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Abstract

The governments of developing countries struggle to guarantee the uni-
versal access to electricity on their territory and 1.2 billion people are still
without any service, especially in remote areas. Hybrid mini-grids can be
an effective solution since they exploit local renewable resources integrated
with energy storage devices, reduce the use of fuel generators, and defer
the construction of long and expensive grids until the growth of demand
makes it profitable. Off-grid mini-grids are typically operated with simple
load-following dispatching strategies, but predictive approaches can provide
better performances, although at the expense of additional computational
requirements. This paper investigates the benefits of using rolling-horizon
dispatching strategies during the mini-grid design stage, also comparing how
the optimal size of components is affected by several technical and economical
parameters. Moreover, we propose the use of a stochastic sizing procedure
that captures the uncertainties related to the load, to the renewable gener-
ation, and to the time required for the fuel procurement and delivery. A
case study with real load data collected from an existing mini-grid placed in
Habaswein, Kenya, is presented and discussed. The optimal sizing of some
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components turns out to be almost unaffected by the operational strategies,
so their preliminary design can be simplified to avoid time-consuming sim-
ulations. Conversely, the optimal sizing of the diesel generator and of its
fuel tank is strongly related to both the local economic parameters and the
operational strategy of the mini-grid, which must be properly simulated.

Keywords: Mini-grid, Isolated system, Fuel management, Monte Carlo,
Optimization, Rolling-horizon dispatching

Nomenclature

NPC Net Present Cost of the mini-grid project
CAPEX Capital expenditures
OPEX Operational expenditures

S Number of Monte Carlo scenarios
NL Lifetime of the project in years
Tr Time resolution
Th Period of time between two consecutive redispatching procedure
To Time horizon of the MILP optimization

CF,t Fuel cost ($)
CC,t Cost of load curtailment ($)
CM,t Maintenance cost ($)
CRC,t Cost of RES curtailment ($)
CSS Cost of the overuse of the battery ($)
FD,t Fuel consumption (l)

PC,t, PRC,t Curtailment of the load and renewable energy sources (kW)
PD,t, zD,t Diesel generator power (kW) and its status (1: running, 0: off)
Pinv,t, PB,t Inverter and battery power (kW)

PL,t Load (kW)
PPV Av,t Available renewable production (kW)

Pmax
D , Pmin

D Maximum and minimum diesel power (kW)
VF,t Fuel available in the tank (l)
EB,t Energy available in the battery (kWh)

Emax
B , Emin

B Maximum and minimum energy battery level (kWh)
Pmax
B+ , Pmax

B− Maximum and minimum battery power (kW)
Pmax
inv+, P

max
inv− Maximum and minimum inverter power (kW)

cDS,i, cDI,i Piecewise linearization of the fuel consumption (offset and slope)
css Specific cost of the battery overuse ($/kWh)

ηI , ηB Efficiency of the inverter and battery (-)
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1. Introduction

Nowadays, while industrialized countries have completed their electrifi-
cation process, governments of developing countries are still struggling to
provide a reliable access to electricity to around 2.2 billion people worldwide
[1, 2], of which 1.2 billion lacks any service [1]. Mini-grids are widely consid-
ered one of the most effective solutions to supply areas far from the grid or
with weak infrastructure, since they can defer the construction of long and
expensive grids until the growth of demand makes it profitable. In this con-
text, planning tools are really helpful to identify the cheapest electrification
option even at country scale [3, 4].

International and national efforts are in particular promoting hybrid so-
lutions that include renewable sources and energy storage [2, 5, 6], not only
to comply with the COP21 guidelines and reduce local pollution, but also
to reduce the project costs, the renewable sources being already competitive
with fossil fuel technologies in many contexts [5]. Business and technical risks
in mini-grid investments are still significant [7], although the huge potential
market of USD 200 billion/year [5] is attracting not only non-governmental
organizations, research institutions, and public investors, but also private
companies.

Predictive operational strategies of resources can improve the efficient
use of fuel-fired generators and reduce load shedding with respect to the
traditional load-following procedures [8, 9]. In addition, stochastic sizing
methodologies are very promising tools in order to properly cope with the
uncertainties related to load, renewable sources and fuel procurement, assur-
ing a robust and reliable probabilistic design of the mini-grid, including the
fuel tank capacity.

For these reasons, this paper proposes and analyzes a stochastic sizing
technique that combines a probabilistic approach, an optimization tool and
the simulation of a predictive operational strategy of resources including their
intra-daily redispatching. The benefits obtained with respect to traditional
load-following procedures are investigated and numerically discussed for an
isolated system, also performing a wide sensitivity analysis of results when
techno-economic local constraints and parameters change. Moreover, the
optimal sizing of the fuel tank is explicitly considered into the design of
the mini-grid, turning out to be particularly dependent on the average and
variance of the time required for fuel delivery.
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2. Problem formulation

2.1. Uncertainties in sizing methodologies

The literature regarding the optimal sizing of power systems under un-
certainties is very rich, especially for hybrid systems with multiple energy
sources, isolated or linked to the national grid [10–14]. Typical methodolo-
gies iteratively simulate the operation of the system, testing several combi-
nations of the size of the components [8, 15–18] in order to find the design
that minimizes total system costs, also including reliability aspects and other
socio-economic indicators [16, 19].

Conventional commercial software usually optimizes only a single deter-
ministic scenario of load and renewable generation [17], while the scientific
literature is recently proposing several approaches to make decisions under
uncertainty, which means taking into account many possible profiles of load
and renewable generation. Authors in [20] applied for instance a chance-
constrained method to size and locate distributed energy sources, assuming
that load flows can exceed the maximum capability of feeders according to
a probability density function assessed by simulating multiple scenarios of
load, distributed generation, and energy price. According to the approach
suggested in [18], the best design of an isolated system can be obtained by
deterministically optimizing the size of its component in several independent
scenarios of load and renewable generation, previously drawn by a Monte
Carlo procedure; the final best design is then obtained by analyzing the sta-
tistical properties of occurrence of the different scenarios. A similar approach
is also proposed in [21], where the point estimate method is applied to an
interconnected system, or in [22], in relation to an isolated system. Authors
in [11] proposed a stochastic approach based on NSGA-II method to size a
hybrid system able to meet the thermal demand under uncertainties in solar
and wind production; the outcome is the Pareto front between the economic
value of the energy-not-served and the investment costs. The study [17] de-
tails a robust approach by using multiple scenarios to size rural systems in
developing countries, but robustness seems to lead to rather conservative re-
sults. Conversely, papers [8, 12, 15, 23] propose to approximate the stochastic
objective function of the problem into a weighted sum of the deterministic
objective functions of single scenarios. This allows estimating the operational
costs, the maintenance fees, and the energy-not-served under different con-
ditions of load or renewable production, by weighting the outcomes of the
different scenarios with their probability to occur. More in detail, authors in
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[8, 15] firstly proposed to use this methodology to size also the fuel tank and
the fuel logistics. The study in [15], based on a Particle Swarm Optimization
(PSO) method to best select size scenarios to be investigated, was improved
in [8], where the same authors included a rolling-horizon dispatching strat-
egy of the batteries and of the diesel generator. The results were compared
to the ones obtained by implementing a conventional load-following operat-
ing procedure, but the validity of this comparison were limited to a single
techno-economic scenario, tuned for a possible mini-grid to be installed in
Uganda. A wide sensitivity analysis is instead required to verify, generalize
and enforce this comparison, moreover using realistic data collected from the
field, as performed in the present paper. This enabled achieving additional
results and fine-tuning design criteria, as discussed in the next sections.

The simulations carried out by the optimization techniques usually cover
a time horizon long enough to capture the periodicities of both the load and
renewable sources, which means at least an entire year [15, 17, 18, 22]. A hori-
zon of multiple years enables evaluating the degradation of the components
[24], but the longer the time span, the higher the necessary computational
time [8, 25]; thus, model simplifications are required, such as in [25] where
the entire year was sampled in a few representative weeks. For yearly simula-
tions, the available renewable production is often estimated by using Typical
Meteorological Year (TMY) data [24] that incorporate the random behaviour
of renewable generation [26]. Nevertheless, many authors [8, 15, 18, 22] pro-
posed synthetic methods to draw realistic yearly profiles of the available
renewable production [27–29]; synthetic approaches are useful for stochastic
sizing, since enabling to analyze many realistic years, as in [12, 15, 18, 22].

2.2. Fuel tank sizing

According to our literature analysis, papers referring to ”tank sizing” in
mini-grids focus on sizing hydrogen [30] or water tanks [31], while the ones
citing the fuel tanks only focus on large power plants, e.g. in [32]. The op-
timization of the size of the fuel tank is usually not included into the sizing
procedure of the whole mini-grid, probably because of the implicit assump-
tion that the operator always assures that the tank is being properly refilled.
However, recent papers [8, 15] suggested that the distribution function of the
time required for the fuel delivery has a certain influence on the optimal size
of the fuel tank. This dependence is worth investigating, because of its im-
portance for remote areas with poor logistic infrastructures, such as in many
sites in Africa or in the Amazon.
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2.3. The daily dispatching of energy resources

Due to their simplicity and robustness, traditional operational strategies
of existing isolated mini-grids are non-predictive, such as load following and
cycle charging. Both procedures turn on the fuel generator when the battery
reaches a minimum State-Of-Charge (SOC), but in the first strategy the fuel
generator supplies only the load, leaving the battery at its SOC, while in the
cycle-charging method the generator feeds also the battery until it reaches
a preset SOC. This concept was firstly introduced in [33], then tested in
many papers [15, 34] and implemented in commercial software [24]. When
the mini-grid is interconnected to a wider power system, its operation must
comply with the procedures set by the relevant utility or market operator
[35]. Moreover, the simulations should include a proper model for the actual
availability of the interconnection that could be rather unreliable in the rural
areas of developing countries [25].

Predictive strategies are conversely based on the short-term forecasting of
load and RES production, which enables dispatching in advance the batteries
and the fuel generator, thus preventing and mitigating out-of-charge events
and load curtailment; furthermore, optimal dispatching procedures enhance
the efficiency of the working point of the fuel generator [8, 9, 36], which in
load-following procedures depends on the residual load to be met.

Advanced predictive methods perform a rolling-horizon approach, where
the optimization of resources is repeated also intra-daily to cope with the load
and RES forecasting errors, as well as with the contingencies occurred along
the real time operation of the mini-grid [8, 9]. Other stochastic methodologies
embed the statistical properties of load and RES uncertainties [37], but their
complexity and time requirement discourage their use for sizing purposes.

3. The simulation of the mini-grid’s operation

The mini-grid’s operation includes the possible short-term scheduling of
energy resources, their real-time dispatching, as well as fuel procurement
and maintenance issues, as discussed in this section for the typical scheme of
Fig. 1, which is very common in rural areas of developing countries. Cluster-
ing mini-grids or expanding the main national grid could be valid alternatives
to isolated systems, to be investigated case by case. In this paper, we assume
that upstream planning tools like the Reference Electrification Model (REM)
[4] have already identified the isolated mini-grid as the most promising topol-
ogy for the site under analysis; this said, the proposed procedure provides
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more accurate criteria for refining the size of each component. In addition,
the gained accuracy may help to better classify ex-ante if a mini-grid or grid
expansion is the most economical solution for a specific set of consumers.
This analysis is part of our future research guidelines.

Its also worth noticing that in mini-grids the short distances make single-
busbar models an acceptable simplification, especially when focusing on the
optimal design of power sources and storage devices, of course provided that
the considered load includes realistic distribution losses.

Load following and a novel predictive strategy were both simulated for
comparison purposes, as the most representative of the possible dispatching
methodologies, according to [33].

Figure 1: Typical design of a rural mini-grid.

3.1. Load-following strategy (LFS)

The load-following strategy, typically used in rural mini-grids, consists of
priority-list rules that in real time first exploit the renewable sources, then
the energy stored in the battery, and lastly the fuel. The battery balances the
mismatch between load and the renewable production according to its power
and energy limits. When the battery is fully charged, the extra renewable
production is curtailed; conversely, when the minimum SOC is reached, the
diesel generator is turned on to possibly avoid load curtailments, without
charging the battery. This methodology requires no RES or load forecasting
and has minimum computational complexity.

3.2. Predictive strategy

Predictive strategies are more complex than load-following or cycle-charging
procedures, but their ability to dispatch the mini-grid anticipating future
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needs can reduce operational costs, the sizing of the backup fuel generator
and the energy not served [8, 15]. In fact, with predictive strategies the opti-
mal operation of storage devices makes it possible, for instance, to recharge
in advance the batteries based upon the upcoming prices (when a day-ahead
market sets the hourly prices or a Time Of Use charge is applied), irradiation
and load, by anticipating the start-up of the diesel generator.

3.2.1. Rolling horizon scheduling of resources (RHS)

In this paper, the rolling-horizon procedure depicted in Fig. 2 is pro-
posed and discussed. Every Th hours, the load and the available renewable
production of the following To hours are forecasted and the corresponding
use of batteries and diesel generator is rescheduled at minimum operational
costs, using a mixed-integer linear programming (MILP) algorithm. The new
scheduling is maintained for the following Th hours, up to the next iteration
of the procedure. At this stage, operational expenses include not only fuel
costs and the economic value of the non-served energy, but also the overuse
cost of the battery. This last addend is an economic penalty considered when
the energy stored in the battery at the end of the optimization period turns
out to be below its initial SOC. Such a cost is estimated considering the
additional costs that the overuse of the battery would cause in the next op-
timization period, in terms of additional load curtailment or supplementary
diesel production.

Figure 2: Rolling-horizon predictive strategy.

The objective of the proposed MILP procedure is to minimize operational
costs, including fuel expenses CF,t, the economic value of the load curtailment
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CC,t, and the maintenance CM,t, as in (1). The additional overuse cost CSS
is applied if the final energy available in the battery EB,24 is lower than its
initial value EB,0. The value of cSS has been set to the specific cost of the
diesel generator when running at its maximum efficiency.

Eq. (1a) expresses the objective function to be minimized. Equations
from (1c) to (1f) relate specific and total costs of unserved energy, battery
overuse, maintenance, fuel, and renewable curtailment, respectively.

∀t min
∑T

t=1CF,t + CC,t + CM,t + CRC,t + CSS (1a)

CSS =

{
0 if EB,24 > EB,0

cSS (EB,24 − EB,0) otherwise
(1b)

∀t CC,t = cCPC,t (1c)

∀t CM,t = cMzD,t (1d)

∀t CF,t = cFFD,t (1e)

∀t CRC,t = cR,tPRC,t (1f)

The power balance in the AC and DC bus is guaranteed by equations
(2a) and (2b), respectively:

∀t PD,t + Pinv+,t − Pinv−,t = PL,t − PC,t (2a)

∀t PB+,t − PB−,t + Pinv+,tηI − Pinv−,t

ηI
+ PPV Av,t = PRC,t (2b)

The equation group (3) details the diesel constraints, including the fuel
consumption (3b) and tank level (3c).

∀t PD,minzD,t ≤ PD,t ≤ Pmax
D zD,t (3a)

∀t, i FD,t ≥ cDS,iPD,t + cDI,i − (1− zD,t)M (3b)

∀t VF,t = VF,0 −
∑t

t′=1 FD,t′ ≥ 0 (3c)

The power and energy constraints of the inverter, the battery, and the
battery converter are expressed by the following equations (4).

∀t 0 ≤ Pinv+,t ≤ zI,tP
max
inv+ (4a)

∀t 0 ≤ Pinv−,t ≤ (1− zI,t)Pmax
inv− (4b)

∀t Emax
B ≤ EB,t ≤ Emax

B (4c)

∀t EB,t = EB,0 +
∑t

t̂=1−
PB+,t̂

ηI
+ ηBPB−,t̂ (4d)

∀t 0 ≤ PB+,t ≤ zB,tP
max
B+ (4e)

∀t 0 ≤ PB−,t ≤ (1− zB,t)Pmax
B− (4f)

9



Finally, the constraints relevant to the load shedding PC,t and to the
curtailment of renewable sources PRC,t are detailed in (5).

∀t 0 ≤ PPV,t ≤ PPV Av,t (5a)

∀t 0 ≤ PC,t ≤ PL,t (5b)

3.2.2. Real-time operation

Due to the intrinsic forecasting errors, a real-time controller is then re-
quired to balance the mismatch between the actual power profiles and their
forecasts, basically applying a load-following procedure to power deviations.
The following rules apply at each time step [15].

1. The diesel is dispatched as scheduled by the MILP, renewable sources
are exploited at most, and the battery balances the power mismatch
until it reaches its maximum capacity limits. Renewable curtailment
occurs if the energy cannot be stored nor supplied to the load;

2. When the battery is out of charge or reaches its capacity limit while
feeding the load, and the actual demand is higher than the dispatched
production, then:

(a) if the diesel generator was committed to produce by the MILP, its
scheduling is increased until required;

(b) if the diesel generator was off according to the MILP, the economic
value of curtailing the extra load is compared to the cost of turning
on the generator, and the cheaper option is chosen.

3. When the battery is full or reaches its power limit while being charged,
the actual production is higher than the load, and the mismatch is
balanced according to the following merit-order list: first, the diesel
production is reduced even to shut-down; then, the renewable produc-
tion is curtailed.

Any variable under simulation is discretized into time steps of Tr hours
(usually 0.25h, 0.5h or 1h) that must be short enough to capture the system
dynamics. The choice of Tr and To is strictly related to the load and renewable
power profiles: Tr captures their fast dynamics, while To must embrace the
longer. Moreover, short values of the period Th between two consecutive
redispatches allow to frequently re-optimize the system and compensate for
the unavoidable forecasting errors. However, frequent redispatchings cause
a sharp increase in computational time, especially with low values of the
time resolution Tr and long time horizons To. Since the values of Tr, Th
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and To influence also the accuracy of results, their optimal choice requires a
compromise between optimality and computational requirements [8].

3.3. Fuel procurement

3.3.1. Route strategies

The on-site price of fuel is significantly increased by the cost of trans-
portation, usually performed with tank trucks. Transportation costs depend
on the quality of roads and on the route taken to reach the mini-grid, and
less on the quantity of the transported fuel. Therefore, the delivery of larger
fuel volumes is attractive to decrease the per unit impact of fixed costs. Two
possible strategies to refill a cluster of mini-grids are described below.

• Individual strategy: the fuel delivery is limited to a single mini-grid.

• Collective strategy: the fuel delivery is aimed at refilling a cluster of
mini-grids, so the specific fuel price is reduced since transportation
fixed costs are shared among multiple users. Moreover, this strategy
usually involves the use of larger trucks, whose impact on specific fuel
cost decreases because of the clear economies of scale.

3.3.2. Model of the fuel delivery timing

The tank truck logistics strongly influences the delivery time tD whose
general mathematical model is expressed by Eq. (6), where tP and tT are the
deterministic minimum time required for managing the procurement process
and the transport, respectively; the term pdf is the probability density func-
tion (PDF) that models the stochastic components of the availability of the
truck, of the management structure and of the transport time. More details
about the term pdf are provided in the case study.

tD(h) = tP + tT + pdf (6)

4. The sizing procedure

As previously mentioned, the mini-grid is sized by searching the set of
components whose operation is cheapest, also taking into account the invest-
ment costs and the economic value of load curtailment. In more detail, the
stochastic procedure proposed to size the mini-grid is composed of the two
nested loops depicted in Fig. 3. In the outer loop, an optimization strat-
egy, such as Particle Swarm Optimization (PSO) or Imperialist Competitive
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Algorithm (ICA) [15, 38], iteratively selects possible configurations of the
size of the components. Their operation is then simulated in the inner loop,
according to the procedures discussed in the previous section, for S different
Monte Carlo annual scenarios of load and the available renewable production.
Finally, the procedure calculates the objective function associated to the size
configuration under test and, if one of the termination criteria is reached, the
iterations stop and the optimal size scenario is identified.

This methodology can be applied to both greenfield projects and exist-
ing mini-grids under revamping, provided that the assessment of the load
and of its probability density function is performed accordingly. Demand
assessment is out of the scope of this paper and the expected load profile,
together with the distribution function of the relevant short-term forecast er-
rors, is considered as an input of our procedure; previous papers of the same
authors [8, 15] and a lot of scientific literature have dealt with this topic.
In this regard, the novelty of the approach proposed in this paper is that
a probabilistic model of load and renewables is combined with optimal dis-
patching procedures and an external loop with sizing purposes. Monte Carlo
scenarios are in fact used to cope with the day-ahead uncertainty of the load
and of the renewable generation, for purposes of predictive daily dispatching.
The uncertainty correspondent to the long-term evolution of the load is not
simulated in this paper; the average power profiles assumed as an input of
our procedure must be in fact considered as representative of a mid-term
perspective that is used to approximate the multi-annual behavior of the
mini-grid, as in [8, 17, 18, 22, 25]. Nevertheless, its worth noticing that the
long-term uncertainty of the load, be it deterministically or probabilistically
treated, could be also addressed in our tool by considering different expected
load profiles, to be varied or drawn in a long-term perspective, rather than
just considering the daily Monte Carlo deviations with respect to a single
predefined yearly profile.

The proposed tool has already been validated in the past with respect to
HOMER when adopting a load-following strategy [39]; the comparison be-
tween the load-following strategy and the predictive dispatching was instead
discussed in [8], but only for a single configuration of operating costs and
fuel procurement, besides on a theoretical case study not supported by real
electrical measurements. In this paper, we improved the simulation tool and
enforced the previous comparison through a sensitivity analysis of operating
costs and of the time required for fuel procurement; in addition, the expected
load and generation profile, as well as the probability density functions of the
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relevant short-term forecasting errors, were tuned on real measurements col-
lected in an existing mini-grid under refurbishment.

4.1. Objective function of the sizing procedure

The objective function to be minimized in the sizing procedure is the
expected Net Present Cost (NPC) of the system during its lifetime (NL),
expressed by Eq. (7). In Eq. (7), while CAPEX are deterministic since they
are fixed once the size scenario under examination is established, OPEX are
a stochastic function related to the power profiles of load and renewable
production, including their uncertainty. By using the Sample Approximat-
ing Algorithm [40], the resulting OPEX in (8) is the average value of the
operational costs obtained in the S Monte Carlo scenarios.

NPC =

NL∑
y=0

CAPEXy +OPEXy

(1 + i)y
(7)

OPEXy =
S∑
s=1

OPEXys

S
(8)

CAPEX includes the investment costs of the diesel-fired generator, batteries,
converters, renewable generators and fuel tank; OPEX includes fuel costs,
maintenance fees and the economic value of the energy not served.

4.2. Outer loop: optimization

After a first initialization, the outer loop iteratively selects the new size
of components to be analyzed, using a predefined algorithm such as PSO
or ICA [15, 38]. Once the configuration in the present iteration is selected,
the algorithm evaluates the corresponding CAPEX and starts the simulation
of the mini-grid operation, as detailed in the inner loop. As a compromise
between the optimality of results and the computational complexity, we used
a PSO algorithm with the following termination criteria: number of iterations
(200), maximum number of stall iterations (12), and tolerance (10−3).

4.3. Inner loop: stochastic simulation

One of the main novelties of this paper is within the inner loop, where
the stochastic nature of the load, of the available renewable production and
of the time required for fuel delivery are captured by simulating the system

13



Figure 3: Scheduling and operation of resources.
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operation in S yearly possible time profiles of stochastic quantities, drawn
by a sequential Monte Carlo technique [41, 42].

As depicted in Fig. 3, this procedure is valid for both the load-following
and rolling-horizon strategies. However, when the predictive strategy is se-
lected, the procedure starts by determining the forecast of the load and of
the available renewable production of the following Th hours, by using two
Gaussian PDFs that model forecasting errors. After that, the MILP algo-
rithm calculates the optimal scheduling of the mini-grid and finally the real
time rules balance the on-line operation of the system. In more detail, the
standard deviations of the two Gaussian distribution functions are assumed
to linearly increase from the 5% at the first to 15% at the last time step of
the rolling-horizon window. The time required for fuel delivery is instead
drawn according a Weibull PDF, according to Eq. (6).

Conversely, when the load-following strategy is adopted, only the real
time balancing rules are applied, without any forecasting activity.

5. Description of the case study

The proposed methodology is applied to a mini-grid to be installed in
Habaswein, Wajir County, Kenya (1.0N, 39.29E). Population is about 10,000
people, mainly engaged in the agriculture sector [43]. The proximity to
the Equator confirms the validity of the mini-grid configuration depicted
in Fig. 1, composed by a photovoltaic plant, a lithium battery storage, an
inverter, a diesel generator, and a fuel tank.

5.1. Simulation parameters

We performed the simulations with hourly time steps (Tr = 1h), using
both load-following and predictive strategy, for comparison purposes. The
predictive strategy re-optimizes the system dispatching every 6 hours (Tr =
6h), as a compromise between computational requirements and the frequency
of optimal rescheduling of resources. Each MILP procedure minimizes the
operational costs expected over the following 24 hours (To = 24h). We
selected this time window because the daily periodicity best describes the
patterns of local activities and the available renewable production.

The simulations were performed using 5 Monte Carlo scenarios and as-
suming the lifetime of the project is 15 years [44, 45]. This lifespan is a
challenging target that requires good maintenance and quality products, es-
pecially for inverters. However, nowadays several manufacturers propose base
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warranties of 10 years, extendable up to 15, 20 or even 25 years. The signifi-
cant maintenance costs considered in our case study are consistent with the
purposes of good preservation of components, especially the inverter, whose
cooling components must be kept well clean; yearly maintenance includes fil-
ters substitution and proper internal cleaning. CAPEX reflect both warrant
extensions and the need to change the fans of the inverter after 10 years of
operation.

5.2. Load profile

The load profiles used for simulating the real time operation of the mini-
grid are based on measures collected in a nearby similar minigrid for the
entire year 2014, with a granularity of 30 minutes. In order to represent
the stochastic nature of our analysis, the S yearly profiles drawn by the
Monte Carlo procedure are obtained by adding to the historical pattern an
additional Gaussian noise, having null average and a standard deviation equal
to 20% of the actual demand, measured in 2014 in the analyzed time step.
As discussed at the beginning of Section 4, this yearly load profile is assumed
to represent the mid-term stress of the mini-grid.

A sensitivity analysis on the cost of load curtailment was performed,
assuming possible values of 0.5$/kWh and 1$/kWh.

5.3. Available photovoltaic production

The irradiance reaching the photovoltaic modules and the local ambient
temperature are the main drivers of the available photovoltaic production
[46]. The hourly profiles of incident irradiance used for simulating the real
time operation of the mini-grid were established using the Graham algorithm
[28, 29] combined to the HDKR technique [46]. The methodology is based
on ARMA models that were tuned on the data available from the Kenyan
meteorological station of Kitale. In order to foster the use of the renewable
source at the beginning of the time horizon optimized by the MILP procedure,
where its forecast is more accurate, the cost of PV curtailment decreases from
0.01$/kWh in the 1st hour down to 0$/kWh at the 24th.

5.4. Fuel cost and procurement

We assumed that a new fuel delivery is requested when the remaining
fuel quantity reaches a fixed threshold (20%). Then, a tank truck transports
a fixed fuel volume (80% of the mini-grid tank) to the mini-grid. The time
elapsed between the fuel request and its arrival is modeled using a Weibull

16



PDF in (6), calibrated according to Table 1. A sensitivity analysis on the all-
inclusive cost of fuel was also performed, assuming possible values of 0.8$/l,
1.2$/l, and 1.6$/l.

Case
tP + tT 50th percentile 90th percentile
(days) (days) (days)

A 1 1.5 3
B 2 3 6

Table 1: Delivery time.

5.5. Investment costs and efficiencies

The investment costs of the main components were estimated using Eq. (9),
where Px is the size under investigation, α the reference cost of the compo-
nent with size P0, and β the exponent that depends on the economies of scale
and of volume of the technology. The parameters of the equation, calibrated
within the size range under investigation, are reported in Table 2, along with
the expected maintenance costs; economic parameters, especially in terms of
economies of scale, were tuned from the standpoint of an operator that is
supposed to install and operate several mini-grids. The cost of the balance
of plant (BoP) is included only for the share that dipends on the size of the
component; the remaining part can be disregarded since not affecting the
optimization.

C(x) = α

(
Px
P0

)β
(9)

The efficiency of the components is 99% for the battery converter, 96%
for the inverter, and 96% (roundtrip) for the battery pack, which corresponds
altogether to a realistic 87% AC-AC roundtrip efficiency. The efficiency of the
diesel generator increases roughly linearly from 11% (at technical minimum,
i.e. 10% of rated power) up to 33% (at nominal output) [8].

6. Results and discussion

Fig. 4, Fig. 5, Table 3, and Table 4 summarize the results of the opti-
mization cases carried out with MATLAB, according to the two described
strategies (LFS and RHS), to the sensitivity analysis proposed in Section 5
and to the procedure described in Fig. 3. The 24 cases of the sensitivity
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Asset P0 and UM*
α β Maintenance

($/UM*) (-) ($/UM/y)

PV 1 kW 800 1 16
Battery 1 kWh 350 1 3
Bat. conv. 1 kW 1258 0.5 2
Inverter 1 kW 1887 0.5 2
Fuel gen. 1 kW 1013 0.8 0.05$/kW/h
Fuel tank 1 liter 52.2 0.45 0.15
*unit of measurement.

Table 2: Cost parameters of the main components, calibrated with [8, 15, 47–51].

analysis required roughly one month 24/7 on a 12-core PC with 16GB RAM,
of which few hours for each LFS case and some days for each RHS case;
these are requirements still acceptable for sizing purposes in comparison to
the time required for the feasibility phase of mini-grid projects.

Fig. 4 reports the NPC of the mini-grid for different values of the cost
of the energy not served, fuel price and implemented strategy, averaged for
scenarios A and B of time required for fuel delivery; small error bars in the
figure show minimum and maximum obtained values. The effectiveness of
the predictive strategy is clear: the NPC obtained with the RHS approach is
always lower or equal to the one resulting from load following. In fact, when
the optimal configuration of the mini-grid includes a diesel generator, RHS
is always cheaper than LFS. Conversely, when installing a diesel generator is
not cost-effective, which occurs when the economic value of the non-served
energy is minimum and the fuel price is maximum, the RHS strategy cannot
optimize the operation of the backup source, therefore the results of RHS are
very related to the ones of LFS.

Fig. 4 also shows that the higher the cost of load curtailment, or the lower
the fuel price, the higher the benefits of using the RHS. In the extreme case,
using RHS the NPC decreases by 3%. This cost reduction is both related to
the reduction of CAPEX and to the increased continuity of supply. In fact,
RHS reduces load curtailment by 60-65%, on average. The NPC significantly
depends on fuel price and on the cost of the non-served energy; the impact
of the time required for fuel delivery is instead negligible.

Fig. 5 shows the optimal size of the PV plant, of the converters, and of
the storage device, for different values of the cost of load curtailment, of the
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a) Load curtailment 0.5$/kWh. b) Load curtailment 1.0$/kWh.

Figure 4: NPC of the mini-grid for different dispatching strategies, cost of load curtailment
and fuel price; values are averaged on scenarios A and B of time required for fuel delivery.

fuel price and with the two possible dispatching strategies. The results are
expressed in terms of percent difference between each optimal solution and
a base case that is the optimal design obtained adopting the load following
strategy, assuming a fuel cost of 0.8$/l, and penalizing load curtailment with
0.5$/kWh (806-kWp PV plant, a 412-kW battery converter, a 234-kW in-
verter, and 2.25-MWh storage device). The values are averaged for scenarios
A and B of time required for fuel delivery. As in Fig. 4, small error bars indi-
cate minimum and maximum obtained values, showing that the dependence
of sizes on fuel procurement is negligible. Focusing on dispatching strategies,
with RHS the optimal size of these components is usually 2-8% lower than
applying LFS (with very few exceptions on power electronics, whose size dif-
fers by 10-16% in a couple of scenarios). Introducing RHS therefore allows
only a relatively low reduction of sizes, which suggests that the preliminary
design of the PV plant, of the battery, and of the converters could be effec-
tively assessed using the simple load following strategy, more than 500 times
faster than the predictive one. Fig. 5 also shows that by doubling the fuel
price or the cost of load curtailment the optimal sizes of the PV plant and
of the battery differ by no more than 11% from their average value, 19% in
case of converters.

Conversely, Table 3 shows that the optimal size of the diesel generator
is strictly dependent not only on the adopted dispatching strategy, but also
on the fuel price and on the cost of load curtailment, while remaining only
slightly related to the fuel delivery time (A/B). According to [8, 15], Table 3
confirms for a wider sensitivity range that the higher the fuel price, or the
lower the cost of non-served energy, the lower the optimal size of the diesel
generator. It’s worth noticing that with RHS the size of the generator is
approximately halved with respect to LFS, because the use of RHS maximizes
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Figure 5: Optimal size of the photovoltaic plant, the inverter, the DC/DC converter and
the battery, for different dispatching strategies, cost of load curtailment and fuel price;
each size is expressed in terms of percent difference with respect to the optimal solution
obtained by applying LFS to case A1.

the coordination of the components also at the operational level, enabling to
foresee the unbalances of the system and to prevent the batteries from being
discharged. Simulations also show that at the same time RHS increases the
energy produced by the diesel generator, by 28-45%. This means that the
rolling horizon redispatching procedure strongly increases the frequency of
use of the diesel generator, while reducing its required capacity. The growth
of diesel production is related to the reduction of load curtailment, in all
scenarios. Since RHS boosts the usage factor of the diesel generator, also the
efficiency of its working point improves. This is confirmed by the fact that
implementing RHS the fuel consumption increases slightly less (from 3 to 6%)
than the produced electricity. The dependency of the diesel generator size on
the timing of fuel delivery (case A and B) is always less then 5%, except when
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adopting RHS with very high values of fuel price and cost of load curtailment.
Moreover, it’s worth noticing that the optimal design obtained by applying
the RHS to the case B1 includes a 24-kW diesel generator; while in the same
scenario, the LFS does not highlight the need for a backup source, with
obvious consequences in terms of system reliability. This interesting result
suggests that implementing the RHS during the sizing phase of the mini-grid
can also change the cost-effectiveness of the diesel generator.

Operational strategy Load following Rolling horizon

Load curt. cost ($/kWh) 0.5 1 0.5 1

Fuel delivery scenario A B A B A B A B

F
u
el

p
ri

ce

($
/l

it
er

) 0.8 95 100 122 129 46 46 56 57

1.2 0 0 113 114 24 23 52 57

1.6 0 0 100 99 0 0 43 49

Table 3: Optimal size of the diesel generator (kW).

Operational strategy Load following Rolling horizon

Load curt. cost ($/kWh) 0.5 1 0.5 1

Fuel delivery scenario A B A B A B A B

F
u
el

p
ri

ce

($
/l

it
er

) 0.8 2.3 4.0 3.4 5.5 3.2 5.2 3.9 8.0

1.2 0 0 3.2 4.2 1.5 2.2 3.6 4.5

1.6 0 0 2.9 3.1 0 0 2.3 4.0

Table 4: Optimal size of the fuel tank (thousands of liters).

The optimal size of the fuel tank is reported in Table 4. First of all,
these results confirm the findings of [15], where authors demonstrated that
the optimal size of the tank increases with higher fuel price, cost of load
curtailment and, obviously, the time required for fuel delivery. Present simu-
lations also show what happens by changing the dispatching strategy of the
mini-grid: with RHS the optimal size of the tank turns out to be higher than
with LFS, even by 30%. This is because RHS dispatches more frequently the
diesel generator, whose fuel requirements increase by 24-35%, depending on
the analyzed scenario.
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7. Conclusions

Rural mini-grids suffer from scarce financing, so their sizing and oper-
ation at minimum costs are crucial. In this paper, we verified that sizing
a hybrid mini-grid using a predictive operational strategy instead of imple-
menting the traditional load-following approach enables coordinating the use
of components, thus achieving promising savings in the Net Present Costs
of the project. The proposed technique, which combines a probabilistic ap-
proach, an optimization tool and an intra-daily redispatching of resources,
has proven to be effective in sizing an isolated system including the fuel tank
and the fuel procurement, whose impact is typically neglected in the sizing
process. The results have been enforced by using field-based data, collected
from a mini-grid operated in Kenya.

The optimal sizes of photovoltaic plant, of the battery and of the con-
verter obtained by the two strategies are similar, but the computational time
required by the RHS is 500 times higher. This suggests that results of the
LFS can be used to define the preliminary design of such components.

Conversely, the optimal sizes of the diesel generator and of the fuel tank
are strictly dependent not only on the fuel price and on the cost of load
curtailment, but also on the adopted dispatching strategy and, only for the
fuel tank, also on the time expected for fuel delivery. In particular, in many
economic scenarios the optimal sizes of the diesel generator and of the fuel
tank are more than halved with RHS; in other cases, adopting the RHS pro-
cedure highlights the need for a backup diesel generator, whose necessity was
not highlighted by the LFS. This study confirms that employing predictive
strategies during the design phase of mini-grids can be a valid alternative or
support to traditional sizing procedures.

Future research shall address and tackle the computational time of the
RHS design stage. The utilization of other techniques (e.g. robust or stochas-
tic optimization) that also consider the future uncertainty of the load growth
shall be compared to the RHS and the LFS for sizing the PV, the batteries
and the diesel generator. The uncertainty regarding the long-term evolution
of the load will be treated as well. Finally, the sizing and operating proce-
dures developed in this study will be tested on real mini-grids, thus assessing
the complexity of implementation of predictive strategies in substitution or
support of the traditional load-following approach.
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