.5.: Mass-acretion rate onto the NS (left panel) and onto the νNS (right panel) in the IGC
scenario. The initial binary system is the same as the one of Figure 5.4 but the SN energy has been
varied scaling the kinetic and internal energy of the SPH particles by a factor η < 1. The accretion rate
on the NS presents a peak for the most energetic SN, while in the weaker ones this peak is flattened,
i.e. the accretion happens at a nearly constant rate for a longer time, making the star to increase its
mass faster. At early time, the fallback accretion rate onto the νNS is nearly independent of the SN
energy, although the late bump induced by the accretion of the material gravitational capture by the NS
companion is stronger for the weakest explosions.
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Figure 5.6.: Snapshots of the mass density (left panel) and the specific internal energy (right panel) on
the equatorial plane after 290.0 s from the beginning of the SPH simulation (around one orbital period
of the initial binary system). The initial binary system parameters are the same as the one represented
in Figure 5.2 but the SN explosion energy has been scaled by a factor η shown at the upper side of each
panel (these simulations correspond to models 25M1p1e with η = 1, 25M1p09e with η = 0.9, 25M1p08e
with η = 0.8 and 25M1p07e with η = 0.7 of Table 5.2). The accretion onto the νNS as the NS companion
is higher for the weaker SN explosions, then the star masses increase faster and the final orbital period
of the system shortens. In these explosion also the amount of mass accreted by the νNS is larger.
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(a) Single star ( η = 1.0 ) (b) Binary system ( η = 1.0 )

(c) Single star ( η = 0.7 ) (d) Binary system (η = 0.7 )

Figure 5.7.: Density profile evolution of the SN ejecta material after the core collapse of the COcore of a
MZAMS = 25M⊙ progenitor. The r coordinate is measure from the νNS position. The plots at the left
panel corresponds to the evolution of the SN in a single star system while the ones at the right panel
the COcore belongs to a binary system with a NS companion of 2M⊙ and an initial binary separation
of 1.36 × 1010 cm. The blue-dotted lines indicate the position of the NS companion. The SN energy of
the upper plots is 1.56 × 1051 erg (Model 25M1p1e of Table 5.2) and for the lower plots the SN energy
is 6.4× 1050 erg (Model 25M1p07e of Table 5.2). For isolated SN explosions (or for very wide binaries),
the density of the SN ejecta would approximately follow the homologous evolution as is seen in the left
panel plots. But, for explosions occurring in close binaries with compact companions (as it’s the case
of the IGC progenitors), the SN ejecta is subjected to a strong gravitational field which produces an
accretion process on the NS companion and a deformation of the supernova fronts closer to the accreting
NS companion, as in seen in the right panel plots.
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Figure 5.8.: Evolution of the semi-major axis of the νNS-NS binary system. The initial configuration
is a binary system formed by the COcore of a MZAMS = 25M⊙ progenitor and a NS of 2M⊙ with an
initial binary period of approximately 5min. The COcore collapses and undergoes a SN explosion ejecting
around 5M⊙ and leaving a proto-NS of 1.85M⊙ (see Table 5.1). Not all the material ejected in the SN
leaves the binary system. Some part of this material fallback and is accreted by the νNS while, some
other part is accreted by the NS companion. The final binary configuration can remain bound even when
the system lost most of the half of its initial total mass.

counterpart. The right panel of Figure 5.5 shows the evolution of the mass accretion rate
on the νNS. The black lines correspond to the single progenitors simulations for the scale
factors η = 0.8 and η = 0.7. The accretion rate peaks at an early time and then decays as
t ∝ t−5/3 [45]. For the binary simulations (color lines) a late peak on the fallback accretion
rate is produced from the accretion of the material captured by the gravitational field of
the NS companion. This is higher and even early for low energetic supernova (around one
order of magnitude for the less energetic explosion (η = 0.7).

For these simulations, Figure 5.6 shows snapshots of the mass density and the specific
internal energy on the equatorial plane after about one orbital period of the initial config-
uration (∼ 5 min). Each panel corresponds to a different value of the η parameter: η = 1.0
and η = 0.9 for the left and right upper panels, η = 0.8 and η = 0.7 for the left and right
bottom panels. The asymmetries of the interior ejecta layer are more pronounced for
the less energetic explosion. The orbital period of the final configuration shortens with
the decreases of the SN energy, i.e with the accretion of mass by the binaries stars. For
example, the accretion onto the νNS and onto the NS companion is around 20% and
16%, respectively, more efficient for the weakest explosion (η = 0.7) with respect to the
strongest one (η = 1), and the final orbital period is almost 90% shorter that the one of
the final system from the most energetic explosion (see Table 5.2).

In order to compare the SN evolution in the single and binary simulations, in Figure 5.7 we
show the SN density profile seen from the νNS at different times and for two different SN
energies (models 25M1p1e and 25M1p07e of Table 5.2). The left-side plots correspond to
the explosion of the COcore of the MZAMS = 25M⊙ progenitor of Table 5.1, while the right
size plots shows its binary counterpart with a 2M⊙ NS companion. For the isolated SN
explosions, the SN ejecta density profiles evolve approximately following an homologous
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evolution keeping its spherical symmetry around the explosion center. For the explosions
occurring in the close binaries, the NS companion gravitational field induced asymmetries
in the SN fronts closer to it, that will be more pronounced for the low energetic explosions
(see also Figure 5.6). We have shown that these asymmetries lead to observational effects
both in the supernova optical emission and in the GRB X-ray afterglow [see 13, 247, and
Chapter 4].

We have also studied the evolution of the binary parameters during the SN expansion.
Figure 5.8 shows the evolution of the binary semi-major axis with time for the same cases
of Fig. 5.5. In these simulations, that correspond to the minimum orbital period of the
initial binary system (∼ 5 mins), independently on the SN energy, the post-explosion
system remains bound. This occurs even if the system loses more than the half of its
total initial mass. For example, for the η = 1 case, the mass loss in the system is around
4.82M⊙, namely about 54.7% of its total initial mass.

If we were to assume that the ejected mass in the SN explosion leaves the system in-
stantaneously, the semi-major axis of the post-explosion system, a, is given by a/a0 =
(M0−∆M)/(M0−2a0∆M/r), where M0 and a0 is the total mass and the semi-major axis
of the initial binary system, ∆M is the mass ejected in the SN and r is the star separation
at the moment of the explosion [116]. Then, binaries with circular initial orbits become
unbound after a SN event if more than half of its total initial mass is lost. However, as
it was shown in Fryer et al. [88], in the IGC scenario the mass loss can not be considered
instantaneous because the binary initial periods are of the same order than the time it
takes for the slowest SN layer to reach the NS companion. For example, the innermost
layers of the 25M⊙ progenitor have a velocity of the order of 108 cm s−1 so they reach the
NS initial position in a time ∼ 100 s, nearly 2/5 of the initial binary period. Moreover,
it has to be considered that either the νNS or the NS companion will accrete mass and
momentum from the SN ejecta, and this will reduce the system mass loss.

5.4.3. Initial binary period

We continue the exploration of the parameter space of the initial binary configurations
by running simulations with different values of the initial orbital period. Figure 5.9 shows
the mass-accretion rate onto the NS companion for three different initial orbital periods:
4.8 min, 8.1 min and 11.8 min, and for two different SN energies: the canonical explosion
( with η = 1) and the η = 0.7 modified explosion. For the canonical SN model, an
increment of about 1.7 times in the orbital period, changes the fate of the post-explosion
binary system, leading to an unbound final configuration. While, for the less energetic
explosion, the system remains bounded in all scenarios in which we have increased the
initial binary period (up to ≈ 60.0 mins, i.e. ≈ 12 times the minimum orbital period). For
the two explosion energies, the accretion rate seems to scale with the initial binary period
of the configuration and follow the same power law at the late times of the accretion
process.

Figure 5.10 shows snapshots, at two different times, of the mass density on the orbital
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Figure 5.10.: Snapshots of the density surface on the equatorial plane for systems with three different
initial binary period. The initial binary system is formed by the COcore of the MZAMS = 25M⊙ progenitor
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plane for the same initial binary periods of Figure 5.9 and the modified explosion with
η = 0.7. The system looks like is evolving self similarly with the increase of the binary
period.

5.4.4. Asymmetric SN expansion

We now explore how a SN explosion with an asymmetry blastwave affects the evolution
of the system. With the parameters f = 2.0 (ratio between the in-cone and the out-
cone velocities) and Θ = 20.0 (cone amplitude) of equations (5.25) and (5.26), we have
performed simulations with the direction of the lobe in the z-axis (perpendicular to the
equatorial binary plane) and in the +x-axis (directed to the NS companion) and −x-
axis (opposed to the NS companion). Additionally, we explore the dependence with the
opening angle and the ratio velocities, running simulations with f = 4.0 and with Θ = 40.0
(see Table 5.2). Figure 5.11 shows the accretion rate onto the NS companion for these
simulations. We can see that the introduction of asymmetries in the SN expansion velocity
increases the accretion rate on the NS companion as well as the fallback accretion rate
onto the νNS. This is expected because, in order to conserved the SN energy explosion, we
increased the velocities of the particles inside the cone while we decreased the velocities
of the particles out-side it, then these slower particles are more probably captured by the
accreting stars. The direction of the lobe does not introduce appreciable changes in the
evolution of the accretion rate or the final star masses as it does when the parameters f
or Θ are increased.

Figure 5.12 showns snapshots of the mass density for the simulations of the asymmetric
SN expansion. As it was previously done, the reference system was rotated and translated
in the way that its center corresponds to the NS companion position and the x-axis joins
the binary stars. Contrary to the symmetric cases, the binary orbital plane change after
the SN ejecta if the lobe of the explosion is directed outside the equatorial plane of the
initial binary. For example, for f = 2.0, the final orbital plane makes an angle of 2.55◦

with respect to the initial orbital plane and for f = 4.0, this angle grows up to 11.5◦

. However, either for the symmetry or the asymmetry explosion, the magnitude of the
velocity of the center-of-mass of the final binary system remains around 100− 800 km/s.
The kick velocities giving in Table 5.2 are consequence to the accretion of the linear
momentum from the accreted particles and the gravitational attraction that the ejecta
material do on the νNS [140]. Another source for the NS kick velocity can be due to the
anisotropic emission of the neutrino during the star collapse [21, 87, 309].

5.4.5. COcore progenitor mass

Finally, we have varied the progenitor of the COcore. Figure 5.13 shows the mass-accretion
rate onto the NS companion for all the progenitors listed in Table 5.1. In Table 5.2 we
summarize the results for these simulations, and additionally we have run more simulations
with each of this progenitors changing the SN energy and the initial binary separation.
We now presents the salient properties of these simulations.
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Figure 5.12.: Snapshots of the surface density on the binary equatorial plane (left panel) and the plane
orthogonal to it (right panel). The reference system have been rotated and translated in a way that the
x-axis becomes directed in the line that joins the binary stars and its origin is at the NS companion. The
initial binary system is the same as the one represented in Figure 5.2 but the SN velocity profile has been
modified to a conical geometry following equations (5.25) and (5.26). In all the cases, the cone opens
along the z-axis. The left frames of each plot have parameters f = 2.0 and Θ = 20.0 (Model 25m2f20tz
of Table 5.2) while the right ones have f = 4.0 and Θ = 20.0 (Model 25m4f20tz of Table 5.2). If the lobe
of the explosion is directed outside of the initial orbital plane, as in here, the orbital plane of the final
configuration changes. For the f = 2.0, the final orbital plane makes an angle of 2.55◦ with respect to
the initial orbital plane and for f = 4.0, this angle grows up to 11.5◦
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The 15M⊙ ejects just around 1.6M⊙, then the energy of the SN explosion need to be
low (in the order of 1050 ergs) and the binary system enough compact, in order to have
a significant accretion on the NS companion. However, if the SN energy is considerably
reduced, most of the SN material will do fallback onto the νNS. For example, scaling the
SN kinetic energy and internal energy by η = 0.05, almost 80% of the SN ejecta is accreted
by the νNS, while scaling by a parameter η = 0.1, the accreted material via fallback is
reduced to the 30%. It is important to point out that, if the initial orbital period is
increased by a factor of 1.7, the amount of ejecta mass that can not escape to the νNS
gravitational field grows to the 55%. Namely, the presence of a close NS companion could
avoid the collapse of the νNS in the weak explosion cases.

For the 30M⊙ progenitor, we worked with two simulated explosions with different energies,
one almost one order of magnitude stronger than the other. For the lowest energetic
explosion, Esn,1, a significant amount of mass is making fallback, then the collapse due to
the hypercritical accretion on the νNS is more probable than the one of the NS companion.
On the other hand, the velocities of the stronger energetic explosion, Esn,2, are so high
that almost all the SN ejecta surpass the NS companion without being captured by it,
and the final configuration of νNS and NS become unbound. For these explosions, the
ration between the total SN energy and the kinetic energy is 0.45 and 0.81, respectively.

We have performed more simulations scaling the energy of these two explosions, and
summarized their results in Table 5.2. In these cases, we can evaluate how accurate is
our alternative path of changing the explosion energy by just scaling the velocities and
the internal energy of the SPH-particles instead of re-run new simulations of the COcore

collapse and bounce of the shock. Figure 5.14 shows the density profile at around the
same time for the two explosions of the 30M⊙ progenitor and their respective simulations
with the scaled SN energy. In general, the internal radius of the low energetic explosion
is about two times smaller that the one of the high energetic explosion (see Figure 5.1).
These will increased the material that will make fallback in the single star as well as
in the binary system simulations, even when the scaled energy of the explosion become
comparable.

Finally, we used a 40M⊙ as the progenitor of the COcore. Since, this progenitor ejects
around 11M⊙ in the SN, the energy of the explosion needs to be low to make the final
configuration remains bounded and also for the NS companion to be able to accrete enough
mass to collapse. If we used a factor η = 0.7 to reduce the SPH-particles velocity and
internal energy, we see that the amount of mass accreted by the νNS is low but the mass
accreted by the NS-companion could make it to induced its collapse. Instead, for η = 0.5,
more of the ejecta make fallback accretion and onto the νNS.

Fryer et al. [90] performed a 1D numerical simulation of the COcore collapse, bounce and
explosion and was estimated the accretion rate on the NS companion using the Bondi-
Hoyle-Lyttleton formalism [27, 28, 121]. In these simulation, at the beginning of the
accretion process, there is a burst in the accretion rate, growing up to the 10−1 M⊙/s,
that is two order of magnitude greater than the accretion rate that we are obtaining with
the SPH simulation. However the total time of the accretion process is much shorter
in those simulations that the one presented here, making the amount of mass accreted
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Figure 5.14.: Snapshots of the mass density on the binary equatorial plane. The initial binary system is
formed by the COcore of the MZAMS = 30M⊙ progenitor and a 2M⊙ NS with a orbital period of around
6min. We have simulated the collapse and bounce of the 30M⊙ progenitor with two different SN energy
as is specified in the left and right panel labels. We show the simulations scaling the SN energy of these
two explosions by a factor η (specified in the upper part of each frame). In general, the internal radius of
the low energetic explosion is about two times smaller that the one of the high energetic explosion (see
Figure 5.1). This increases the fallback on the νNS and the region closed to the binary system becomes
denser.
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by the NS companion comparable between the simulations. This discrepancy is a direct
consequence of the increase of dimension of the simulation. While the 1D simulation is
stopped when the SN innermost layer reach the NS and doesn’t take into account the
angular momentum of the particles with respect to the accreting star, the 3D simulation
can go beyond this point because there are particles that remains bounded to the NS in
a kind of disk structure, and the star continues the accretion process.

5.5. Evolution and collapse of the NS companion

We turn now to the issue of evaluating whether the NS companion collapses or not to
a BH due to the accretion of SN material. For this, we need both to study how the
NS gravitational mass and angular momentum evolve with time, and to set a value to
the NS critical mass. As a first approximation, we assume that the NS evolves from
an equilibrium configuration to the next, using the uniformly rotating NS equilibrium
configurations in Cipolletta et al. [49, 50]. These configurations were constructed using
the public code RNS [276] to solve the axisymmetric Einstein equations for three selected
relativistic mean-field nuclear matter (EOS) models: NL3, GM1 and TM1.

Here, we will follow the formalism we have exposed in Chapter 1. The evolution of the
NS gravitational mass is given by equation (1.35). As a matter of convenience, we will
rewrite here:

Ṁns =

(

∂Mns

∂Mb

)

Jns

Ṁb +

(

∂Mns

∂Jns

)

Mb

J̇ns (5.27)

The relation between NS baryonic mass Mb and the NS gravitational mass Mns for a rotat-
ing NS including the effects of rotation in general relativity can be found in Appendix A.2.

The mass and angular momentum of the accreted particles add to the baryonic mass and
the angular momentum of the NS, thus we can integrate equation (5.27) and follow the
evolution of the gravitational mass of both the νNS and the NS companion. The NS can
accrete mass until it reaches an instability limit: the mass shedding limit or the secular
axisymmetric instability (see Chapter 1 and Appendix A.2).

In the left panel of Figure 5.15 we show the track followed by the NS companion (solid
line) and the νNS (dashed line) in the Mstar-jstar plane for the 25Mzmans progenitor of
the COcore, for two different SN explosion energies (models 25M1p1e and 25M1p07e of
Table 5.2). For the system with the stronger SN explosion, the νNS and the NS com-
panion reaches the mass-shedding limit at t = 21.66min with 1.93M⊙ and t = 20.01min
with 2.055M⊙, respectively. For the less energetic SN explosion this occurs early, at
t = 5.51min with 2.04M⊙ for the νNS, and at t = 2.91min with 2.09M⊙ for the NS
companion. The dotted line shows the continuation of the integration of equation (5.27)
for all the simulation time. For the NS companion, there is a decreasing of angular mo-
mentum. This occurs because there is a change in the direction of rotation of the accreted
particles with respect to one of the accreting NS star.

92



0 1 2 3 4 5

jstar = cJstar / (GM
2
⊙ )

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

M
st
ar
[M

⊙
]

Mass− Shedding

NL3

GM1

TM1

Secular Instability

η = 1.0

η = 0.7

0 1 2 3 4 5

jstar = cJstar / (GM
2
⊙ )

1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

M
st
ar
[M

⊙
]

Mass− Shedding

NL3

GM1

TM1

Secular Instability

η = 1.0

η = 0.7

Figure 5.15.: Evolution of the νNS (dashed line) and the NS companion (solid line) in the mass-
dimensionless angular momentum (Mstar-jstar) plane. The mass of the particles accreted contributed
to the star baryonic mass. In the left plot we adopt that the star accretes all the particles angular
momentum. In the right plot we adopt that the star accretes from a disk-like structure, namely that
the angular momentum evolution is dictated by the disk-accretion torque (see text for details). In this
example the initial binary system is formed by the COcore of the 25M⊙ progenitor and a 2M⊙ NS with
an orbital period of about 5 min. The red lines correspond to a SN explosion of 1.57 × 1051 erg, while
for the blue line the explosion energy has been scaled by a factor η = 0.7, leading to 6.5× 1050 erg.
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Figure 5.16.: Evolution of the νNS (dashed line) and the NS companion (solid line) in the mass-
dimensionless angular momentum (Mstar-jstar) plane. The angular momentum evolution is dictated by
the disk-accretion torque given by Equation (5.29), where we have introduced the efficiency parameter,
χ ≤ 1, that accounts for angular momentum losses between the disk and the stellar surface. The initial
binary system is formed by the COcore of the 25M⊙ progenitor and a 2M⊙ NS with an orbital period of
about 5 min. The SN explosion energy has been scaled by η = 0.7 (Model 25M1p07e of table 5.2).
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Since we are assuming that the angular momentum of the accreted particles is totally
transferred to the NS, even the accretion of a little amount of mass might bring it soon to
the mass-shedding limit (see Figure 5.15). However, we see in the simulations that kind
of disk is form around the NS, then before they being actually accreted, they circularize
and loose angular momentum owing to the friction force developed in the disk. In this
picture, we need to integrate equation (5.27) assuming that the star angular momentum
evolution is given by the disk accretion torque, as was done in Chapter 1:

J̇ns = l(Rd)Ṁb (5.28)

with l(Rd) being the specific angular momentum of the particles at the disk interior
radius, Rd. The disk interior radius will given by the last circular orbit around the NS,
see equation (1.39).

In the right panel of Figure 5.15 we show the evolution of the νNS and the NS companion
in the Mstar-jstar, for the same models that the ones of the left panel. In this case, we have
integrated equation (5.27) with equation (5.28), assuming again, that the particle mass
sums to the star baryonic mass and the disk viscous time scale is smaller that the accretion
time scale, i.e we used the mass accretion rate obtained from the SPH simulations. In
this cases, only the NS companion for the less energetic SN simulation reaches the mass-
shedding limit.

We have assumed until now a totally efficient transfer of angular momentum of the
particles from the inner disk to the NS surface. However, angular momentum losses
(e.g., by accretion outflows) should be taken into account. We model these losses intro-
ducing a parameter for the efficiency of the angular momentum transfer, χ ≤ 1 [see e.g.
13, and Chapters 1 and 2], defined as:

J̇ns = χ l(Rd)Ṁb. (5.29)

In Figure 5.16 we compare the evolutionary path on the mass-dimensionless angular mo-
mentum plane for two values of the efficiency parameter, χ = 0.5 and χ = 1.0. It can be
seen that angular momentum losses make the star to reach the secular instability limit,
namely the critical mass to collapse to a BH, instead of the mass-shedding limit. This
result is in agreement with the results presented in Becerra et al. [13, 14].

Table 5.5 lists the total angular momentum of the particles accreted by the binary
stars, Ltot, as well as the accreted mass, Mstar and accreted angular momentum, jstar =
cJstar/(GM

2
⊙) of the star when it crosses the stability region (if it does), or when the simu-

lation was stopped. We show the results for two selected values of the angular mosentum
transfer efficiency parameter, χ = 1 and 0.5. In the case of a totally efficient transfer of
angular momentum (χ = 1.0) the mass-shedding limit is reached first by the stars, while
if it is assumed angular momentun losses by adopting a lower value for χ parameter, the
stars reach first the secular axisymmetry instability. For low energetic SN explosion, it
is more probable that the νNS arrive to the mass-shedding limit. This is the case for
the less energetic explosion of the MZAMS = 15M⊙ progenitor, the 30M⊙ and also the
40M⊙ ones. On the other hand, there are few cases in which the NS companion arrives
first to the mass-shedding limit. The one in which the progenitor of the COcore is the
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Table 5.5.: Final state of the νNS and the NS companion

νNS NS

χ = 0.5 χ = 1.0 χ = 0.5 χ = 1.0

COcore Model Ltot MνNS jνNS Fate MνNS jνNS Fate Ltot MNS jNS Fate MNS jNS Fate

Mzams c/(GM2
⊙) M⊙ c/(GM2

⊙) M⊙ c/(GM2
⊙) c/(GM2

⊙) M⊙ c/(GM2
⊙) M⊙ c/(GM2

⊙)

15M⊙

15m1p07e 0.027 1.302 0.007 Stb 1.302 0.008 Stb 0.085 2.004 0.009 Stb 2.002 0.018 Stb

15m1p05e 0.069 1.303 0.009 Stb 1.303 0.016 Stb 0.323 2.004 0.019 Stb 2.004 0.037 Stb

15m1p03e 0.019 1.315 0.041 Stb 1.315 0.077 Stb 0.362 2.023 0.101 Stb 2.023 0.204 Stb

15m2p03e 0.091 1.303 0.08 Stb 1.303 0.017 Stb 0.579 2.006 0.026 Stb 2.006 0.056 Stb

15m1p01e 13.63 1.815 1.571 Stb 1.636 1.874 M-sh 19.373 2.157 0.701 Stb 2.159 1.377 Stb

15m2p01e 38.38 2.077 2.534 Stb 1.639 1.892 M-sh 12.533 2.080 0.35 Stb 2.080 0.693 Stb

15m3p01e 30.95 1.759 1.377 Stb 1.862 3.253 M-sh 2.004 2.045 1.197 Stb 2.045 0.388 Stb

25M⊙

25m1p1e 3.469 1.931 0.321 Stb 1.933 0.627 Stb 4.746 2.055 0.2467 Stb 2.056 0.497 Stb

25m2p1e 1.779 1.912 0.242 Stb 1.914 0.472 Stb 1.927 2.022 0.099 Stb 2.022 0.198 Stb

25m3p1e 1.085 1.912 0.229 Stb 1.912 0.399 Stb 1.944 2.018 0.0813 Stb 2.019 0.1639 Stb

25m1p09e 6.243 1.982 0.513 Stb 1.983 1.010 Stb 6.538 2.127 0.584 Stb 2.129 1.187 Stb

25m1p08e 7.331 2.038 1.449 Stb 2.031 1.365 Stb 9.870 2.258 1.242 Sc-in 2.348 3.576 Stb

25m1p07e 18.146 2.284 1.826 Stb 2.289 3.434 Stb 8.491 2.246 1.105 Sec-in 2.528 4.506 M-sh

25m2p07e 19.51 2.250 1.663 Stb 2.265 3.215 Stb 9.908 2.252 1.135 Sc-in 2.426 3.648 Stb

25m3p07e 21.34 2.214 1.476 Stb 2.226 2.812 Stb 17.292 2.004 2.246 Sc-in 2.425 3.638 Stb

30M⊙
a

30m1p1ea 0.077 1.756 0.021 Stb 1.756 0.044 Stb 0.059 2.006 0.026 Stb 2.006 0.052 Stb

30m1p07ea 0.954 1.758 0.032 Stb 1.758 0.062 Stb 0.366 2.012 0.053 Stb 2.012 0.106 Stb

30m1p05ea 1.828 1.764 0.053 Stb 1.764 0.107 Stb 4.073 2.028 0.125 Stb 2.028 0.251 Stb

30m1p03ea 3.560 1.842 0.3494 Stb 1.843 0.692 Stb 33.083 2.246 2.358 Sc-in 2.356 3.532 Stb

30m2p03ea 4.266 1.821 0.267 Stb 1.821 0.522 Stb 36.161 2.151 0.7006 Stb 2.154 1.426 Stb

30M⊙
b

30m1p1eb 64.935 2.379 2.614 Sc-in 2.215 3.507 M-sh 19.995 2.244 1.099 Sc-in 2.307 2.634 Stb

30m1p12eb 28.432 2.362 2.541 Stb 2.200 3.392 M-sh 33.681 2.244 1.100 Sc-in 2.304 2.606 Stb

30m2p12eb 26.508 2.397 2.807 Sc-in 2.162 3.297 M-sh 23.922 2.1801 0.802 Stb 2.1827 1.572 Stb

30m1p2eb 2.819 1.777 0.106 Stb 1.777 0.196 Stb 7.846 2.061 0.271 Stb 2.061 0.546 Stb

30m1p31eb 0.721 1.766 0.0611 Stb 1.766 0.105 Stb 1.6715 2.014 0.062 Stb 2.014 0.122 Stb

40M⊙

40m1p1e 1.125 1.874 0.081 Stb 1.873 0.132 Stb 11.504 2.056 0.2453 Stb 2.056 0.4918 Stb

40m1p09e 2.189 1.875 0.087 Stb 1.875 0.164 Stb 25.669 2.236 1.097 Stb 2.236 2.247 Stb

40m1p08e 3.468 1.879 0.105 Stb 1.879 0.199 Stb 30.146 2.254 1.22 Sc-in 2.405 4.060 M-sh

40m1p07e 9.963 2.042 0.7631 Stb 2.042 1.486 Stb 34.074 2.243 1.09 Sc-in 2.526 4.491 M-sh

40m2p07e 9.6264 2.023 0.689 Stb 2.024 1.343 Stb 42.97 2.245 1.100 Sc-in 2.522 4.458 M-sh

40m4p07e 10.333 1.942 0.342 Stb 1.942 0.652 Stb 27.474 2.246 1.129 Sc-in 2.4135 3.6104 Stb

40m1p06e 171.063 2.310 1.948 Sc-in 2.338 3.857 M-sh 63.31 2.244 1.098 Sc-in 2.529 4.518 M-sh

40m2p06e 121.594 2.318 1.987 Sc-in 2.331 3.793 M-sh 45.944 2.244 1.096 Sc-in 2.527 4.506 M-sh

40m1p05e 11.593 2.316 1.197 Sc-in 2.338 3.861 M-sh 5.434 2.133 0.588 Stb 2.134 1.158 Stb

NOTE—Stb: stable configuration; M-sh: mass-shedding limit; Sc-in: secular axisymmetric instability.
a
Esn = 1.09× 1052 erg

b
Esn = 2.19× 1051 erg

MZAMS = 25M⊙ star, the SN energy was scaled with η = 0.7, and the orbital binary
period is the shortest one. Also, when the progenitor of the COcore is a MZAMS = 40M⊙

star and the SN energy was scaled with η = 0.8, η = 0.7 and η = 0.6.
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Notice that in the case with η = 0.8 and χ = 1 the NS companion arrives to the mass-
shedding limit, and with χ = 0.5 arrives to the secular instability limit, but the final
system is unbound after the SN ejecta leave the system. This contradicts the results in
Fryer et al. [88] where was concluded that almost the 100% of the final binary systems
NS-BH produced in the BdHNe will remain bound, after following the evolution of the
binary parameter in the IGC scenario. However there was studied progenitors with ejecta
masses up to 8M⊙ and the MZAMS = 40M⊙ has ≈ 11M⊙ of ejected mass, making the
accretion on the NS becomes higher to maintain the system bound.

We turn now to analyse the relevance of the ξ-parameter of equation (5.15) on the mass-
accretion rate onto the star. Until now, we have assumed a value ξ = 0.1 for this para-
meter. A larger value of ξ results in higher accretion rates: it allows a bigger gravitational
capture radius and then more particles can be accreted by the star. In this way, a ξ = 1.0,
the maximum value that ξ can have, will establish an upper limit for the mass accretion
rate onto the star. We can also establish a lower limit for the accretion rate, if we allow
the star just accretes the particle which angular momentum is equals or smaller that the
angular momentum that a particle orbiting the star would have at the last circular orbit.
An equivalent condition is to adopt a varying ξ parameter that equals the capture radius
to the radius of the last stable orbit, rISCO. But, since the rISCO for the NS is of the
order of the NS radius, i.e. ∼ 10 km, we will need to increase considerably the number of
particles to be able to resolve the NS surface.

We have re-run the SPH simulations adopting different values for ξ, for the initial binary
system formed by the COcore of the MZAMS = 25M⊙ and a 2M⊙ binary system with
an orbital period of about 5 min. In Figure 5.17 we show the accretion rate on the NS
companion for ξ = 1.0, 0.5 and 0.1. The label ξ = ξjisco corresponds to the case in which
the star just accretes the particles which angular momentum is smaller that the angular
momentum of the last stable orbit. The late mass-accretion rate of the simulations with
ξ = ξjisco and ξ = 0.5 and 1.0 fall almost with the same power law, Ṁ ∝ t5/3. Also, for
the same simulation, in Figure 5.18 show snapshots of the density surface at the binary
equatorial plane at two different times.

The simulation with ξ = 1.0 and ξ = 0.5 gives greater peaks for the mass accretion rate.
This is expected since in these cases the NS capture radius is larger, the star cleans up its
surrounding and produces, at later times, a quickly dropping accretion rate. Comparing
this simulation with the one with ξ = 0.1, we can deduce that there is a delay time
between the particles are gravitational captured by the star and the time it is actually
accreted by it. We should expect that the simulation with ξjisco give a better resolution
of the disk around the NS companion. However, the artificial viscosity used in the code
was introduced in order to resolve shocks and does not model the disk viscosity [119].
Then, we are seeing that the particles that circularize around the star, at some point
scape from the NS gravitational field, making the mass-accretion rate to drop (see figure
5.18). In Table 5.6 we summarize the parameters that characterize the final state of the
NS companion as well as the final binary system. We have re-run simulation with the
MZAMS =25, 30 and 40 M⊙ progenitors of the COcore.
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Figure 5.17: Mass-accretion rate
onto the NS companion adopting
different values for the ξ para-
meter of equation (5.15). This
parameter controls the size of
the particle capture radius. A
value ξ = 1.0 establish an up-
per limit on the mass-accretion
rate. We also defined a lower
limit on the accretion (red line),
allowing to the star just accreted
those particles that have an an-
gular momentum smaller that
the angular momentum of the
last stable orbit. The initial bi-
nary configuration is the one of
Figure 5.4.
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Figure 5.18.: Snapshots of the surface density mass. The initial binary system is form by the COcore

of a MZAMS = 25M⊙ progenitor and a 2M⊙ NS with an initial orbital period of around 5min. For the
plots in upper panel have been past around one orbital period of the initial binary system, 300 seconds,
and for the plots of the bottom panel, the time correspond to about 24 minutes from the beginning of
the simulation. The vertical panels correspond to different values for the ξ parameter in equation 5.15,
from the second to the fourth it is: 0.1, 0.5 and 1.0. In the simulation label jisco have been allow the
star accretes just the particles that has an angular momentum smaller than the one it has in the star last
stable orbit.
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Table 5.6.: NS companion final state

Progenitor η ξ ∆Macc ∆lacc mbound aorb

MZAMS M⊙ c/(GM2
⊙) M⊙ 1010 cm

25M⊙ 1.0 jisco 0.011 0.0097 0.00238 14.96

0.1 0.078 4.746 0.081 8.11

0.5 0.171 31.921 4.97× 10−3 9.78

1.0 0.211 42.148 1.31× 10−3 48.87

0.7 jisco 0.049 0.087 0.077 1.724

0.1 0.659 7.765 0.1603 1.021

1.0 0.633 225.64 4.53× 10−3 1.575

30M⊙ 2.0 0.1 0.077 7.846 5.6× 10−3 −
2.0 1.0 0.172 22.166 5.3× 10−4 −

40M⊙ 0.8 0.1 0.457 30.147 0.0165 −
0.8 1.0 0.545 56.835 7.03× 10−3 −

5.6. Consequences on GRB analysis

We have recently addressed in Ruffini et al. [247] the essential role of X-ray flares in
differentiating and act as separatrix between the BdHN model and the collapsar-fireball
model of GRBs [310]. Previous works show that gamma-ray spikes in the prompt emission
occur at 1015–1017 cm from the GRB site with Lorentz factor Γ ∼ 102–103. Instead, the
analysis of the thermal emission of the X-ray flares in the early (source rest-frame times
t ∼ 102 s) afterglow of long GRBs, shows that they occur at radii ∼ 1012 cm and expand
mildly-relativistically with Γ . 4 [247]. These model independent observations are in
contrast with an ultra-relativistic expansion all the way from the GRB prompt emission
to the afterglow, as traditionally adopted in the majority of the GRB literature.

Based on the SN ejecta profiles obtained in our previous simulations of BdHNe [13], we
have shown in Ruffini et al. [247] [see also 176] that, within the BdHN model, the collision
of the initial e+e− plasma of the GRB with the SN ejecta occurs at 1010 cm and reaches
transparency at 1012 cm with Γ . 4. This result shows the agreement of the BdHN
scenario with the X-ray flares observations.

The new set of 3D simulations presented in this work serves to perform new simulations
of the dynamics of the e+e− plasma, relativistically expanding from the newborn BH and
impacting onto the SN ejecta, then expanding as a baryon-loaded plasma all the way to
the reach of transparency. This process will have different signatures along the different
directions around the newborn BH in view of the SN density asymmetries, both along
the orbital plane itself or between it and the orthogonal ones. Our results show that,
indeed, there is a region of poor baryon pollution created by the accretion process where
the e+e− plasma can reach ultra-relativistic velocities with Γ ∼ 102–103 that explains the
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prompt emission being emitted at 1015–1017 cm from the GRB site. The analysis of the
expansion of the e+e−-baryon plasma along all the other directions will be essential for
the explanation of the additional light-curve and spectral properties of the X-ray flares,
of the gamma-ray flares, as well as of the GeV emission of BdHNe (Aimuratov, et al., to
be submitted).

On the other hand, we have evaluated in our simulations if the binary holds gravitationally
bound or it becomes unbound by the SN explosion. Therefore, we are determining the
space of initial binary and SN explosion parameters leading to the formation of νNS-NS
or νNS-BH binaries. This topic is of relevance for the connection between long and short
GRBs and their relative density rate and will be the subject of forthcoming works.

5.7. Conclusions and perspectives

We have performed the first full numerical 3D simulations of the IGC scenario: in a COcore-
NS binary system, the COcore collapses and explodes in a SN triggering a hypercritical
accretion process onto the NS companion. The initial conditions for the simulations were
constructed as follows. The COcore stars are evolved using the KEPLER evolution code
[112] until the conditions for the collapse are met. Then, the stars are exploded with the
1D core-collapse code [84]. When the forward SN shock reaches the stellar radius, we map
the explosion to a 3D-SPH configuration and continue the evolution of the SN expansion
with a NS binary companion using the SNSPH code [89].

We followed the evolution of the SN ejecta, including their morphological structure, under
the action of the gravitational field of both the new NS νNS and the NS companion. We
estimated the accretion rate onto both stars with the aid of Equation (5.27). The baryonic
mass-accretion rates are calculated from the mass of the SPH particles accreted. We have
seen a formation of a kind of disk around the NS companion from the simulations (e.g.
see Figure 5.2), the angular momentum rate are determined assuming the particles are
accreted from the last stable orbit.

We determined the fate of the binary system for a wide parameter space including different
COcore masses (see table 5.1), orbital periods and SN explosion geometry and energies. We
evaluate, for selected nuclear EOS of NSs, if the accretion process leads the NSs either
to the mass-shedding limit, or to the secular axisymmetric instability for gravitational
collapse to a BH, or to a more massive, fast rotating, but stable NS. We assess if the
binary holds gravitationally bound or it becomes unbound by the SN explosion. With
this information we determined the space of initial binary and SN explosion parameters
leading to the formation of νNS-NS or νNS-BH binaries.

In order to generate a high accretion rate on the NS companion, we have shown that the
energy of the SN explosion needs to be high enough, otherwise the particles will not be
able to escape from the νNS gravitational field, i.e. a considerable amount of gas will do
fallback inducing the collapse of νNS instead of the NS companion. On the other hand,
we have shown that the SN energy can not be so high, in this case the SN ejecta will pass
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the NS companion being almost unperturbed by the NS gravitational field. Weak SNe
does not produce an appreciable increment in the NS accretion-rate but it longer the time
of the accretion at high rate making the total accreted mass to be larger for the weaker
SN explosions.

In general, the probability that the binary system after the SN event becomes disrupted
decreases with the accretion of mass by the binary stars. Then, for the most massive pro-
genitors of the COcore (e.g. MZAMS = 40M⊙) and the wider binary initial configurations,
we expect that the binaries will be disrupted when the COcore collapses and the SN is
launched. This can be easily explained since the initial binary period scales the accretion
rate, tighter orbits developed higher accretions, and a massive progenitor will eject more
mass in the SN.

Finally, we discussed in section 5.6 some of the consequences of our simulations in the
analysis of long GRBs. Recent results on the thermal emission of the X-ray flares in the
early (source rest-frame times t ∼ 102 s) afterglow of long GRBs show that they occur
at radii ∼ 1012 cm and expand mildly-relativistically with Γ . 4. This was shown to
be agreement with the BdHNe of the IGC scenario [see 247, and section 5.6 above for
details]: the e+e− plasma of the GRB, relativistically expanding from the newborn BH,
collides with the SN ejecta at distances of the order of 1010 cm, to then reach transparency
at 1012 cm with Γ . 4. The 3D simulations presented in this work will be essential to
explore the dynamics of the e+e− plasma along all spatial directions and to estimate, as
a function of the viewing angle, the light-curve and spectral properties of BdHNe.

These 3D numerically simulations constitute a step forward in the understanding of the
IGC scenario. However, there are many aspects that could be implement in the SPH code
in future studies. In other to reduce the uncertainties on the ξ parameter, the simulation
of accretion process could be improved if the physics needed to model the disc formed
around the NS companion are introduced, e.g. an α-viscosity formalism. On the other
hand, in these simulations, we have modeled the binary star as point particles. If they can
be modelled as 3D objects, would be possible to follow the particles until its incorporation
on the star and study also the hydrodynamics closed to the NS surface as well as study
the structure evolution of the accreting stars.
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6. The Spin Evolution of
Fast-Rotating, Magnetized
Super-Chandrasekhar White
Dwarfs in the Aftermath of White
Dwarf Mergers

6.1. Introduction

Type Ia supernovae (SNe Ia) are one of the most energetic explosive events in the cosmos.
Since there is a well established relationship between their intrinsic brightnesses and
the shapes of their light curves [206] and, moreover, because they are so luminous that
they can be detected at very large distances, SNe Ia can be used as as standardizable
cosmological candles. This has opened a new era in cosmology, and has enabled us to
measure the acceleration of the universe [205, 225]. Additionally, SNe Ia play an important
role in modern cosmology, since they allow us to probe the fundamental physical theories
underlying dark energy – see, for instance, [305] for a recent review on this interesting
topic.

Nevertheless, despite the importance of SNe Ia, we still do not know the nature of their
progenitor systems. Actually, this has remained a long-standing mystery for various
decades. We do know that the outburst is driven by the explosion of a carbon-oxygen white
dwarf in a binary system, but we do not know the precise mechanism that destabilizes the
white dwarf. Several hypothesis have been put forward over the years, and most likely
SNe Ia may have a diversity of progenitors. In the following we superficially describe
the possible evolutionary channels leading to a SN Ia. In the so-called single-degenerate
channel (SD) a white dwarf in a binary system accretes matter from a non-degenerate
companion, and explodes as it approaches the Chandrasekhar limiting mass – see, for
instance, [109] for a recent discussion. In the double-degenerate scenario (DD) two white
dwarfs members of a close binary system lose angular momentum and energy through the
radiation of gravitational waves, and a merger occurs [124, 304]. Another possible scenario
is the core-degenerate scenario (CD). Within this formation channel a hot core is formed
at the end of the common envelope phase of the binary system [142, 162], and the merger
of the core of the asymptotic giant branch (AGB) star and a secondary white dwarf powers
the explosion – see [8] for a simulation of the merger process. Another recently proposed
pathway is the white dwarf-white dwarf collisional scenario, in which two white dwarfs
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collide – see [7] for a recent summary of the relevant literature on the subject. Despite
some attractive features of this scenario, it has been shown that it can only account for
at most a few per cent of all SNe Ia [125]. Each of these formation channels has its own
advantages and drawbacks, and in some cases these are severe. Currently, one of the most
favored ones is the DD channel, because it provides adequate answers to two important
observational facts, namely the absence of hydrogen in the nebular phase [158], and the
delay time distribution [288]. Consequently, we focus on it.

Smoothed Particle Hydrodynamics (SPH) simulations of the coalescence of binary white
dwarfs show that a prompt explosion is not always the result of the interaction during the
dynamical phase of the merger [164, 317]. Only those binary systems in which both the
secondary and primary stars are massive enough lead to a SN Ia outburst. Actually, the
parameter space for violent mergers is very narrow [201, 254], and only when two carbon-
oxygen white dwarfs of masses larger than ∼ 0.8M⊙ merge the result of the dynamical
phase is a prompt explosion. Within this theoretical framework, the dynamical phase of
the merger is followed by a second phase in which the material of the debris region can
be accreted and possibly lead to a SN Ia explosion.

The existing simulations of the coalescence of binary white dwarfs [17, 54, 164, 220, 325]
show that the final result of the coalescence consists of a central white dwarf made of the
undisrupted primary star and a hot, convective corona made of about half of the mass of
the disrupted secondary. This central remnant is surrounded by a heavy Keplerian disk,
made of the rest of the mass of the disrupted secondary, since little mass is ejected from
the system during the merger episode. The rapidly-rotating, hot corona is convective and
an efficient αω dynamo can produce magnetic fields of up to B ≈ 1010 G [96]. Recent
two-dimensional magneto-hydrodynamic simulations of post-merger systems confirm the
growth of the white dwarf magnetic field after the merger [141, 326]. Thus, the role of
magnetic fields in the aftermath of the dynamical merger needs to be explored. This is
precisely the aim of the present work, as very few studies [15, 141, 153] of the post-merger
evolution including magnetism has been done so far. On the other hand, there are few
works that explore the evolution of the post-merger systems but without considering the
effects of the central remnant magnetic-field – see, e.g., [317], [293], [262], and [259].

This chapter is organized as follows. In Section 6.2 we explain the model of the evolution
of the post-merger system. In particular, we describe the torques that act on the central
remnant (Section 6.2.1), the structure of the rotating central white dwarf (Section 6.2.2),
and its thermal evolution (Section 6.2.3). In Section 6.3 we present the prescriptions ad-
opted to model the accretion rate on the central star. In Section 6.4 we present our choice
of initial conditions. Later, in Section 6.5, we discuss extensively the results of our simula-
tions for two prescriptions to compute the accretion rate. Specifically, in Section 6.5.1 we
discuss the case in which the accretion rate is obtained employing the cooling timescale,
while in Section 6.5.2 we present the results obtained when it is computed using the vis-
cous timescale. Finally, in Section 6.6 we compare with previous works and in Section 6.7
we summarize our major findings, we elaborate on their significance and we present our
concluding remarks.
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6.2. Numerical setup for the post-merger evolution

Numerical simulations of binary white dwarf mergers indicate that in those cases in which
a violent merger does not occur the merged configuration has three distinct regions [17,
54, 106, 164, 220, 325]. First, a central white dwarf that rotates as a rigid solid. On top
of it a hot, differentially-rotating, convective corona can be found. This corona is made
of matter accreted from the disrupted secondary star. The mass of this region is about
half of the mass of the secondary white dwarf. Finally, surrounding these two regions
there is a rapidly rotating Keplerian disk, which is made of the rest of the material of the
disrupted secondary, since only a small amount of mass is ejected from the system during
the coalescence. The evolution of the post-merger configuration depends, naturally, on
the mass of the central remnant, which is made of the primary white dwarf and the hot
corona, and on the properties of the surrounding disk.

Before entering into details it is important to discuss some timescales, which are relevant
to adopt a reasonable approximation for the evolution of the system. The post-merger
configuration formed in the coalescence has a clear hierarchy of timescales. First comes the
dynamical timescale tdyn ∼ Ω−1, being Ω the rotation velocity. This timescale is typically
of the order of a few seconds. Next in order of magnitude is the viscous timescale, tvisc,
of the Keplerian disk. This timescale governs the transport of disk mass inwards and of
angular momentum outwards. The viscous phase of the evolution is normally followed
using the Shakura-Sunyaev α prescription [260]. Adopting typical values van Kerkwijk
et al. [293] found that tvisc ranges between 103 and 104 s. However, for the merger remnants
studied here we find that the viscous timescales could be significantly shorter, typically
1 s – see Section 6.3.2 . These viscous timescales are a little longer, but of the same
order, of the dynamical timescale of the post-merger Super-Chandrasekar WD studied
here (tdyn ∼ 0.2 − 0.3 s, see Section 6.2.2). Finally, in this set of characteristic times is
the thermal timescale of the merger product, tth, which is typically much longer and will
be discussed in detail for every simulation.

In the following we first discuss the interactions between the remnant and the disk in
order to identify the torque that acts on the central remnant and model the evolution
of its angular momentum. Then we present how we model the structure of the rotating
white dwarf central remnant, as well as its thermal evolution. The fate of the white dwarf
depends crucially on the accretion rate in the post-merger phase. Thus, we consider two
very different physical scenarios to determine the accretion rate onto the central remnant.
In the first of them the accretion rate is determined by the viscous time-scale, whereas in
the second scenario the accretion rate is governed by thermal time-scale. These will be
discussed in Section 6.3.

6.2.1. Torques on the central remnant

The most commonly employed model of disk evolution is that of Ghosh & Lamb [99].
This model was later improved by Wang [298], and Wang [299]. Within this model the
magnetic field of the remnant penetrates the disk in a broad transition zone as a result
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of the Kelvin-Helmholtz instabilities, turbulent diffusion and magnetic field reconnection.
Furthermore, the material of the disk corotates with the star only in a narrow region, and
reaches its surface channeled by the magnetic field lines. We assume that the magnetic
field of the remnant penetrates the disk up to approximately the Alfvén radius [57]:

Rmag =

(

µ2
WD

Ṁdisk

√
2GMWD

)2/7

, (6.1)

where µWD = BWDR
3
WD is the magnetic moment of the star, BWD its magnetic field, and

Ṁdisk is the mass flow through the inner radius of the disk, R0.

The angular momentum per unit mass entering into the magnetosphere of the white dwarf
through the inner radius is l0 = R2

0Ω
0
K, where

Ω0
K =

(

GMWD

R3
0

)1/2

(6.2)

is the Keplerian angular velocity at R0. This material is channeled by the magnetic field
onto the surface of the remnant. Thus, the resulting spin-up torque on the star due
accretion of disk matter is given by:

Tacc = ξaccṀWDR
2
0ΩK(R0), (6.3)

where ṀWD = εṀdisk is the mass accretion rate on the white dwarf, ε measures how effi-
cient accretion is, and ξacc is a parameter that accounts for the deceleration of the accreted
matter in the inner region of the disk. The values adopted for these two parameters will
be discussed below. If the star rotates faster than the matter at the inner disk radius, the
centrifugal barrier blocks this material. Hence, it cannot reach the surface of the newly
born white dwarf. This matter is therefore ejected from the system. This happens when
the inner edge of the disk moves beyond the corotation radius, that is beyond the distance
at which the disk rotates with the same angular velocity of the central object:

Rco =

(

GMWD

Ω2
WD

)1/3

. (6.4)

When R0 > Rco, the system enters into the dubbed propeller regime [126]. During this
phase, the material reaching the magnetosphere is ejected with higher specific angular
momentum that the one it had previously, thus resulting in a spin-down torque acting on
the star. This torque is given by [178]:

Tprop =
√

GMWDR0Ṁdisk (1− ωf) , (6.5)

In this expression we have introduced the so-called fastness parameter:

ωf = ΩWD/ΩK(R0) = (R0/Rco)
3/2 (6.6)

The rotating magnetic field of the star originates an induced electric field that results in
a wind. The wind fills the magnetosphere and corotates with the star [102]. At the light-
cylinder, Rlc = c/ΩWD, the corotation velocity reaches the speed of light, delimiting the
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region within which corotation of the magnetosphere is enforced. At larger distances, the
field lines become open. For the spin-down torque due to electromagnetic energy losses
in a force-free magnetosphere, Tdip, we adopt the result of [273]:

Tdipole = k1
µ2
WDΩ

3
WD

c3
(1 + k2 sin

2 θ), (6.7)

with k1 = 1 ± 0.05 and k2 = 1 ± 0.1, and θ is the angle between the magnetic moment
and the rotation axis of the star.

Finally, an additional torque, Tmag, results from the interaction of the disk with the
magnetic field of the white dwarf. According to Ghosh & Lamb [99], matter of the disk
moving in the magnetic field of the white dwarf generates currents that confine the stellar
field inside the disk. The magnetic field threading the disk is ~Bdisk = η ~Bp

WD, where ~BWD is
the magnetic field of the white dwarf, ~Bp

WD is its projection on the plane of the disk, and
η ≤ 1 is the screening coefficient which accounts for the effect of currents in the partially
diamagnetic disk induced by the stellar field. In particular, the poloidal field induces an
azimuthal current due to the radial motion of the plasma, that partially screens the stellar
magnetic field. Also, the relative motion between the disk and the star magnetosphere
generates a toroidal field, Bφ. In the simulations, we have considered that the growth of
Bφ is limited by diffusive decay due to turbulent mixing within the disk [299]. Following
the analytical formulation of Wang [301], the magnetic torque acting on the central star
due to its interaction with the disk is given by:

Tmag =
Γη2µ2

WD

R3
0

[

2h

R0

(1− ωf ) sin
2 θ +

cos2 θ

3
(1− 2ωf )

]

, (6.8)

with h ≪ 1 the thickness of the disk, and Γ ≃ 1 is a parameter that characterizes the
steepness in the vertical transition from Keplerian rotation inside the disk to corotation
with the star at the top of the disk. In the derivation of equation (6.8), the magnetic
field of the white dwarf has been approximated as a dipole and it was assumed that the
rotating axis of the star is perpendicular to the plane of the disk. Note that this expression
generalizes the models of Wang [298, 299].

Based on this, the post-merger evolution of the angular momentum of the white dwarf
is the result of the combined effect of the dipole radiation torque, Tdipole, the accretion
torque, Tacc, the disk-interaction torque, Tdisk, and the propeller torque Tprop:

J̇WD =























Tacc RWD > R0

Tacc + Tdipole + Tmag RWD < R0 ∧ ωf ≤ 1

Tdipole + Tprop RWD < R0 ∧ ωf > 1

(6.9)

In the simulations presented here we assumed that the inner disk radius is the Alfvén
radius.
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6.2.2. Rotating white dwarf configurations

We follow the evolution of the spin of the post-merger remnant calculating at every
timestep the new stable rotating configuration with mass, MWD + δM , and angular mo-
mentum, JWD+δJ , adopting the slow rotation approximation [110, 111]. We also assumed
that the central remnant product of the merger rotates as a rigid body, as predicted by
detailed SPH simulations [164]. The equation of state of the white dwarf is assumed to be
that of a zero temperature degenerate electron gas [42], to which we add the corresponding
contribution of ions.

The region of stability of uniformly rotating white dwarfs is bound by the secular axisym-
metric instability limit, the mass-shedding or Keplerian limit, and the inverse β-decay
instability limit, that for pure carbon is 3.49× 1010 g cm3 [30, 226].

Figure 6.1 shows the mass-central density relation for the general relativistic uniformly
rotating white dwarfs: the static, Keplerian, secular axisymmetric instability and inverse
β-decay sequences enclose the stability region. The mass-shedding, or Keplerian, limit is
reached when the angular velocity of the star equals the Keplerian velocity of a particle
orbiting at the equator, namely when the centrifugal and gravitational forces are balanced.
In this situation matter at the surface of the star is marginally bound to it. Hence, small
perturbations result in mass loss until the star becomes either stable again or arrives to a
dynamical instability point [263, 275]. If the white dwarf crosses the β-decay instability
limit, electrons are captured by nuclei. Since the principal contribution to the pressure
of the star comes from electrons, electron captures reduce the pressure, leading to an
instability [253]. The secular axisymmetric instability arises because the star is unstable
with respect to axisymmetric perturbations. In a first phase, the star is expected to
evolve quasi-stationarily with the instability growth timescale, which depends on the
time required for angular momentum to be redistributed either by viscous dissipation,
or by the emission of gravitational waves [43]. This timescale is typically long compared
to the dynamical timescale [30], except in the non-rotating case where they are equal,
because in this case there is no angular momentum to be redistributed. Eventually,
when the star crosses the dynamical instability limit, gravitational collapse takes place
[275]. A sufficient (but not necessary) condition for the onset of secular instability can
be obtained using the turning-point method Friedman et al. [76]. This method considers
a sequence of uniformly rotating models of a given (constant) angular momentum. The
secular axisymmetric instability sets in at the density of the turning-point:

(

∂ M(ρc, J)

∂ ρc

)

J

= 0. (6.10)

Finally, the maximum mass of static configurations is the Chandrasekhar limiting mass
Mmax = MCh ≈ 1.4M⊙, while the maximum mass of rotating white dwarfs lies on the
Keplerian sequence MJ 6=0

max = 1.52M⊙. The configurations with mass between MJ=0
max <

MWD < MJ 6=0
max are called super-Chandrasekhar white dwarfs, and are metastable since

they are supported by rotation. As the angular momentum of the star varies the central
white dwarf necessarily evolves towards one of the previously described instability limits
(mass-shedding or secular axisymmetric instability).
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Figure 6.1: Instability lines
of rotating white dwarfs
in the diagram of mass
versus central density. The
stability region is delimi-
ted by the static sequence
(black line), the Keplerian
sequence (orange line), the
line of secular instability
(green line), and the inverse
β-decay line (blue).

6.2.3. Temperature of the central remnant

We turn now to the thermal evolution of the central white dwarf remnant. We have
seen above in sections 6.2.1 and 6.2.2, and we shall see below from the energy balance
and transport equations, that the structure and thermal evolution of the white dwarf
depend crucially on the accretion rate, which is set by the disk physics. In section 6.3 we
analyze the evolution and fate of the post-merger system for two physical prescriptions
to set the accretion rate. In the first case the infall rate is driven by the disk angular-
momentum transport (viscous) timescale which, owing to its shortness for the present
binary parameters, leads to highly super-Eddington rates. It has been argued in the
literature that the dissipation required to produce such very short viscous timescales
might heat the disk to the point of carbon ignition [see, e.g., 186]. Such effects are not
accounted for in the disk model we adopt in this work. In order to account for the
possibility that the disk self-regulate avoiding very high accretion rates, we evaluate a
second case in which the matter infall is driven by the cooling timescale. We show that
this assumption leads to infall rates near the Eddington limit value.

The thermal evolution of an accreting white dwarf has been studied by many authors
[196, 250, 317]. The main goal of most of these works was to establish whether the
conditions that may lead to a type Ia supernova were reached. For instance, in a pioneering
work Nomoto & Iben [196] found that for accretion rates larger than a critical value
Ṁcrit ≈ 2× 10−6M⊙ yr−1, the outer layers of the star are heated by mass accretion, while
heat conduction and neutrino emission cool it. This results in a thermal inversion near the
surface of the star, and ultimately leads to an off-center carbon ignition. Saio & Nomoto
[250] followed the subsequent evolution of the star and determined that carbon is burned
in the entire white dwarf, being the final outcome an oxygen-neon white dwarf. However,
these works only considered non-rotating configurations and constant accretion rates.
More recently, Yoon et al. [317] studied the viscous evolution of remnants of white dwarf
mergers introducing the effects of rotation but did not consider the effects of the magnetic
field of the white dwarf. The post-merger object was modeled as a differentially rotating
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white dwarf with a cold core and a hot envelope accreting mass from a surrounding
Keplerian disk at a constant rate. This allowed them to compute the conditions under
which the off-center ignition can be avoided for the case in which the magnetic field is not
taken into account

We have explained above (see Sect. 6.2.1) how the rotation rate of the merged remnant
evolves due to the interaction of the magnetic field and the disk, and which are the
equilibrium configurations of the the rotating white dwarf. However, during the course
of the evolution the temperature of the white dwarf also changes due to accretion from
the disk, which heats the white dwarf interior. This, in turn, may trigger a type Ia
supernova explosion. In order to assess this possibility, we follow the evolution of the
interior temperature of the post-merger central white dwarf in an approximate way, which
is described next.

The equation of energy conservation reads:

dL

dm
= ǫnuc − ǫν + T ṡ, (6.11)

where m is the mass coordinate (i.e., the mass enclosed within the radial distance r),
L is the luminosity, T the temperature, s the specific entropy, and ǫnuc and ǫν are the
energy release and energy loss per unit mass by nuclear reactions and neutrino emission,
respectively.

For carbon-oxygen white dwarfs, thermonuclear energy is essentially released by two nuc-
lear reactions:

12C +12 C → 20Ne + α + 4.62MeV, (6.12)
12C +12 C → 23Na + p + 2.24MeV, (6.13)

with nearly the same probability. We adopted the carbon fusion reaction rates of Gasques
et al. [97], which are valid for all regimes of ρ and T , that is from the thermonuclear
regime to the pynonuclear regime. For the neutrino energy losses, we used the analytical
fits of Itoh et al. [128], which consider electron-positron pair annihilation (e−e+ → νν̄),
photo-neutrino emission (e + γ → eνν̄), plasmon decay (γ → νν̄), and electron-nucleus
bremsstrahlung [e(Z,A) → e(Z,A)νν̄]. As it will be discussed in below, the dominant
channel for neutrino losses in the central regions is electron-nucleus bremsstrahlung, while
in the outer layers, emission of neutrinos is dominated by plasmon decay.

The energy flux is given by:
dT

dr
= − 3

16σ

κρ

T 3

L

4πr2
, (6.14)

where σ is the Stephan-Boltzmann constant and κ is the opacity, which can be written
as:

1

κ
=

1

κcond
+

1

κrad
, (6.15)

with κrad and κcond the Rosseland mean radiative opacity and the conductive opacity,
respectively. In the white dwarf core degeneracy is so high that the most efficient transport
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mechanism is conduction. Hence, the opacity is dominated by the first term. We adopted
the thermal conductivity of Itoh et al. [130, 134], whereas for the radiative opacity we
used Kramer’s law, κrad = 4.34× 1024ρT−3.5 cm2 g−1.

The change of entropy with time can be obtained from:

T ṡ = cvṪ −
[

P

ρ2
−
(

∂ u

∂ ρ

)

T

]

ρ̇ (6.16)

where u is the specific internal energy and cv the specific heat capacity at constant volume.
The first term of the right-hand side of Eq. (6.16) corresponds to the release of the internal
energy, while the second term accounts for the change of gravitational potential energy
due to the expansion or compression of the configuration.

To evaluate the term in square brackets in Eq. (6.16) we considered a fully ionized non-
ideal electron-ion plasma, taking into account the ion-ion and the ion-electron Coulomb
interactions, and also the exchange-correlation corrections of electrons. We note that
for super-Chandrasekhar white dwarfs both Coulomb corrections and quantum effects are
important. The importance of Coulomb corrections is measured by the Coulomb coupling
parameter Γ = Z2e2/(aT ), where a = (3/(4πni)

1/3 is the mean interaction distance and
ni the ion number density. At Γ . 1 the ions behave as a gas, at Γ > 1 as a strongly
coupled Coulomb liquid, while crystallization occurs at Γ ≈ 175. Quantum effects become
important at temperatures smaller than Tp = ~ωp/kB, where ωp = (4πZ2e2ni/mi)

1/2 is
the ion plasma frequency. Finally, we used analytical fits to the heat capacity obtained
from the free energy computed by Chabrier & Potekhin [41] and Potekhin & Chabrier
[216].

Following Nomoto [194], we obtained the density change by adopting the white dwarf
mass coordinate, qWD ≡ m/MWD, as the independent variable:

ρ̇ =

[

(

∂ ρ

∂MWD

)

qWD

− qWD

MWD

(

∂ ρ

∂qWD

)

MWD

]

ṀWD (6.17)

This equation explicitly provides the contribution of the global structural changes as well
as the contribution of the internal distribution of density to the thermal evolution during
the accretion process.

The post-merger evolution of the system is computed assuming that the central white
dwarf evolves in a sequence of stable configurations (see Sect.6.2.2). To calculate the
evolution of the temperature, at each time step we integrate Eqs. (6.11) and (6.14) using
Eqs. (6.16) and (6.17).

In order to integrate Eqs. (6.11) and (6.14), a set of boundary conditions at the surface of
the star must be adopted. We treat the material accreted in each interval time as a thin
envelope surrounding the star. Following Townsley & Bildsten [289], we assume that the
accreted material enters on top of the shell and pushes down the existing material deeper
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into the star. Then, the local heat equation becomes:

T

(

∂

∂t
+ vr

∂

∂r

)

s ≈ Tvr
∂s

∂r
=
dL

dm
− (ǫnuc − ǫν) (6.18)

where vr = ṀWD/(4πr
2ρ) is the velocity of the material given by mass conservation. We

constructed static envelopes for each stable configuration with total mass MWD and radius
RWD, integrating Eqs. (6.14) and (6.18).

To analyze if the newly formed white dwarf reaches during its evolution the conditions
suitable to produce a type Ia we adopted the following procedure. We first require as a
necessary condition that the white dwarf crosses the ignition curve, i.e. the curve in the
log ρ − log T plane where the nuclear energy released becomes larger than the neutrino
emissivity, ǫnuc = ǫν . For temperatures and densities beyond this curve nuclear energy
production exceeds neutrino losses and the star is heated, possibly leading to a supernova
outburst. Additionally, we require that burning proceeds in an almost instantaneous way.
The characteristic time τCC of nuclear reactions is:

τCC =
ǫnuc
ǫ̇nuc

≈ ǫnuc

(

Ṫ
∂ǫnuc
∂T

)−1

= cp

(

∂ǫnuc
∂T

)−1

, (6.19)

where cp is the specific heat at constant pressure. If this characteristic timescale becomes
shorter that the dynamical timescale

τ−1
dyn =

√

24πGρ, (6.20)

the star reaches the thermodynamic conditions necessary to explode as a type Ia super-
nova.

6.3. Mass accretion rate on the central remnant

As mentioned before, the accretion rate onto the post-merger central remnant can be
computed in two different ways. Within the first approximation, the accretion rate is set
by the thermal state of the envelope of the white dwarf [317]. Within the second one the
central remnant accretes mass from a thin Keplerian disk and its evolution is given by the
viscous time-scale – see [293] but also [141]. Since, due to the lack of full numerical analyses
of this process with realistic physical ingredients, it is not yet clear which one of these
treatments is more appropriate, we will calculate the evolution of the central white dwarf
remnant adopting both prescriptions and we will discuss the differences between both sets
of calculations. In both cases we are interested in determining the long-term evolution
central white dwarf taking into account the interaction between the disk and the magnetic
field resulting from the merger. To handle this problem, we adopt a simplified picture of
the post-merger system consisting of a magnetized rotating white dwarf surrounded by a
thin Keplerian disk.
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6.3.1. Accretion rate set by the thermal timescale

As discussed by Yoon et al. [317], the assumption that the accretion timescale is set by the
viscous time-scale given by the Shakura-Sunyaev α prescription could be inappropriate to
estimate the accretion timescale onto the newly-formed white dwarf since the structure
of the merged system deviates from a central, point-like mass surrounded by a thin disk
that is the central assumption adopted within the α-formalism. Yoon et al. [317] argued
that under these conditions the relevant timescale might be the cooling timescale of the
low density envelope between the central object and the disk. If the relevant timescale is
the cooling timescale of the envelope of the post-merger white dwarf, the accretion rate
will be given by:

ṀWD =
Mdisk

min(τν , τthermal)
(6.21)

where Mdisk is the total mass of the disk, and τν and τthermal are the neutrino cooling
time and the thermal time on the envelope of the white dwarf, respectively. These two
timescales are given by:

τν =
cv
ǫν
TS

∣

∣

∣

∣

S

, (6.22)

and

τthermal =
3

64σ

(∫

∆r

(κcv
T 3

)1/2

ρ dr

)2

, (6.23)

[113, 208], where cv is the heat capacity at constant volume, κ is the opacity, ǫν is the
energy release by the neutrino emission and ∆r delimits the region of interest – see
Sect. 6.2.3 for a discussion of the thermal properties of the white dwarf.

For the values typical of the post-merger white dwarf (ρ = 106 g/cm3 and T = 108 K), the
neutrino luminosity will be Lν ∼ 102 L⊙ and the thermal energy will be of U ∼ 1048 erg.
At the beginning of the simulations the neutrino cooling timescale is about τν ∼ 6×105 yr
while the thermal timescale is τthermal ∼ 106 yr. Then, the initial accretion rate is about
ṀWD ∼ 10−7M⊙ yr−1, close to the Eddington limit.

6.3.2. Accretion rate set by the viscous timescale

Numerical simulations – see, e.g., [17], Lorén-Aguilar et al. [164] and [55] – show that the
disk product of the coalescence of two white dwarfs of unequal masses is not thin, although
it is not thick either. Specifically, Lorén-Aguilar et al. [164] found that the thickness of
the newly formed disk is H ∼ 5.0 × 10−3 R⊙, while the typical size is Rdisk ∼ 0.2 R⊙ –
see their Table 1. Hence, H/Rdisk ≃ 0.025. Thus, assuming that the disk is thin is not an
extreme assumption and, in the worst of the situations, it can be considered as a limiting
case. Obviously, the other limiting case is to assume that the disk is thick. Here we
assume that the disk is thin, and we postpone the study of a thick disk to a forthcoming
publication.

For a thin, Keplerian accretion disk, the evolution of the surface mass density, Σ, is given

111



by the diffusion equation:

∂ Σ

∂t
=

3

r

∂

∂r

[

r1/2
∂

∂r

(

νΣr1/2
)

]

, (6.24)

where ν is the turbulent kinematic viscosity. To describe the time evolution of the disk
we use one of the three self-similar solutions of Eq. (6.24) found by Pringle [218]. These
solutions are obtained for an opacity parametrized as κ = κ0ρ

aT b. Within this approx-
imation mass is accreted onto the central white dwarf, but the angular momentum of the
disk is conserved, Jdisk = J0, because the outer edge of the disk moves outwards – see
Eq. (6.26). In a general case Jdisk would not be conserved because there is a trade-off
of angular moment between the disk and the central white dwarf. However, since the
angular moment of the white dwarf, JWD, is much smaller than that of disk, this solution
is accurate enough for the purpose of estimating the accretion rate onto the white dwarf.
Actually, we have checked that at all times JWD/Jdisk < 0.1 in our simulations.

Within this approximation mass flows at the inner disk boundary at a rate

Ṁdisk =
(β − 1)M0

tvisc

(

1 +
t

tvisc

)−β

, (6.25)

and the disk outer radius evolves as

Rout = r0

(

1 +
t

tvisc

)2β

, (6.26)

where M0 and J0 are, respectively, the initial mass and angular momentum of the disk,
j0 = J0/M0, r0 = 3.88 j20/(GM0), and β is a constant that depends on the opacity regime.
Here we have adopted a bound-free opacity (β = 5/4). In equations (6.25) and (6.26),
tvisc is a constant of the model related to the disk viscous time scale at early times. It can
be shown [70] that the viscous timescale is then determined by M0 and j0:

tvisc = 9.82× 109
j
25/7
0

M
10/7
WD M

3/7
0

(

σ

α8κ0

)1/7(
µ̄mp

κB

)15/14

(6.27)

where mp is the proton mass and µ the mean molecular weight. Adopting α = 0.1 for the
viscosity parameter [260] gives:

tvisc ≃ 10.9

(

j0
1018 cm2 s−1

)25/7(
M0

0.1M⊙

)3/7

s, (6.28)

This solution has been employed to describe debris disks around massive black holes
formed by tidal disruption of stars [39] and in supernova fallback disks around young
neutron stars [44]. This formulation was also used in Külebi et al. [153] to study the long-
term evolution of the disk interaction of magnetized white dwarf resulting from white
dwarf mergers that do not develop prompt explosion conditions.

We obtain that the initial conditions of the merged system are such that tvisc ∼ 0.2−0.8 s
(see Table 6.1). This, in turn, results in accretion rates at early times ṀWD =M0/tvisc ∼
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10−1M⊙ s−1 and initial disk outer-radius Rout ∼ 0.1R⊙. However, for times longer than
tvisc, the accretion rate drops one order of magnitude and, after 102 s, the accretion is
10−4M⊙ s−1.

In the above equations the disk viscous timescale, tvisc, is a constant. It is clear from
Equation. (6.27) that it is a good approximation for low infall rates because the specific
angular momentum would not change appreciably. The above estimate of the accretion
rate shows that this is not the present case so we have checked the effect of the assumption
of the constancy of tvisc on the evaluation of Ṁdisk as follows. First we compute the accre-
tion rate using Equation (6.25) keeping tvisc constant and then allowing it to increase with
time owing to the mass loss by the disk. We found that the increase of tvisc would lower
Ṁdisk at most by 10% during the evolution. This result assure us about our assumption
of a constancy of the viscous timescale on the estimate of the infall rate at the inner disk
radius.

6.4. Initial conditions

We compute the post-merger initial configuration assuming that both mass and angular
momentum are conserved during the merger. This is a reasonable assumption, since SPH
simulations show that very little mass is ejected from the system. Moreover, little angular
momentum is carried away by the unbound material, since its velocity is mostly radial.
A rough estimate of the degree to which mass and angular momentum are conserved is
Jej/J ∼ Mej/M ∼ 10−3 [54, 164]. Consequently, the orbital angular momentum of the
coalescing white dwarfs is invested in spinning up the primary white dwarf and in the
angular momentum of the rapidly rotating disk.

If the spin angular momentum of the merging white dwarfs is neglected, the total angular
momentum just before the merger is:

Jsys = q

√

GM3
2 (R1 +R2)

(1 + q)
(6.29)

where (M1, R1) and (M2, R2) are, respectively, the masses and radii of the merging stars,
and q = M2/M1 is the mass ratio of the original binary system. Figure 6.2 shows the
contours of constant angular momentum and of constant total mass in the plane defined
by M1 and M2. Given an initial total mass and angular momentum of the remnant,
(MWD, JWD), and an initial disk mass, M0, we computed the initial angular momentum
of the disk, J0, assuming that the central remnant rotates as a rigid body. To do this
we considered that just before the mass transfer episode the orbital separation was such
that the secondary was about to fill its Roche lobe, for which we adopted the expression
of [69], which is in all the cases close to R1 +R2. This is the same to say that the merger
episode begins when both stars are in contact. We also took into account that according to
detailed SPH simulations of the merger process roughly half of the mass of the secondary
star goes to form the disk, whereas the rest of the material is directly accreted onto the
primary component of the binary system [164].
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Figure 6.2: Parameter
space of the initial white
dwarf binary system.
Solid lines are contours of
constant total angular mo-
mentum, labeled in units
of 1050 g cm2 s−1. The
gray, dotted straight lines
are contours of constant
total mass, from 1.4M⊙ to
2.6M⊙, in steps of 0.1M⊙.
The shaded area corres-
ponds to configuration
with q > 1. The orange
line corresponds to location
of the system when the
secondary is filling its
Roche lobe (R2 = RL).
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Nevertheless, given the exploratory nature of the simulations presented here, we did not
constrain ourselves to the values obtained in the SPH simulations, and we adopted dif-
ferent values for the mass of the remnant and for the mass of the disk. Since a rigidly
rotating white dwarf can support a maximum angular momentum . 1050 g cm2 s −1

[30], angular momentum conservation implies that a substantial fraction of the angular
momentum of the binary system goes to the Keplerian disk.

Also, we mention that detailed SPH simulations of non-symmetric white dwarf mergers
show that as the less massive white dwarf is disrupted and part of its matter is accreted
onto the primary star, the accreted mass is compressed and heated. Thus, for all the
cases studied here we have assumed an inverse initial temperature profile. Specifically, we
adopted initial temperature profiles similar to those resulting from detailed SPH simula-
tions.

In Table 6.1 we list the initial masses of the stars of the original binary system – columns
2 and 3, respectively – as well as the initial conditions for the models presented in this
work. The top section of this table lists the characteristics of the models for which the
accretion rate was computed employing the cooling timescale, while the bottom section
summarizes the most relevant information of those models computed employing the ac-
cretion rate given by the viscous timescale. Note that the mass of the rapidly rotating
central white dwarf MWD of all these simulations (listed in column 4) is the same. Since
we are modeling white dwarfs as rigidly rotating configurations, only two parameters are
needed to determine the remaining characteristics of the merged configuration. Thus, we
decided to vary the initial angular velocity ΩWD and the mass of the disk M0. These two
quantities are listed in columns 8 and 5, respectively. For a super-Chandrasekhar white
dwarf of 1.45M⊙, the minimum angular velocity for the gravitational stability to set in is
around 2.03 rad s−1. Note that the angular velocities adopted here are in all cases larger
than this value. Once the angular velocity of the white dwarf is known we determine its
total angular momentum, JWD, which is listed in column 9 of the table, and the radius
of the white dwarf, RWD, listed in the sixth column. The adopted magnetic field BWD

114



of the white dwarf is given in column 7. The rest of columns of Table 6.1 list the initial
angular momentum J0 (column 10) of the disk, the efficient parameter ε (column 11),
that is relevant for estimating the mass accretion rate, the viscous timescale tvisc, and the
cooling timescale of the disk tcool (columns 12 and 13).

In our simulations the magnetic field of the remnant was kept fixed at BWD = 109 G,
a representative value of the magnetic field resulting from the stellar dynamo originated
during the coalescence [96]. For the typical values found in the SPH simulations of merging
white dwarfs the magnetic field can be as high as ∼ 1010 G, depending if the dynamo is
saturated. However, we decided to adopt a conservative value as a reference magnetic field,
109 G. However, we also computed some models with various magnetic field strengths,
ranging from 106 to 109 G. An important point which is worth emphasizing is that for
the simulations presented here we assumed that during the merging process an ordered
global dipole field is produced. However, this is not guaranteed – see, for instance, the
discussion in the conclusions of [259].

6.5. Results

Since the evolution of the post-merger system depends critically on the adopted prescrip-
tion for the mass accretion rate onto the central white dwarf resulting from the coalescence
of the binary system, we discuss the results obtained using the accretion rates described in
Sections 6.3.2 and 6.3.1 separately. We first discuss the results obtained using an accretion
rate set by the cooling timescale, and subsequently we present the results obtained when
the viscous timescale is employed. However, before going into the details a cautionary
remark is in order. In particular, we emphasize that small variations in the values of the
parameters adopted for the different simulations presented below can lead to substantially
different outcomes.

6.5.1. Accretion rate set by the cooling timescale

To start with we discuss our reference model. This is model A in Table 6.1. For this
model we adopted a magnetic field B = 109 G. We note that during the early phases of
the evolution of the post-merger remnant the dominant cooling mechanism of the external
layers of the central white dwarf is neutrino emission. Therefore, the initial relevant
timescale to compute the accretion rate is ṀWD = MWD/τν ∼ 1020 g s−1. This accretion
rate is of the order of the Eddington limit. However, in our calculations the evolution
of the model is followed self-consistently. That is, we computed the mass accretion rate
with the cooling timescale provided by the evolution – see below.

For this model, the magnetospheric radius is Rmag = 0.062R⊙ and the corotation radius
is Rco = 0.0039R⊙. Thus, Rmag > Rco > RWD, so the dipole radiation torque and the
propeller torque drive the evolution of the spin of the remnant. Under these conditions
the central object does not accrete matter. To illustrate the evolution, Figure 6.3 shows
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Figure 6.3.: Temperature-density profiles of the central white dwarf at different times of the evolution
for model A. This model was computed assuming B = 109 G and an accretion rate set by the cooling
timescale. We also show the carbon ignition line, labeled as ǫCC = ǫν , and two carbon burning timescales
τCC = τdyn and τCC = 1 s. In these panels the crystallization curve is labeled as Γ = 175, and the plasma
temperature as Tp. The configuration at t1 have a temperature profile almost equal to the initial one.
At t2 and t3, it heats at the center as well at the surface.
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Figure 6.4.: Evolution of model A in the mass-central density plane. The colors of the lines indicating
the regions of the various instabilities discussed here are the same shown in Figure 6.1. Also shown are
the contours of constant angular momentum (dotted lines).
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Figure 6.5.: Run of the neutrino and thermal timescales in the interior of model A at selected times, see
text for details.

some temperature profiles at selected times. In particular, we show these profiles at times
t0 – corresponding to the beginning of the evolution, solid line – at a time just before
the central white dwarf reaches explosive conditions – time t = t3, long dashed line – and
at two intermediate stages – times t1 and t2, short dashed line and dashed-dotted line,
respectively. As can be seen in this figure, during the entire evolution both the central
regions and the outer layers of the white dwarf are compressed and heated. These two
regions of the white dwarf are separated by the line at which the temperature of the nearly
isothermal core equals the plasma temperature, TP. This behavior is a consequence of the
torques acting on the white dwarf. The acting torques brake the white dwarf, decreasing
its angular velocity. As a consequence, the centrifugal force decreases and the gravitational
force dominates. Thus, to balance the enhanced gravity the density increases, so does the
temperature. Ultimately, the center of the star reaches the thermodynamic conditions
needed to burn carbon explosively. These conditions are illustrated in this figure by the
curves ǫnuc = ǫν , τCC = τdyn and τCC = 1 s. This occurs at time 40.8 yr, just before these
regions reach the beta-decay instability limit, and when the central regions of the star are
already crystallizing. Figure 6.4 displays the evolution of model A in the mass-central
density plane. As can be seen, the evolutionary track corresponds to pure compression,
and no matter is accreted. Note as well that carbon in the central regions of the star is
ignited before the inverse β-decay instability is reached.

Figure 6.5 shows the run of the neutrino and thermal timescales in the white dwarf interior
of model A at two relevant times, namely at times t = t0 and t = t3, as previously defined.
As can be seen, for t = t0 neutrinos cool the external layers of the star, while in the internal
regions thermal diffusion is the dominant transport mechanism.

117



Table 6.1.: Parameters of the simulations of post-merger remnants.

Model M1 M2 MWD M0 RWD BWD ΩWD JWD J0 ε tvisc tcool
[M⊙] [M⊙] [M⊙] [M⊙] [R⊙] [G] [rad s−1] [g cm2 s−1] [g cm2 s−1] [−] [s] [yr]

A 1.12 0.78 1.45 0.45 0.0026 109 3.00 2.79× 1049 5.86× 1050 0.1 0.745 2.26× 104

B 1.12 0.78 1.45 0.45 0.0026 106 3.00 2.79× 1049 5.86× 1050 0.1 0.745 2.26× 104

C 1.12 0.78 1.45 0.45 0.0026 107 3.00 2.79× 1049 5.86× 1050 0.1 0.745 2.26× 104

D 1.12 0.78 1.45 0.45 0.0026 108 3.00 2.79× 1049 5.86× 1050 0.1 0.745 2.26× 104

E 1.12 0.78 1.45 0.45 0.0026 109 3.00 2.79× 1049 5.86× 1050 0.1 0.745 2.26× 104

F 1.12 0.78 1.45 0.65 0.0026 109 3.00 2.79× 1049 5.86× 1050 0.1 0.253 2.26× 104

G 1.12 0.78 1.45 0.45 0.0026 106 3.00 2.79× 1049 5.86× 1050 0.1 0.745 2.26× 104

H 1.12 0.78 1.45 0.45 0.0026 109 3.00 2.79× 1049 5.86× 1050 0.5 0.745 2.26× 104

I 1.12 0.78 1.45 0.45 0.0039 109 2.30 4.56× 1049 5.69× 1050 0.1 0.668 2.79× 103

J 1.12 0.78 1.45 0.45 0.0034 109 2.50 3.87× 1049 5.76× 1050 0.1 0.697 5.66× 103

K 1.12 0.78 1.45 0.45 0.0032 109 2.60 3.60× 1049 5.78× 1050 0.1 0.709 7.79× 103

L 1.12 0.78 1.45 0.45 0.0030 109 2.70 3.35× 1049 5.83× 1050 0.1 0.719 1.05× 104

M 1.12 0.78 1.45 0.45 0.0029 109 2.80 3.14× 1049 5.68× 1050 0.1 0.729 1.38× 104

N 1.12 0.78 1.45 0.45 0.0028 109 2.85 2.93× 1049 5.68× 1050 0.1 0.665 1.57× 104

O 1.12 0.78 1.45 0.45 0.0028 109 2.90 2.93× 1049 5.68× 1050 0.1 0.737 1.78× 104

P 1.12 0.78 1.45 0.45 0.0022 109 3.50 2.24× 1049 5.86× 1050 0.1 0.769 5.34× 104

Q 1.12 0.78 1.45 0.45 0.0017 109 4.50 1.75× 1049 5.96× 1050 0.1 0.793 8.79× 104

Table 6.2.: Outcome and evolutionary times of the post-merger remnants for several values of the magnetic field strength and initial angular velocity.

Model BWD [G] ∆ t [yr] Outcome

ΩWD [s−1] 2.3 2.5 2.6 2.7 2.8 2.9 3.0

A 109 5.50× 101 4.68× 101 4.33× 101 4.02× 101 4.71× 101 6.95× 101 4.08× 101 Center

B 106 4.00× 103 8.81× 103 6.39× 103 5.27× 103 5.63× 103 3.65× 103 4.94× 103 Off-center

C 107 2.81× 104 3.95× 104 2.09× 104 1.66× 104 1.34× 104 1.59× 104 1.50× 104 Center

D 108 9.29× 102 7.96× 102 7.39× 102 8.92× 102 8.31× 102 7.76× 102 5.61× 102 Center
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Figure 6.6.: Same as Figure 6.3 but for the case in which a modest magnetic field, B = 106 G, is adopted.
This is model B in Table 6.1.

109 3× 109 1010 3× 1010

ρc (g/cm
3)

1.43

1.45

1.47

1.49

1.51

M
/M

⊙

0.90

1.67

2.24

2.763.50

4.50

B = 109G

B = 106G

Figure 6.7.: Same as Figure 6.4 but have been added the case in which a modest magnetic field, B = 106 G,
is adopted (yellow line). This is model B in Table 6.1.
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At time t3 the relevant cooling timescale in the outer layers of the white dwarf is no
longer the neutrino timescale, but the thermal timescale. Actually, it is important to
realize that in the dense inner core of the white dwarf the shorter timescale is always
the thermal timescale. Thus, Figure 6.5 clearly shows that the cooling timescale must be
computed self-consistently along the evolution of the remnant to obtain physically sound
results. We emphasize that although this plot illustrates these timescales for model A,
our calculations demonstrate that this is a representative case, and that for all the models
listed in the top section of Table 6.1 the run of these timescales is similar.

To study the dependence of the evolution of the merged configuration on the magnetic
field we ran a suite of models with varying strengths of the magnetic field. These are
models B, C and D in Table 6.1, for which we adopted magnetic field strengths B = 106,
107 and 108 G, respectively, keeping unchanged the rest of the parameters of model A.
For the sake of conciseness we only discuss model B, which corresponds to the smallest
magnetic field strength, 106 G.

Figure 6.6 shows the evolution of the remnant at different times for this model. These
times were selected using the same criteria we used previously, and the line coding is the
same. In this case Rmag < RWD and the central white dwarf can accrete matter from the
disk. Under these conditions we find that accretion onto the white dwarf heats the outer
layers of the star, while the temperature of its core remains almost unchanged. Ultimately
the very outer layers of the white dwarf are heated to such an extent that carbon is ignited
off-center. However, an inspection of Figure 6.7, which shows the evolution in the mass-
central density plane, reveals that actually the central regions of the star expand slightly.
This again is due to the acting torques, that spin-up the white dwarf.

We found that if the magnetic field of the white dwarf is higher than 3.84 × 106 G, the
magnetospheric radius is larger than the co-rotation radius. Thus, in this case the central
remnant does not accrete more material after the merger, so the propeller torque and the
dipole radiation torque drive the evolution of its spin rate. On the other hand, if the
magnetic field is lower than 1.88× 106 G, the magnetospheric radius is smaller than the
white dwarf radius. Hence, the central white dwarf accretes material. Consequently, in
this case the evolution of the rotation rate is driven by the accretion torque. Thus, for
these initial conditions the magnetic field determines the accretion rate and the evolution
of the star.

To further study the dependence of these results on the input parameters, we also analyzed
the dependence on the initial angular velocity. In Table 6.2 we list the times at which
the post-merger central star reaches the conditions suitable for a explosion to occur, for
several magnetic field strengths (models A to D) and initial angular velocities. Clearly,
the duration of this phase as well as the final outcome depend sensitively on value of the
adopted magnetic field, and to a lesser extent on the initial angular velocity.
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6.5.2. Accretion rate set by viscous timescale

In the previous section we have assumed that the accretion rate on the white dwarf is
given by the shorter timescale of the cooling mechanisms. In this section we present the
results for the case in which the white dwarf accretes material at a rate set by the viscous
timescale of the Keplerian disk.

For the sake of definiteness in the following we discuss in detail, with the help of Figures 6.8
and 6.9, the time evolution of model E, which is similar to model A, the only difference
being that in this case the accretion rate is computed adopting the viscous timescale, while
the rest of initial conditions and assumptions are the exactly the same. Furthermore, for
this model we study two possibilities for the efficiency parameter ξacc in equation (6.3).
The first of these possibilities corresponds to the case in which ξacc = 1.0, that is, when
matter is accreted on the remnant with the Keplerian velocity at the inner disk radius.
The second one corresponds to the case in which matter is accreted on the remnant with
the Keplerian velocity at the surface of the remnant, which we label as ξacc = ξWD in
the figures discussed below. Shortly after the merger, due to the high accretion rates,
Rmag < RWD – see the top panel of Figure 6.8. Hence, the only torque acting on the white
dwarf is that resulting from accretion. For the set of parameters of model E, the initial
accretion rate onto the white dwarf given by equation (6.25) is large, even if a efficiency
of ε = 0.1 is adopted, ṀWD ∼ 0.01M⊙ s−1. Consequently, the mass of the white dwarf
rapidly increases during this phase. However, its central density only increases in the
case in which matter is accreted with the Keplerian velocity of the remnant – blue line
in Figure 6.9 – whereas in the case in which ξacc = 1.0 – green line in this figure – the
central density of the white dwarf decreases.

The evolution of the central density of the remnant is the result of an intricate trade-off
between the increase in mass, the change in the rotation period due to the acting torque,
and the evolution of the moment of inertia of the remnant. The increase in mass of the
remnant alone clearly would result in an increase of the central density. The change in
the rotation speed due to the acting torque – which tends to increase the angular velocity
– would result in a decrease of the central density, as the centrifugal force increases.
Finally, since I ∝ MWDR

2
WD, as the mass of the white dwarf increases due to accretion,

the moment of inertia would increase. However, since the mass-radius relationship for
rotating white dwarfs depends crucially on the angular velocity, the radius of the remnant,
hence I, ultimately depends on the acting torque. Furthermore, for super-Chandrasekhar
white dwarfs the slope of the mass-radius relationship is very steep. Consequently small
changes in the mass can induce large variations of the radius of the remnant. The interplay
between these factors is rather complex, but in general terms we find that the evolution
of the moment of inertia is dominated by the variation of the radius of the remnant.

It is then clear that the crucial parameter that dictates the evolution of the central density
of the remnant is ξacc. Specifically, when ξacc = 1.0 is adopted the remnant is spun-up
very rapidly by the acting torque – as it is shown in the bottom panel of Figure 6.8 –
its radius increases notably – see the top panel of this figure – the moment of inertia
increases markedly, and the central density first decreases. On the contrary, if matter is
accreted onto the surface of the white dwarf with the same angular velocity of the remnant,
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Figure 6.8.: The left panel shows the evolution of the radius of the remnant, RWD, the corotation radius
Rco, and the magnetospheric radius, Rmag for model E, while the right panel shows the evolution of the
rotation period of the central white dwarf.
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value of ξacc, and ε = 0.1.
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Figure 6.10.: Temperature-density profiles of the central white dwarf at different times of the evolution
for model E. The left panel shows the model with ξ = ξacc, while the right panel displays the model for
which ξ = 1 is adopted. Time t1 corresponds to a time shortly after accretion from the disk starts (short
dashed line), t2 is the time at which the merged remnant enters into the propeller phase and accretion
stops (dashed line), and t3 is a time just before the post-merger object crosses the beta-instability limit
(long dashed line).
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the acting torque is considerably smaller, the moment of inertia remains approximately
constant, the radius of the remnant decreases, and the central density increases steadily.
In both cases, once the magnetic radius becomes larger than the radius of the white dwarf
(RWD < Rmag < Rco), the dipole and the disk-interaction torques drive the evolution of
the remnant – the top panel of Figure 6.8 clearly depicts this. When this happens, the
fastness parameter of the white dwarf is ∼ 0.8. Consequently, shortly after (. 0.5 yr), the
remnant reaches a fastness parameter ωf = 1, and the evolution is driven by the propeller
torque. At this point of the evolution, accretion from the disk stops. Consequently, the
moment of inertia of the remnant decreases considerably, the rotation period decreases
as well, and the white dwarf contracts. Hence, the central density increases rapidly (see
the top panel of Figure 6.8). All this sequence of events ultimately leads the remnant
to cross the line of inverse β-decay instability. It is interesting to note that the mass of
the remnant when it crosses the instability line does not depend on the adopted valued
of ξacc. This will depend on the mass accretion rate on the white draft, and consequently
on the adopted efficient parameter ξ. The ξacc is directly related to the change of angular
momentum. Then ξacc and ξ plays different role in the evolution of the post-merger
configuration, although its effect will be combined as can be see in equation (6.3).

We now pay attention to thermal evolution of the post-merger remnant of model E.
Figure 6.10 shows several temperature-density profiles at selected times after the merger
took place. The top panel of this figure shows the case in which ξ = ξacc is adopted,
whereas the bottom panel corresponds to the case in which ξ = 1 is employed. The initial
temperature profiles are shown as a solid blue and green lines in Figure 6.10, respectively.
In both cases, during the first evolutionary phases the large accretion rates discussed
earlier heat the outer layers of the star. However, neutrino emission also plays a significant
role. When ξ = ξacc is adopted compressional work exceeds neutrino emission, and thus an
off-center temperature peak rapidly grows. In particular, the temperature profile peaks at
log ρ ∼ 6.54. As time passes by, the peak temperature increases, and ultimately the outer
layers of the white dwarf reach the thermodynamic conditions needed to ignite carbon
explosively.

On the contrary, when ξ = 1.0 is adopted (bottom panel of Figure 6.10) the evolution is
more complex. In this case accretion first heats the outer layers of the central white dwarf,
but neutrino cooling dominates. Hence, after a short time interval the entire central white
dwarf cools to a temperature smaller than the initial one. Time t2 is the time at which
accretion stops. Thus, for times longer than t2 the evolution of the star is driven by
angular momentum looses by dipole emission. Eventually, at time t3 carbon is ignited at
the center of the white dwarf.

Sensitivity of the results to the free parameters

We first compare the evolution when different masses of the disk are adopted, keeping the
mass of the remnant fixed. With this in mind, in Figure 6.11 we show the evolutionary
tracks of model F and compare them with those of model E. This model corresponds to
a final post-merger remnant of mass 1.45M⊙ and an initial disk mass 0.65M⊙, whereas
the rest of the parameters of the model were not varied – see Table 6.1. Additionally,
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as we did for model E we also studied two possibilities. The first of these corresponds
to an accretion efficiency parameter ξacc = 1.0, whereas for the second one we assumed
that at the inner disk radius the accreted material has the angular velocity of the white
dwarf, ξacc = ξWD. Note that, in the case in which ξacc = 0.1 is adopted, the evolution
of this model is very similar to the one of model E, but arrive to the mass-shedding
limit in the accretion phase. When ξacc = ξWD is chosen, the remnant also crosses the
line of inverse β-decay instability. The only difference is that for model F, which has a
disk considerably more massive, more mass is accreted before the remnant crosses the
instability line. Hence, the remnant has a larger mass in the propeller phase, and the line
of β-decay instability is crossed when the white dwarf is more massive.

Next, we analyze the influence on the evolution of the strength of the magnetic field,
as we did previously for those models in which the accretion rate is computed using the
cooling timescale. We do this comparison adopting a very low value for the magnetic field
strength, B = 106 G – model G in Table 6.1, the same value adopted in Sect. 6.5.1. The
results of this analysis are shown in Figure 6.12. As can be seen the differences between
the evolution of models E and G are minor. Thus, we conclude that for the typical values
of the magnetic field strength originated in the merger of two white dwarfs, the evolution
of these models is not significantly affected by the adopted magnetic field. This can be
explained from the fact that, at early times in the viscous timescale prescription, the mass
and angular momentum of the WD post-merger evolution is dominated by the accretion
torque and the effect of the magnetic field is neglected until the magnetospheric radius
equals the WD one. It is in this initial phase when more significant accretion of mass by
the central star occurs. Since, the accretion timescale in this scenarios is so short, the
evolution of the magnetospheric radius is dominated by the change of the mass accretion
rate.

Another free parameter of our formulation is ε, which we recall measures how efficient
accretion is. All the calculations presented until now have been performed adopting
ε = 0.1. However, since the accreted mass depends significantly on the precise value of
this free parameter it is important to assess its impact on the results. We now study the
sensitivity of our calculations to the value adopted for it. To this end we conducted an
additional set of simulations in which we adopted ε = 0.5. This is model H in Table 6.1.
In Figure 6.13 we compare the results of these calculations with those of model E. As it
could be expected, this parameter turns out to be critical, since it controls how efficient
accretion is. Consequently, when ε = 0.5 is adopted the remnant evolves towards the
mass-shedding limit instead of crossing the β-instability line. We consider model E as a
reasonable guess, although keeping in mind that larger values of ε cannot be discarded “a
priori”, and therefore could alter the evolution of the remnant.

Naturally, another key ingredient of our approach is the initial angular velocity of the
central white dwarf, ΩWD. Figure 6.14 shows the evolutionary tracks for different values
of the initial angular velocity of the post-merger remnant, keeping unchanged the rest
of initial conditions of model E – models I to Q in Table 6.1 (dashed lines) – and we
compare them with the evolutionary sequence of model E, our reference model for this
prescription for the accretion rate (solid lines). As can be seen, the model with the
smallest initial angular velocity – namely that with initial angular velocity 2.30 rad s−1,
model I – reaches the mass-shedding limit during the accretion phase. Furthermore, for
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Figure 6.11.: Same as Figure 6.9. We compare models E (solid lines) and F (dashed lines) for two
different disk initial mass, 0.45M⊙ and 0.65M⊙, respectively.
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Figure 6.12.: Same as Figure 6.9. We compare models E (solid lines) and G (dashed lines) for two
different values of the WD magnetic field, 109 G and 106 G, respectively.
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Figure 6.13.: Same as Figure 6.9 for two values of the accretion efficiency parameter, ε = 0.1 (solid lines)
and 0.5 (dashed lines), models E and H, respectively.
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Figure 6.14.: Same as Figure 6.9 for several values of the initial angular velocity, models I to P in
Table 6.1, compared to our reference case, for which the initial angular velocity is ΩWD = 3.00 (model
E). From left to right the initial angular velocities of the remnant are ΩWD = 2.30, 2.50, 2.60, 2.70, 2.80,
2.85, 2.90, 3.50, and 4.50 s−1.
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Figure 6.15.: Same as Figure 6.10 for the case in which the initial temperature of model E is smaller.
For the sake of conciseness we only display the model for which ξ = 1 is adopted.

this model the central density decreases, irrespective of the value adopted for ξacc. Model
J, for which we adopted ΩWD = 2.50 rad s−1, only reaches the mass-shedding limit if
ξacc = 1.0, otherwise it reaches the β instability region. The rest of the models do not
cross the mass-shedding instability line. Note as well that for model J, as it occurs for
model I, the central density decreases, independently of the value adopted for ξacc. For
model K the central density decreases if ξacc = 1.0 and increases otherwise. This is also
true for models with even faster rotation rates.

Additionally, to take into account the effects of the initial temperature for the case in which
ξ = ξacc is adopted we computed a model in which the initial configuration corresponds
to a white dwarf in which the external layers have a temperature sizably smaller, namely
108 K, than that of our standard case – that is, model E – which was computed adopting
a temperature of the external layers 3 × 108 K. The evolution of this additional model
is shown in Figure 6.15, and it is markedly different different from that of model E.
Specifically, when the adopted temperature is 108 K, the external layers of the white dwarf
are initially heated by the accreted material, as it happens also for model E. However, in
this case neutrino cooling (basically dominated by neutrino bremsstrahlung) is so strong
that the remnant cools rapidly and eventually carbon is ignited at the center of the star,
when the central regions have already crystallized.
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Evolutionary times

Finally, we study the time needed to reach the instability lines, ∆t. We have shown before
that the most important parameter that determines the evolution of the system is the
initial period of the system. In the top panel of Figure 6.16 the dependence of ∆t on the
initial period of the rotating white dwarf resulting from the merger is displayed, for our
two choices for the value of ξacc. Clearly, the larger the period is, the longer ∆t is. This
is the natural consequence of the smaller initial centrifugal force.

The second important parameter that determines the duration of this evolutionary phase
is the strength of the magnetic field of the remnant. We showed before that the value
of BWD has little effect on the outcome of the post-merger system – see Figure 6.12.
Notwithstanding, BWD influences considerably ∆t. This occurs because the larger BWD

is, the larger is the magnetospheric radius. Thus, we expect that large values of BWD

would result in substantially smaller values of ∆t. To illustrate this in a quantitative
manner, in the bottom panel of Figure 6.16 the total time needed to reach the instability
region is plotted as a function of the surface magnetic field of the remnant. As can be
seen, the evolution of the systems is indeed faster for large magnetic field strengths. This
behavior is natural since for large magnetic field strengths the central remnant is more
tightly coupled with the surrounding Keplerian disk. Consequently, the accretion phase is
shorter. In addition, in this panel we also show (using a solid, red line) the time it takes to
the remnant to become unstable when only magnetic dipole braking is considered. Since
in this case, there is no accretion, the star will evolve in a constant mass sequence. From
equation (6.7), we obtained:

∆ t =
c3

2B2
WD

∫ JWD,f

JWD,0

dJWD

Ω3
WDR

6
WD

(6.30)

It’s easily to see that ∆ t is inversely proportional to the square of the magnetic field.
Clearly, the evolution of the system is always much faster when all the torques acting on
the remnant are correctly taken into account. Furthermore, it is important to realize that
the evolution is even faster when matter is accreted onto the surface of the remnant with
the Keplerian velocity. Finally, note as well that when ξacc = 1.0 is adopted, moderately
longer durations of the post-merger phase, when compared with the case in which the
accreted matter has the Keplerian velocity at the surface of the remnant, are obtained.

6.6. Comparison with previous works

A detailed study of the evolution of the remnant of white dwarf mergers started with the
work of Yoon et al. [317]. They mapped the final configuration of the SPH simulations
of the merger of a 0.9–0.6M⊙ binary into a 1-D stellar evolution hydrodynamic code and
follow its forward evolution. Their merger remnant is represented by a cold and slowly
rotating rigid core surrounding by a hot and rapid rotating envelope with a Keplerian
disk around it. They allowed the accretion from the disk by a constant accretion rate (of
the order of the Eddington limit) and include a prescription for the transport of angular
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Figure 6.16.: Left panel: time necessary to reach the instability line as a function of of the initial period
of the remnant. Right panel: time necessary to reach the instability line as a function the magnetic field
of the remnant.

momentum with timescales of the order of the thermal timescale. They conclude that a
off-center carbon ignition can be avoided if the transport angular momentum timescale
is greater that the cooling timescale by neutrino emission and the accretion rate on the
star is slow enough, i,e, ṀWD < 5 × 10−6–10−5M⊙ yr−1. We improved this approach
allowing the mass-accretion rate to vary with time, consistently with the white dwarf
thermal evolution. Additionally, we introduced a framework for evolution of the angular
momentum of the post-merger white dwarf including the torque that acts on the star
taking into account the magnetic field effect of the central white dwarf on the evolution of
the post-merger configuration. We have found that strong magnetic fields, BWD > 107 G
can also avoid an off-center carbon ignition.

van Kerkwijk et al. [293] estimated the post-merger evolution based on the results of the
SPH simulations of [164] and concluded that the accretion occurs in a shorter timescale
(∼ 10 h), causinga compression of the white dwarf core, with a consequent increase of its
temperature until it reaches the carbon-ignition runaway leading to a delayed explosion.
However, they focus on mass-symmetric white dwarf mergers (0.6–0.6M⊙) in which the
two white dwarfs are disrupting and the final remnant configuration has a temperature
profile that peaks at the center.

A different approach was presented in Shen et al. [262] and in Schwab et al. [258, 259].
In these works it was argued that, due to the differential rotation of the system, after the
dynamical phase of the merger the magneto-rotational instability becomes effective, and
that in a viscous timescale 104 s (orders of magnitude shorter than the thermal timescale
∼ 104 yr) the angular momentum of the tidally disrupted white dwarf can be redistributed
in the surface of the central star, leading to a rotating configuration with a hot envelope
and with almost all the mass of the secondary star. These works also computed the
thermal evolution of the post-merger remnant characterized with a timescale of the order
of 103–104 yr. Schwab et al. [259] studied the merger of a 0.9 − 0.6M⊙ white dwarf
binary, and [258, 259] extended the initial conditions parameter space but the evolution
of post-merger configuration in presence of a magnetic field of the central white dwarf was
not there considered. These configurations spin down during the viscous evolution, while
our super-Chandrasekhar remnants spin up during all the evolution, even in the case of
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angular momentum losses.

There are two works considering the effect of the magnetic field during the dynamical
timescale of the merger [326] and in the viscous timescale of the post-merger evolution
[141]. In these works, the evolution of the system magnetic field is followed in a different
fashion with respect to our approach, since we have adopted a dipole magnetic field with
constant magnitude and inclination angle. Assuming as initial condition the remnant of
the merger of a 0.6–0.6M⊙ carbon-oxygen white dwarf binary from the SPH simulation of
Lorén-Aguilar et al. [164], Ji et al. [141] evolves the system for 3× 104 s with the Flash

code in a 2D axisymmetric cylindrical Eulerian grid. They introduced a weak poloidal
magnetic field and showed that the magneto-rotational instability developed in the disk
leads to a rapid growth of its magnetic field, the spin down of the white dwarf remnant
and its magnetization to field strengths around ∼ 2× 108 G. They computed an effective
magnetic Shakura-Sunyaev parameter of the order of 〈αm〉 ∼ 0.01, a value one order of
magnitude smaller than the α we adopted here. They found that the white dwarf magnetic
field varies with time, indicating a disordered interior magnetic field. At the end of the
simulation the magnetic field toroidal component is 1.5 times bigger than the poloidal
one. In our model we have assumed a dipole magnetic field aligned with the white dwarf
rotation axis. In this case, the magnetic field, has no toroidal component. However, the
simulations of Ji et al. [141] have limited resolution and the field strength are affected by
numerical resistivity. In addition, in these magneto-hydrodynamics simulations the disk
lost almost 90% of its initial mass, with 82% of it accreted by the white dwarf remnant and
the rest going into outflows of which about 10−3M⊙ are ejected and unbound to the system.
The central white dwarf spins down, losing angular momentum due to the development
of Maxwell stresses at the white dwarf boundary. A directed comparison is difficult, since
we have studied super-Chandrasekhar white dwarf with initial angular velocity one order
of magnitude higher than the one studied by Ji et al. [141] (ΩWD,0 = 0.03 s−1). However,
one difference is that in our model the white dwarf first gain angular momentum due to
the mass accretion, and then due to the magnetic torque loses it.

Zhu et al. [326] simulated the merger of a 0.625–0.65M⊙ carbon-oxygen white dwarf binary
giving to each white dwarf a dipole seed magnetic field with the moving-mesh code Arepo

[274]. They found that during the merger dynamics, the magnetic field were too weak
to have an effect in the evolution, obtaining a final remnant composed by a degenerate
core with a thermally supported envelope surrounding by a rotationally supported disk.
This configuration is similar to the one obtained in the SPH simulations [325]. However,
the remnant magnetic field has a complex structure with a volume average field strength
> 1010 G in the core, with both poloidal and toroidal components.

In Table 6.3 is summarized the main features of the post-merger evolution studied in this
paper and the comparison with the ones of the works discussed above. We specified the
binary mass of the merger configurations studied, the post-merger configurations after
the merger (for the works of [293, 317, 325]) or after the viscous evolutions of the system
(for the work of [141, 259, 262]), the magnitude and configuration of the central remnant
magnetic field (if it is considered). In the last column, we specified if the central remnant
developed conditions for an off center or center carbon ignition.
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Table 6.3.: Comparison with previous works (Bt/Bp : ratio of the toroidal to the poloidal field strength.
EBt/EB : ratio of the toroidal to the total magnetic energy).

Work
Merger

Configuration
Post-merger

configurations
Magnetic

field

Magnetic
field confi-
guration

Carbon
Ignition

Yoon et al.
[317]

0.9M⊙ − 0.6M⊙

0.9M⊙ − 0.7M⊙

1.0M⊙ − 1.0M⊙

slowly rotating cold core
(0.6M⊙) with a rapidly
rotating hot envelope
(0.5M⊙) + a Keplerian
disc (0.4M⊙)

- -
Center/off-

center
ignition

van
Kerkwijk
et al. [293]

0.6M⊙ − 0.6M⊙

C/O WD
rapidly rotating WD +
thick disk

- -
Center
ignition

Shen et al.
[262]

0.6M⊙ − 0.9M⊙

C/O WD

WD (∼ 0.9M⊙) with a
hot, slowly rotating and
radially extended enve-
lope supported by thermal
pressure (∼ 0.6M⊙)

- -

Off-center
ignition that
lead a high
mass O/Ne

WD

Schwab
et al. [259] /

Schwab
et al. [258]

0.6M⊙ − 0.9M⊙

0.9M⊙ − 1.2M⊙

C/O WD

WD with a thermally sup-
ported envelope (1.5M⊙)

- -

Off-center
ignition that

leads an
O/Ne WD

Ji et al. [141]
0.6M⊙ − 0.6M⊙

C/O WD

rotating WD (0.96M⊙)
surrounding by a hot
corona (0.04M⊙) + thick
disk (0.2M⊙)

2× 108 G
Bt

Bp

∼ 1.5
Center
Ignition

Zhu et al.
[325]

0.625M⊙-
0.65M⊙ C/O

WD

WD (0.64M⊙) sur-
rounded by thermally
supported hot enve-
lope (0.42M⊙) + disk
(0.21M⊙)

4× 1010 G
EBt

EB

= 0.6 -

This work
0.78M⊙-1.12M⊙

C/O WD

1.45M⊙ rigidly rotating
super-Chandrasekhar WD
+ 0.45M⊙ thin Keplerian
disk

[106, 109] G Poloidal
Center/off

center
ignition

6.7. Conclusions

The evolution of the remnant of the merger of a binary white dwarf is still an open problem.
Detailed hydrodynamical simulations show that the product of the merger consists of a
central white dwarf that rotates as a rigid body, surrounded by a hot, rapidly rotating
corona – which has been proven to produce large magnetic fields – and a Keplerian disk.
In this paper we studied the evolution of metastable, magnetized super-Chandrasekhar
white dwarfs formed in the aftermath of the merger of close binary systems made of two
white dwarfs.

Our simulations take into account the magnetic torques acting on the star, accretion
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from the Keplerian disk, and the threading of the magnetic field lines through the disk –
therefore improving previous calculations of this kind. Furthermore, in our computations
– at odds with previous efforts – we employ a mass-radius relationship for rotating white
dwarfs. Also, our calculations incorporate the thermal evolution of the white dwarf. All in
all, the set of calculations presented here relies on solid physical grounds. However, there
are assumptions in our model that might be relaxed in forthcoming works. For instance,
to allow a non-zero inclination angle between the spin axis and the orientation of the
dipole magnetic field and its evolution with time. Also, the post-merger central remnant
rotates differentially between the core and the corona, while we have adopted a totally
rigid central remnant. Thus the model can be improved by implementing a transport
mechanism for the angular momentum in the interior of the central white dwarf remnant.

Furthermore, our simulations were performed using two different prescriptions for the
mass accretion rate on the central white dwarf. In a first set of simulations we adopted an
accretion rate set by cooling timescale of the Keplerian disk, whereas in the second suite
of models the adopted accretion rate was computed using the viscous timescale of the
disk. These two prescriptions for the accretion rate cover a very large range of values, and
therefore allow us to investigate the possible outcomes of the evolution of these systems
in a quite generic way.

Finally, we also explored the effects of the adopted set of initial parameters. These include
the mass of the remnant star, its radius, angular velocity, and moment of inertia, as well
as the strength of the magnetic field. We showed that the timescale in which the newly
formed white dwarf evolves to reach the thermodynamical conditions for carbon be burned
explosively, or to reach the Keplerian mass-shedding, secular axisymmetric instability or
inverse beta decay instability depends crucially on all these parameters.

We showed that in most of our models carbon reactions are highly efficient in heating the
interior of the remnant, with timescales shorter than the dynamical time. This can happen
both in the outer layers or at the center of the newly formed white dwarf, depending on
the initial conditions of the white dwarf and on the efficiency of mass accretion and
angular momentum evolution (see Fig. 6.10). In most cases, the time it takes to the star
to reach explosive conditions is shorter than the one needed to reach the inverse beta-
decay instability or the secular instability, which lead to gravitational collapse. Hence,
we conclude that the central white dwarf can reach conditions for a delayed explosion
for a sufficiently broad set of initial conditions. Whether carbon is ignited at the center
of is burned off-center depends crucially on the magnetic field strength and is almost
independently of the post-merger WD initial angular velocity. Our simulations show that
when the magnetic field is weak carbon is ignited off-center, while central explosions
are the outcome when a ordered global strong dipole magnetic field is produced in the
hot, rapidly rotating convective corona formed in the aftermath of white dwarf mergers.
Naturally, this depends on whether the stellar dynamo is saturated or not.

In summary, spinning, magnetized, super-Chandrasekhar white dwarfs, resulting from the
merger of two less massive white dwarfs that do not produce a Type Ia supernova in a
violent merger can produce a delayed explosion, provided that the remnant is massive
enough and a strong magnetic field is produced during the merger.
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A. Appendix for Chapter I

A.1. Analytic approximation for the peak accretion

rate

We can see from Figure 1.3 that the shorter(smaller) the orbital period(separation) the
higher the peak accretion rate Ṁpeak and the shorter the peak time, tpeak. Indeed, we can
derive such a feature from simple arguments. The accretion rate given by equation (1.1)
increases for higher densities and lower velocities, so we should expect as indeed shown in
Figure 1.3, it increases with time as the inner ejecta layers, which are denser and slower
[see equations (1.5) and (1.3)], reach and passed the accretion region. The accretion
rate starts to peak at the passage of the innermost densest layer, rinner, through the
capture region. Such a layer moves with velocity vinner = (rinner/R0star)v0star as given by
the homologous expansion assumption.

Thus, the accretion rate peaks around the peak time:

tpeak =
a−Rcap

vinner
=

(a−Rcap) R0star

rinnerv0star
, (A.1)

namely the time when rinner reaches the capture region which is located at a distance
r = a − Rcap from the COcore center. The radius rinner is the maximum of the density
profile (1.7), namely the root of the equation:

rinner −R0star +R0starm ln

(

rinner

R̂core

)

= 0, (A.2)

where we recall R̂core ≈ 0.31Rcore. Since rinner ≈ R̂core, we can obtain the approximate
solution:

rinner ≈ ςRcore, ς ≡ R0star

Rcore

1 +m

1 +m(R0star/R̂core)
. (A.3)

Since vinner < vorb, we can approximate the relative velocity as given only by the orbital
one, i.e. vrel ≈ vorb, and within this approximation, the capture radius reduces to Rcap ≈
(2MNS/M)a. Then, equation (A.1) becomes

tpeak ≈
(

1− 2MNS

M

)(

GM

4π2

)1/3(
R0star

ςRcore

)

P 2/3

v0star
. (A.4)

We can now evaluate equation (1.1) at the above t = tpeak and applying the same
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Figure A.1.: Peak accretion rate (Ṁpeak, blue curves and left y-scale) and peak time (tpeak, red curves
and right y-scale) as a function of the orbital period. The dashed curves give the analytic peak accretion
rate and time (A.5) and (A.4), respectively, while the dotted curves correspond to the values obtained
from the numerical integration of the equations in Sec. 1.2. This example corresponds to the following
binary parameters: a CO core from the MZAMS = 20 M⊙ progenitor of Table 1.1, an initial NS mass
2.0 M⊙, and a velocity of the outermost ejecta layer vstar,0 = 2 × 109 cm s−1. For these parameters we
have η ≈ 0.41 from equation (A.3). The black dashed vertical line marks the maximum orbital period (for
these system parameters, Pmax ≈ 127 min) for which the NS reaches, by accretion, the critical mass and
collapses to a BH (see Figure 2.2 in Section 2.2). We recall that within the IGC interpretation systems
with P < Pmax lead to BdHNe while systems with P > Pmax lead to XRFs.

approximations, we obtain for the peak accretion rate

Ṁpeak ≈ 2π2 (2MNS/M)5/2

(1− 2MNS/M)3
η3−m

ρcoreR
3
core

P
, (A.5)

where we recall M = MCO +MNS is the total binary mass, being MCO = Menv +MνNS

the total mass of the COcore given by the envelope mass and the central iron core mass
leading to the formation of the νNS.

Figure A.1 shows the behavior of equations (A.5) and (A.4) as a function of the orbital
period and compare them with the corresponding values obtained from the numerical
integration of the accretion equations presented in Section 1.2. This example is for the
binary parameters: a COcore from the MZAMS = 20 M⊙ progenitor of Table 1.1, an initial
NS mass 2.0 M⊙, and a velocity of the outermost ejecta layer vstar,0 = 2×109 cm s−1. For
these parameters, ς ≈ 0.41 from equation (A.3). It can be seen that the accuracy of the
above simple analytic formulas increases for the systems with P > Pmax. This is expected
since, as we have mentioned, only for these systems the innermost ejecta layers passed
the NS position. In systems with P < Pmax, the NS collapses to a BH before the passage
of the innermost layers. In those cases, the maximum accretion rate is not reached at
the passage of rinner but at the passage of a layer located at rmax > rinner, hence with
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velocity vmax = v(r = rmax) > vinner, and thus vmax & vorb. In any case, it is clear the
above formulas for Ṁpeak and tpeak remain valid to obtain typical (order-of-magnitude)
estimates of the accretion process in these binaries. The consistency of the numerical and
analytic results (within their range of validity) shown here serves as well as an indicator
of the reliability of the numerical results.

A.2. Uniformly Rotating Neutron Star Structure

The contents of this appendix are based on the work of Cipolletta et al. [49]. The interior
and exterior metric of a uniformly rotating NS can be written in the form of the stationary
axisymmetric spacetime metric

ds2 = −e2νdt2 + e2ψ(dφ− ωdt)2 + e2λ(dr2 + r2dθ2), (A.6)

where ν, ψ, ω and λ depend only on variables r and θ. It is useful to introduce the
variable eψ = r sin(θ)Be−ν , being again B = B(r, θ). The energy-momentum tensor of
the NS interior is given by

T αβ = (ε+ P )uαuβ + Pgαβ, (A.7)

where ε and P denote the energy density and pressure of the fluid, and uα is the fluid
4-velocity. Thus, with the metric given by equation (A.6) and the energy-momentum
tensor given by equation (A.7), one can write the field equations as (setting ζ = λ+ ν):

∇ · (B∇ν) = 1

2
r2 sin2 θB3e−4ν∇ω · ∇ω + 4πBe2ζ−2ν

[

(ε+ P )(1 + v2)

1− v2
+ 2P

]

, (A.8)

∇ ·
(

r2 sin2 θB3e−4ν∇ω
)

= −16πr sin θB2e2ζ−4ν (ε+ P )v

1− v2
, (A.9)

∇ · (r sin(θ)∇B) = 16πr sin θBe2ζ−2νP, (A.10)
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Figure A.2.: Left: Mass versus equatorial radius for the TM1 (red line), GM1 (blue line) and NL3 (green
line) EOS. It’s represented the static sequence (solid line), rotating sequence at the faster observed pulsar
(PSR J1748-2446ad) spin frequency, f = 716 Hz [115] (dotted line) and the keplerian sequence (dashed
line) of NS configurations. The shadow region represents observational limits on the NS radius derived
from NS x-ray emission. Right: Dimensionless angular momentum, a/M ≡ cJ/(GM2), in function of the
NS mass. The NS configurations correspond to the keplerian sequence for various EOS.
NOTE—Pictures taken from Cipolletta et al. [49]

where, in the equation for ζ,µ, we introduced µ ≡ cos(θ).

We can integrate numerically the above Einstein equations once a relation between ε and P
is given, namely an equation of state (EOS). The NS interior is made of a core and a crust.
The core of the star has densities higher than the nuclear value, ρnuc ≈ 3× 1014 g cm−3,
and it is composed by a degenerate gas of baryons (e.g. neutrons, protons, hyperons)
and leptons (e.g. electrons and muons). The crust, in its outer region (ρ ≤ ρdrip ≈
4.3 × 1011 g cm−3), is composed of ions and electrons, and in the so-called inner crust
(ρdrip < ρ < ρnuc), there are also free neutrons that drip out from the nuclei. For the
crust, we adopt the Baym-Pethick-Sutherland (BPS) EOS [12]. For the core, we here
adopt modern models based on relativistic mean-field (RMF) theory, which have Lorentz
covariance, intrinsic inclusion of spin, a simple mechanism of saturation for nuclear matter,
and they do not violate causality. We use an extension of the formulation of Boguta &
Bodmer [26] with a massive scalar meson (sigma) and two vector meson (omega and rho)
mediators, and possible interactions between them.

With the knowledge of the EOS we can compute equilibrium configurations integrating
the above equations for suitable initial conditions, for instance central density and an-
gular momentum (or angular velocity) of the star. Then, after integrating the Einstein
equations, properties of the NS can be obtained for the given central density and angu-
lar momentum such as the total gravitational mass, the total baryon mass, polar and
equatorial radii, moment of inertia, quadrupole moment, etc. In Figure A.2 is shown the
mass-radius relations for the three EOS study in Cipolletta et al. [49]. These three rep-
resentative EOS satisfy the astrophysical constraint of leading to a NS critical mass larger
than the heaviest massive NS observed, PSR J0348+0432, with M = 2.01± 0.04M⊙ [3].
For the present problem of accretion onto the NS, as we have mentioned in Chapter 1, an
important relation to be obtained from the NS equilibrium properties, is the one between
the total baryon rest-mass, Mb, and the gravitational mass, MNS, namely the gravitational
binding energy of the NS; see equation (1.35). For non-rotating configurations, Cipolletta
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Table A.1.: Critical mass and corresponding radius for selected parametrizations of nuclear EOS

EOS MJ=0
crit RJ=0

crit MJ 6=0
max RJ 6=0

max p k fK M j=0
min c1 c2

(M⊙) (km) (M⊙) (km) (kHz) (M⊙)

NL3 2.81 13.49 3.38 17.35 1.68 0.006 1.34 1.68 0.225 0.94

GM1 2.39 12.56 2.84 16.12 1.69 0.011 1.49 1.57 0.238 0.94

TM1 2.20 12.07 2.62 15.98 1.61 0.017 1.40 1.61 0.238 0.94

Note — In the eighth column it is also reported the rotation frequency of the critical mass con-
figuration in the rotating case. This value corresponds to the frequency of the last configuration
along the secular axisymmetric instability line, i.e the configuration that intersects the Keplerian
mass-shedding sequence.
References — Cipolletta et al. [49]

et al. [49] obtained an EOS-independent relation:

Mb

M⊙

=
MNS

M⊙

+
13

200

(

MNS

M⊙

)2

. (A.12)

For the non-zero angular momentum configurations we are interested at, Cipolletta et al.
[49] obtained

Mb

M⊙

=
MNS

M⊙

+
13

200

(

MNS

M⊙

)2(

1− 1

130
j1.7NS

)

, (A.13)

where jNS ≡ cJNS/(GM
2
⊙). This formula is accurate within an error of 2% and it correctly

generalizes the above equation (A.12), approaching it in the limit jNS → 0. This relation
has been shown to be very accurate also in the description fo the binding energy of other
EOS model including hyperonic and hybrid ones [20].

The NS can accrete mass until it reaches a region of instability. There are two main
instability limits for rotating NSs, namely the mass-shedding or Keplerian limit, and the
secular axisymmetric instability. Cipolletta et al. [49] shows that along the mass-shedding
sequence, the NS has the maximum possible angular momentum: JNS,max = 0.7GM2

NS / c
(see Figure A.2). Cipolletta et al. [49] also shows that the critical NS mass along the
secular instability line, is approximately given by:

M crit
NS =MJ=0

NS (1 + kjpNS) , (A.14)

where the parameters k and p depends on the nuclear EOS (see Table A.1). These formulas
fit the numerical results with a maximum error of 0.45%. It can be checked that the latter
is, as expected, below the 3.2 M⊙ critical mass upper bound by Rhoades & Ruffini [224].

Finally, if the NS is accreting from a disk, the angular momentum gained by the star will
depend on the specific angular momentum of the particles at the inner disk radius will.
The inner radius of the disk is given by the last stable orbit, rlso, in the case in which it
is located outside the NS, otherwise it equals the NS equatorial radius, RNS. Cipolletta
et al. [50] obtained a fitting function of the minimum NS mass, Mmin, for which given a
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value of the angular momentum one has rlso ≥ RNS:

Mmin

M⊙

=
M j=0

min

M⊙

+ c1j
c2 (A.15)

where M j=0
min , c1 and c2 are dimensionless constants that will depend of the EOS (see

Table A.1).

In addition to the above relations, we have used in this work an analytic formula, equa-
tion (1.39) obtained by Cipolletta et al. [50], which gives us the angular momentum of
the mostly bound circular orbit around a uniformly rotating NS, as a function of the NS
mass and angular momentum. Such a relation has allowed us to perform the simulations
of the evolution of the accreting NS in a semianalytic fashion, including dynamically
the feedback of the increase of the NS mass and angular momentum into the exterior
geometry.
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B. Appendix for Chapter III

B.1. Electron-positron pair anhilation process

In this Appendix, following Yakovlev et al. [316] we going to analyse the process of
neutrino-pair emission due to the annihilation of electron-positron pairs:

e+ + e− → ν + ν̄ . (B.1)

We wiill adopt the units ~ = c = κB = 1. This process is most efficient in the low-
density and high-temperature plasma, where rhe positron fraction is the highest. In a
strongly degenerate electron plasma, the process is suppressed because of the negligibly
small positron fraction.

The pair annihilation is the simplest neutrino process described by one four-tail Feynman
diagram. The interaction hamiltonian is:

Ĥ =
GF√
2
Jαl

α , (B.2)

with
lα = ψ̄′

νγ
α(1 + γ5)ψν and Jα = ψ̄′

eγ
α(CV + CAγ

5)ψe (B.3)

where lα and J = (J0, ~J) are the neutrino weak and the weak electron-positron 4-currents,
respectively, γα and γ5 are the Dirac matrices, ψν , ψ′

ν , ψe and ψ′
e are the neutrino , an-

tineutrino, electron and positron wave fuctions, repectively , and ψ̄ν denotes the Dirac
conjugate. The weak electron current consistes of the vector and axial-vector terms con-
taining the vector and axial-vector constants, CV and CA, respectively. Emision of electron
neutrinos, νeν̄e, goes via either charged and neutral electroweak currents, and the amp-
litudes of both reactions channels are summed coherently: CV e = 2 sin2 θW + 0.5 and
CAe = 0.5. Emission of the muon, νµν̄µ, and tau, ντ ν̄τ neutrinos can only go through
neutral electroweak currents, so: CV µ = CV τ = 2 sin2 θW − 0.5 and CAµ = CV µ = −0.5.

The wave functions are taken in the form:

ψν =
uν√
2ǫν

eipνx ; ψ′
ν =

u′ν√
2ǫ′ν

e−ip
′
νx ; ψe =

ue√
2ǫe

e−ipex ; ψ′
e =

u′e√
2ǫ′e

eip
′
ex (B.4)

where x = (t, ~r) is the 4-vector of time-space coordinate, pν = (ǫν , ~pν), p′ν = (ǫ′ν , ~pν
′),

pe = (ǫe, ~pe) and p′e = (ǫ′e, ~pe
′) are the particles 4-momentum, while uν and u′ν are the

standard bispinors and ūeue = ū′eu
′
e = 2me.
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The general expresion for the neutrino emissibity, ǫe−e+ , is:

ǫe−e+ = (2π)4
G2
F

2

∑

ν

∫

d~pe
(2π)3

d~pe
′

(2π)3
d~pν
(2π)3

d~pν
′

(2π)3
(ǫν + ǫ′ν)fef

′
eδ

(4)(pe + p′e − pν − p′ν)LαβJαβ

(B.5)
where fe and f ′

e are the Fermi-Dirac distribution of the electron and positron and the
sumation is over all neutrino flavors. The last term of equation (B.5) is equals to:

LαβJαβ =
4

ǫeǫ′eǫνǫ
′
ν

[(pepν)(p
′
ep

′
ν)(CV + CA)

2

+(pep
′
ν)(p

′
epν)(CV − CA)

2 +m2
e(C

2
V − C2

A)(pνp
′
ν)] (B.6)

When equation (B.5) is integrated over d~pν and d~pν ′ with the Lenard indentity, the final
pair anihilation emissivity reduces to:

ǫe−e+ = (2π)4
G2
Fm

4
e

3(2π)7

∫

d~ped~pe
′σD fef

′
e

ǫe + ǫ′e
ǫeǫ′e

(B.7)

whit σD the Dicus cross section [63]:

σD = C2
+

(

1 + 3
pe · p′e
m2
e

+ 2
(pe · p′e)2
m4
e

)

+ 3C2
−

(

1 +
pe · p′e
m2
e

)

(B.8)

where C2
+ =

∑

ν (C
2
V + C2

A) and C2
− =

∑

ν (C
2
V − C2

A). The emissivity for any selected
neutrino flavor can be obtained recalculating C2

±. In a streihgforward way, the information
about the neutrino and antineutrino can be calculated from the integral, in standard
physical units:

εm =
2G2

F (mec
2)4

3(2π~)7(~c)3

∫

fef
′
e

ǫme + ǫ′me
ǫeǫ′e

σDd~ped~pe
′ (B.9)

Then ǫe−e+ = ε1, while the number emissivity is n = ε0. Also, the neutrinos or antirneut-
rino energy moments are: 〈Eν(ν̄)〉 = εm/ε0. For a relativistic, non-degenerate plasma
(κBT > 2mec

2 and 1 > ηe±), the last equation can be approximated with a very good
accuracy by:

εm ≈ 2G2
F (κBT )

8+m

9π5~ (~c)9
C2

+ [Fm+1(ηe+)F1(ηe−) + Fm+1(ηe−)F1(ηe+)] (B.10)

where Fk(η) =
∫∞

0
dx xk/(1 + exp(x− η)).
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C. Appendix for Chapter V

C.1. SPH convergence test

In this Appendix we will evaluate the convergence of the SPH simulation of the IGC
scenario. To this task, we have done numerical experiment varying the number of the
particles of the simulation with which we model the SF ejecta material for the different
progenitors of the COcore (see Table 5.1).

We did simulations with ∼ 1, 1.5, 2 and 3 millions particles with different progenitors
and with different values of the ξ parameter that determines the size of the particles
radius capture (see equation (5.15)). We have resumed the results of these simulations in
Table C.1. We compared the final accreted mass and angular momentum of the binary
stars: the νNS and the NS companion, the final orbital period and final eccentricity of the
orbit. We also report the relative error of these quantities taking as the reference values
the ones of the simulation with around 1 million of particles.

In Figure C.1 is shown profiles of the density on the binary orbital plane and along different
direction, taking the NS companion as the center of the reference frame. In Figure C.2,
it’s also shown the mass accretion rate on the νNS and the NS companion. Finally, in
Figure C.3, it’s presented the flux of mass and angular momentum on the NS companion
at two different distances from it: 0.02R⊙ and at rcap, defined as the maximum particles
radius capture between the particles accreted by the NS in each iteration. All these
figures corresponds to the simulation of an initial binary system forms by the COcore of
the MZAMS25M⊙ progenitor (see Table 5.1) and a 2M⊙ NS with an initial orbital period
of ≈ 2 min.
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Table C.1.: Convergence study of the SPH simulation of the IGC scenario. For each simulation, in the four first columns is shown the progenitor of the COcore,
the number of particles used in the simulation, the η factor with which was scaled the kinetic and internal energy of the SPH-particles in order to mimic an
weaker (η < 1) or stronger (η > 1) SN explosion and the ξ parameter that determines the size of the particles capture radius. In the following columns it’s shown
the final mass and angular momentum of the νNS and the NS companion as well as the period and eccentricity of the final binary system orbit. For each of these
values is shown the relative errors with respect to the 1 million particles simulation

Progenitor N η ξ mνns Er(mνns) Lνns Er(Lνns) mns Er(mns) Lns Er(Lns) porb,f Er(porb) e Er(e)

MZAMS million (M⊙ ) ( 1051 g cm2 / s ) (M⊙ ) ( 1051 g cm2 / s ) ( s )

25M⊙

1.0

1.0 0.1

1.964 3.478 2.078 3.288 6298.29 0.860

1.5 1.951 0.0066 3.522 0.0127 2.064 0.0067 3.323 0.0106 8274.54 0.3137 0.883 0.0267

2.0 1.943 0.0106 3.455 0.0066 2.065 0.0063 3.250 0.0115 7868.58 0.2493 0.880 0.0232

3.0 1.935 0.0147 3.482 0.0012 2.051 0.0129 3.292 0.0012 10744.9 0.706 0.897 0.0430

1.0

1.0 0.5

1.915 3.627 2.126 3.255 9843.52 0.892

1.5 1.906 0.0046 3.434 0.053 2.099 0.0126 3.118 0.0428 14031.1 0.4254 0.923 0.0348

2.0 1.900 0.0078 3.499 0.035 2.102 0.0112 3.155 0.0307 12871.2 0.3075 0.913 0.0235

1.0

1.0 1.0

1.937 3.669 2.209 3.217 91557.2 0.979

1.5 1.926 0.0056 3.119 0.1499 2.189 0.0091 2.745 0.1467 25489.6 0.7215 0.962 0.0174

2.0 1.919 0.0092 3.461 0.0566 2.179 0.0135 3.047 0.0528 145340.6 0.5874 0.985 0.0061

30M⊙
1

1.0
2.0 0.1

1.783 4.499 2.077 3.861 − 1.44

2.0 1.772 0.0061 4.451 0.0106 2.043 0.0164 3.859 0.00051 − 1.50 0.0416

1.0
2.0 1.0

1.781 4.087 2.172 3.351 − 1.38

2.0 1.769 0.0067 4.614 0.1289 2.115 0.0262 3.859 0.1550 − 1.55 0.1096

40M⊙ 1.0
1.0 0.1

1.875 4.419 2.124 3.902 − 1.84

2.0 1.869 0.0032 4.276 0.0323 2.069 0.0259 3.862 0.0102 − 2.00 0.0869
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Figure C.1.: Density along different directions θ on the orbital binary system plane (νNS-NS). From left to right of upper panel: θ = 0.0, π/6 and π/3 and in the
bottom panel θ = π/2, 2π/3 and 5π/6. The center of the reference system is on the NS position and the νNS is on the −x axis. The θ direction if measured from
the +x axis. The initial binray system is form by the COcore of the MZAMS = 25M⊙ progenitor and a 2M⊙ NS in a orbital period of about 5 min. Different
colors correspond to different number of particles: 1 million (red line), 1.5 million (blue line), 2 million (green line) and 3 million (orange line.
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Ṁ
ν
−
n
s
[M

⊙
s−

1
]

Ṁ
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number of particles modeling the SN expansion in the simulation. The initial binary period is the same
as in Figure C.1
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Figure C.3.: Mass (left panel) and angular momentum flux (right panel) thought spheres of radius
r = 0.2R⊙ and r = Rcap with the NS in the center. The Rcap surface is defined as the maximum particle
radius capture between the particles accreted by the NS in each iteration. The initial binary period is
the same as in Figure C.1
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