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Chapter 1

Introduction

Nowadays, Circumstellar Disks represent a very modern object of investigation, for
many reasons. First, the investigation on their evolution aims at explaining the
configuration of several thousand of planetary systems detected so far and may
give important answers even on the formation of Solar System. Secondly, the early
development of the interferometric technique to observe in the infrared and mm
wave-length, opened a wide range of possibilities to observe disks with very short
angular resolution, so they constitute a wide target, stimulating the application and
the improvement of the most advanced observational techniques. Thirdly, not less
important, disks systems involve several physical processes, both dynamical and
hydrodynamical, they are indeed one of the most important objects of application
of several sophisticated numerical techniques. Furthermore, the circumbinary disks
have become, since the last 20 years, a key target in the field of star clusters. Their
evolution of heterogeneous context-rich of stars and gas represents a new frontier
for the Numerical Astronomy because it carries several issues still not overcome.
For such purposes, our research group aims at building a suitable numerical envi-
ronment, able to face this and many other analogous problems. The aim of this
work is to present a new Algorithm developed to treat the interaction of gaseous
systems (both selfgravitating and non-selfgravitating). The Code is based on the
well-known Lagrangian Smoothed Particle Hydrodynamics approach, and contains
a numerical technique to couple a few amount of point-mass particles, evaluating,
with high precision, their motion. The calculus of self-gravity is accomplished with
a tree-scheme approach.

The following chapter will give an introduction to the object of our investiga-
tions: the protoplanetary disks, illustrating the basic schematizations with which
they are modelled, and remarking their importance in the context of Star Clusters.
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The third chapter is dedicated to the introduction and the description of the code,
illustrating the formalism of the Smoothed Particle Hydrodynamics tree-based codes
and showing the peculiar formulations that we implemented.

In the fourth chapter, a series of test will be shown, both validation tests ap-
plied to physical problems of well-known analytical solutions, and scalability tests
finalized to illustrate the main performances of the algorithm.

Chapter 5 treats the main scientific targets we focused on, by applying our code
to investigate on the Protoplanetary disks perturbations induced by passing-by stars.

In Chapter 6 we will show the conclusions and some remarks for further devel-
opments of the work.
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Chapter 2

Protoplanetary Disks

2.1 An overview of Extrasolar Systems

Up to the present day, the existence of 3,529 exoplanets has been confirmed (according
to the NASA official catalog https://exoplanets.nasa.gov/). They orbit in 2,633 Solar-
like Systems; dynamical and physical characteristics of such environments is often far
different from the one of our Solar System. Such a circumstance led the astronomers
to reconsider several paradigms of planet formation which were based just on the
models for the Solar System. Furthermore, the recent discovery of 87 binaries and of
24 multiple star systems both hosting planets, opened new perspectives on the theory
of planet formation in so complex and unstable environments. Planetary systems are
thought to arise from the condensation of matter belonging to primordial gaseous
circumstellar disks. Such disks form from the condensation of a gravitationally
unstable dusty-gas nebula, in the very early phases of star formation. After that,
the nebula starts to collapse, due to its rotation assumes a flat shape. In the
meanwhile, at the center of the system, the very strong condensation of matter
gives rise to a protostar. All the remnant matter of the nebula keeps on falling
towards the flat distribution of gas constituted around the star, until a final system
is constituted: a central pre-main sequence star, or a binary star, surrounded by a
rotating protoplanetary disk in hydrodynamical equilibrium. This process is mainly
driven by the specific angular momentum of the initial molecular cloud and of the
infalling gas (for an exhaustive comprehension about the general processes of matter
condensation, star formation and planetary system constitution, see for example
Lissauer, 1993, Shu et al., 1987). After this stage, a disk necessarily dissolves, due to
intrisic processes (turbulent dissipation) or interaction with the central star (stellar
wind), but during its survival, accretion process on gas and dust take place, forming
planets with different mass and structure. Since the last 20 years, it was clear that
two are the main processes which can trigger the planet formation. One requires
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relatively short timescales (≈ 103 ÷ 104 yr) and involve the condensation of gas
through gravitational instabilities, leading to the formation of giant gaseous planets
(see Boss, 1997, 1998, 2003, Mayer et al., 2002, Mayer et al., 2004, for wide examples
of numerical investigations). Another process, the core accretion, leads to the
formation of the rocky planets by means of a series of subsequent aggregation phases
(Lissauer, 1987). Since the early phases of disk formation, dust grains aggregates by
forming larger and larger solid units, until 1km-sized planetesimal are constituted.
The aggregation of planetesimal will give rise to planets. All such processes are more
complex and request time-scales of the order of 106 ÷ 107yr which may be the same
timescale, as it will be discussed below, of disk dissipation.

Figure 2.1. Evidence of circumstellar disk in the Orion Nebula Cluster : the Hubble
Space Telescope discovers IR light ( in 2.2 µm band) coming from a disk which covers a
pre-main sequence star. (from O’dell et al., 1993, , pp. P14)

As pointed out above, protoplanetary disks are mainly made of dust(µm-scaled
grains), and gas (mainly molecular hydrogen).The observation of such systems has
always been a hard issue, for two kinds of reasons. Firstly, gas is the main component
in terms of mass but is very difficult to observe since the H2 can be detected just
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from the emission lines corresponding to particular transitions between molecular
energy states ; on the other hand, dust is less abundant but can be detected more
easily since the grains scatter the light in the far-IR. Secondly, disk scale lengths are
≈ 100AU but their structure may be complex and, to investigate its internal details,
a high-resolution instrument is required. Before direct observations, the presence
of circumstellar disks was inferred from the Spectral Energy Distribution(SDE)
which was very different than the one expected from a pre-main sequence star alone.
Rucinski (1985) investigated 54 T-Tauri stars finding an anomalous specific flux
Fλ in the near infrared, with a less steep slope than the one expected ( typically
Fλ ∝ λ−2 ) . Supplementary infrared emission was ascribable to the IR light coming
from the dust of circumstellar disks. An early direct detection of protoplanetary
disk comes from the Hubble Space Telescope (O’dell et al., 1993): figure 2.1 shows
a dusty-gaseous disk covering the light coming from a T-Tauri star. The Atacama
Large Millimeter and Submillimeter Array (Brown et al., 2004) represents the edge of
the technology for the interferometric detection of flux in the Infrared and microwave
band, reaching even an angular resolution of 0.01". Figure 2.2 shows a fascinating
example of hi-res observation, in mm band, of a circumstellar disk around a T-Tauri.
The picture shows the light scattered by the dust.

2.2 Circumstellar disks

2.2.1 General model of a circumstellar disk

A general model for circumstellar disks consists of a flat, azimuthally symmetric
distribution of matter in a hydrodynamical equilibrium and revolving around the
central forming star with a Keplerian angular velocity Ωk =

√
GMstar
R3 (with respect

to a cylindrical coordinates system (R, θ, z) originating on the central object and with
the z-axis perpendicular to the disk rotating midplane). Assuming a short vertical
aspect ratio i.e. a little ratio between the height scale and the radial extension, we
can model approximately a 2D distribution of matter in which temperature T and
velocity Ωk are constant along the z direction. Fundamentally, the gas matter is
concentrated in the midplane and the density and pressure fade out quickly as one
moves vertically. For a fixed value of R, density and pressure vertical scale law can
be easily evaluated by means of the hydrostatic equilibrium condition :

∂P

∂z
= −ρGMstar

R3 z (2.1)

Provided that T ≈ cost. along the vertical direction, a simple equation of state
can be used : P = c2

sρ, where the sound speed cs is constant with respect to z and
depends only on the radial coordinate. Integrating the 2.1 along the z direction we



6 2. Protoplanetary Disks

Figure 2.2. HL-Tauri protostellar disk, detected in 1.3 mm band, res. 0.1” ( 14 AU ).
(from ALMA Partnership et al., 2015, , pp. 6)

have:

d lnP = − 1
c2
s

GMstar

R3 zdz

P (z) = P0e
− z2

2H2

(2.2)

where P (0) is the pressure at the midplane, while H = cs
(
GMstar
R3

)−1/2
= csΩ−1

K

is the vertical pressure scale height. H represents the vertical lenght at which
pressure and density decrease substantially and gives a measure of the disk thickness.
Tipically, H is about 5% ÷ 10% of the radial distance from the star. The general
solution for the volume density ρ(~r) is made of a radial term coupled indipendently
with the vertical exponential term exp

(
− z2

2H2

)
. By means of the 2.2, we deduce the

density ρ(R, z) = ρ0(R) exp(− z2

2H2 ). Integrating ρ(R, θ, z) along z we would obtain:
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Σ(R) = 2π
∫
ρ(R, z)dz

ρ0 = Σ(R)√
2πH

(2.3)

Σ(R) defines the radial Surface density: it represents an important quantity
since it is proportional to the column density of the dust one would observe if the
disk was faced on with respect the line of sight. By considering a model for the
Minimum Mass Solar Nebula, a disk that has just the right quantity of light elements
necessary to build the actual Planetary System, at a stage in which the primordial
circumsolar disk was about to be fully formed, Hayashi (1981) found a simple power
law Σ(R) ∝ R−p for the gas density, with p = 3/2:

Σ(R) = 1700
(

R

1 AU

)−3/2
g cm−2 (2.4)

with the distribution extended up to 36 AU. The dust, mainly made of rocky grains
and ice, was found to follow a distribution proportional to the gas density law, with
a dust-to-gas mass ratio of ≈ 0.018.

Disk thermodynamics is usually dominated by the radiative processes, hence
the heating due to internal viscous processes (see below) is neglectable. Disks are
in general optically thick, so in order to be thermally affected by the central star,
they can receive flux from their external surface, i.e. the height z at which the mean
optical path reduces to τsup ≈ 2/3 and the matter becomes transparent. Thus, the
shape of disk surface affects substantially its thermal configuration. In considering a
flat disk, hence with a ratio H

R ≈ cost., the stellar radiation hits the surface with a
fixed angle of incidence, and the flux Frad turns out to scale as R−3. Assuming the
disk surface as a black body, it will show an effective temperature T ∝ F 1/4

rad ∝ R−3/4.
Such a profile corresponds to Spectral Energy Distribution characteristic of accretion
disks but, in the case of circumstellar matter in equilibrium, it doesn’t match any
usually observed spectra (see Garcia (2011), chapter 2, and Dullemond et al. (2007)
for a full clarification). A better improvement is reached with flared disk models,
such as the ratio H

R increases with R. A common scheme is adopted by evaluating the
effective black body temperature in the optically thin limit, such that the fraction of
irradiant energy absorbed by the surface is much smaller than 1, and the midplane
temperature is close to the black body temperature: T0 ≈ Teff . It turns out that
T0 ∝ R−1/2. An improved model has been adopted by D’Alessio et al. (1999),
making the assumption that the thermal processes in the inner layers of the disks
don’t affect its dynamical stability. No viscous heating nor cosmic rays effect has
been taken into account in the energy balance equation, and the following midplane
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temperature profile has been obtained: T0 ∝ R−3/7. It must be stressed that, in
order to perform a realistic investigation of the thermal processes in a flared disk, a
vertical isothermal profile must be improved by letting the temperature evolve and
solving the radiative transport equations. Nevertheless, in geometrically thin disks
the mass is concentrated in regions close to the midplane since the density decreases
rapidly along the vertical direction. Thus, vertical isothermal profile represents a
common schematization. In this work, we will adopt such an approach, by taking
a radial profile for the midplane temperature T0(R) = R−q, and assuming it to be
locally uniform, for all the values of z.

2.2.2 Turbulence Viscosity

A Keplerian disk in equilibrium around a star and stable with respect to the
gravitational fragmentation is just in a pseudo-equilibrium state because it undergoes
a secular evolution. Time evolution is driven by internal turbulence processes which
contribute to dissipate kinetic energy and to transport angular momentum. Such
mechanisms are intrinsically hard to be modelled and require high-level Magneto
Hydrodynamical numerical integrators: weak magnetic fields are likely the main
engines which trigger the turbulence giving rise to Magnetorotational Instabilities
( some recent investigation can be found in Riols, A. et al. (2015), Hasegawa and
Takeuchi (2015) ; see also Balbus and Hawley (1998), Tout (2000) for a general
discussion of the relation between viscosity and magnetic field). In order to perform
a simple, but realistic, numerical investigations, such issue can be partially overcome
by means of a simpler approach. In practice, the whole dynamical effect given
by the eddies are modeled as the disk was provided with an intrinsic viscosity ν.
Such a quantity represents an effective kinematic viscosity which dissipates the
macroscopical keplerian energy of the gas. An early investigation according to such
scheme comes fromLynden-Bell and Pringle (1974). Let’s consider the flat disk
model illustrated above. Such keplerian disk has a radial differential velocity, thus,
as the simple scheme in figure 2.3 shows, different layers at adjacent positions R and
R+ dR move with different velocity and indeed they undergo different kinematic
resistance. As a consequence, a couple arises, and the matter enclosed in the annulus
R,R+ dR, increase its angular momentum.

Given l the specific angular momentum, one can show that a single portion
of mass δm, moving in the ring between R and R + dR, thanks to the couple g
formed with the innermost adjacent layer, gains angular momentum according to
the following law:

D (lδm)
Dt

= −δm ∂g

∂R
(2.5)
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Figure 2.3. Schematic representation of the outward ~L transport due to viscosity. Different
velocities among two adjacent rings at R and R′ = R + dR cause different viscous
reaction ~fν which give rise to a couple ~g. Since |~g| decreases with R, each layer gains
angular momentum lδm from its next internal ring. lδm itself is an increasing function
of R, which means that the uppermost layers gain more momentum than they lost. Thus,
angular momentum moves definitely outwards, the disks enlarges its outer boundaries,
while the innermost gas spirals towards the central star.

being g = −2πR3Σ∂Ωk
∂R . Since the differential angular rotation scales as R−3/2,

and given the common density profiles Σ ∝ r−p discussed above, with p = 3/2 or
p = 1, g turns out to decrease with R. As a consequence, due to the viscosity external
layers inherit a larger and larger amount of ~L from their inner neighbour rings, giving
raise to a net outward transfert of angular momentum. In principle, viscosity tends
to smooth the radial gradient of velocity and thus the disk would be supposed to
evolve into a rigid rotator. Actually, this scenario does not happen. In fact, in order
to conserve ~L, the matter which lies in the most external parts of the disk reacts to
the gaining of l by migrating to larger orbits. On the other hand, the innermost gas
particle, after losing l, migrates inwards. Thus, the keplerian differential velocity
remains unchanged, and the gas accretes towards the star. Shakura and Sunyaev (in
their well-known work done in 1973), formulated the so-called α-disk model. The
effective viscosity in a circumstellar disk can be expressed as follows:

ν = αss
c2
s

Ωk
= αsscsH (2.6)

where αss represents an efficiency coefficient for the transport of momentum.
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Timescales for the disk evolution can be globally estimated as:

τν ≈
R2

ν
= R2

αsscsH
= 1
αssΩk

(
R

H

)2
(2.7)

Despite the intrinsic complexity of the viscous processes, several investigations
have been performed in order to constrain the value of αss. The Shakura-Sunyaev
coefficient is commonly modeled as constant along a disk and ranges from 10−4

to 10−1 (see for instance the works of Brandenburg et al., 1995, Mukhopadhyay,
2008). This simple framework reflects our ignorance about the deep dynamical
and magnetic processes internal to the disk itself, whose numerical and theoretical
schematizations still represent a hard issue. Regarding the effective viscosity ν, it may
be non-uniform due to the variation of the speed of sound and the angular velocity
through the disk. Given a keplerian non-selfgravitating disk around a 1M� star,
with an extension of ≈ 100AU , with a vertical aspect ratio H/R ≈ 0.1, we can scale
Ωk ≈ Ω(1AU)(R[AU ])−3/2yr−1. Thus, according to the 2.7, we can parametrize the
typical viscosity evolution timescale, at an intermediate radial position R = 50AU ,
as τ50AU ≈ 5.63× 103α−1yr, and thus τ may range from 50× 103yr to 50× 106 yr.

In section 5.1 we will discuss several choices of disk configuration, for which ν
can be either variable or uniform, and illustrate how such a viscosity can be easily
integrated with suitable algorithms.

2.2.3 Circumstellar disks in Open Clusters

Nowadays it is well-known that star cluster host protoplanetary disks and is likely
the easiest environment for the birth of planetary systems. Even the Solar System
may have probably arisen in a leaky cluster constituted by no more than 1000
stars (Pfalzner, S., 2013) . The observation of Disks in Clusters have been always
performed indirectly by means of detections, together with the star spectrum, of the
continuum infrared radiation emitted by the dust. As an example, the Spitzer Space
Telescope detected several circumstellar disks in the γ Orionis Cluster, through
a combination of optical and mid-infrared techniques (Hernández et al., 2010) .
Disks can be detected by analyzing the continuum-mm emission in the 887νm band,
as Mann et al. (2015) reports, describing the detection of 22 disks in the NGC
2024 Cluster. The presence of such systems makes the evolution of circumbinary
disks a more complex problem. Up to now, poor theoretical works have involved
realistic simulations of such systems. Issues arise mainly because, typically, there is
a huge difference between the characteristics time-scales of the star dynamics and
the disks hydrodynamics (typical timescales are, respectively 106 yr and 103 yr).
As a consequence, disks in clusters have been always treated as secondary objects.
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According to the most common approaches present in literature, the dynamic of
the stars is integrated by means of a gravitational N-body code, then, with some
analytical models, the main effects that the trajectories of the stars may have on the
shape of the disks are determined (Olczak et al., 2006, Olczak et al., 2012, Vincke,
Kirsten et al., 2015, Bhandare, Asmita et al., 2016). For such reasons, the evolution
of circumstellar disks represents still an unresolved field, whose issues should be
approached with direct hydrodynamical simulations.
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Chapter 3

A new SPH algorithm for the
evolution of self-gravitating
systems

In this chapter, we will discuss the main characteristics of a new TREE-based
Smoothed Particle Hydrodynamics (SPH) code we developed to investigate the
evolution of self-gravitating systems. The algorithm is able to integrate the time
evolution of a distribution of gas, with the possibility to add a few point-mass
objects which contribute just with their gravitational field. The latter, provided with
suitable sink radius and softening radius for the gravitational field, may represent
both planets or stars.

Starting with a short introduction to the basic theoretical formulation of Tree
Codes and the Smoothed Particle Hydrodynamics (hereafter SPH) formalism, we’ll
discuss the implementation of such technique inside the algorithm.

3.1 Basic structure of the algorithm

The general scheme of the code is illustrated by the diagram in figure 3.1. A system
composed of N lagrangian points is set up to represent a physical medium and it is
let evolve by the numerical integration of the equations of motion. Three kinds of
physical systems are allowed to be studied: selfgravitating gas, non-selfgravitating
gas, and collisionless self-gravitating non-gaseous systems. In the first two systems,
at each time-step, the calculation requires two preliminary cycles: one to evaluate
the thermodynamical variables (such as density, pressure, and Temperature) with the
SPH schematization, another for the estimation of the hydrodynamical interactions
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i.e. pressure gradient and internal energy variation (details are explained in section
3.2). If the gas is self-gravitating, i.e. its self-potential is not negligible in comparison
with its thermo-kinetic energy, the Newtonian interactions are evaluated with a tree
scheme approximation (as explained in the next section), at the same time as the
pressure gradient. The third case is performed by switching off the hydrodynamical
routines and treating the particles as mere point-masses interacting with a Newtonian
field approximated with the same tree-scheme mentioned above.

Figure 3.1. The general scheme of the code, for a single time-step. Each iteration, a set of
N particles are mapped in a grid; the accelerations may be evaluated in three different
ways. (1) self-gravitating gas: a preliminary routine evaluates the density and pressure
according to SPH scheme, a second routine calculates the pressure gradient and the
Newtonian field following an SPH plus tree scheme. (2) Non-selfgravitating gas: the
same as (1) but neglecting the Newtonian field. (3) Since we are dealing with a non-gas
system, there is only the routine for the evaluation of the gravitational forces. A final
routine deals with additional N’ objects(stars or planets). The Newtonian interactions
of the N particles in all the three cases are approximated with a tree scheme, while the
N’ additional objects interact directly with the system, approximations.

In every case, before the force calculations, particles are requested to be mapped
in a grid, in order to locate efficiently both the nearest neighbors and the farther
points. Thus, every timestep a preliminary phase is dedicated to mapping the points.
Eventually, if additional few objects are considered (such as stars or planets), their
contribution to the system is taken into account by means of a direct point-to-point
interaction, without any approximation.
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3.2 Tree-scheme algorithm for the self-gravity

The gravitational field in a Lagrangian approach is treated by setting a system of
N particles. Particles may interact either at short or at long distances. Thus, in a
classical direct N body code, the Newtonian equations of motion are integrated by
considering all the mutual interactions and number of operations ∝ N2 is required
(a general treatment can be found in Spurzem (1999)). Conversely, gravitational
TREE codes allow to evaluate the Newtonian field by making some approximations
in such a way that, for a generic particle, only the contribution given by closer points
is calculated correctly by a direct particle-particle coupling. On the other hand, far
particles are collected in large clusters with a global mass, and particles interact
with them just with a single particle-cluster coupling. The net amount of calculus
per time iteration then can be shown to scale as N logN (Hernquist, 1987) , and
thus turns to be neglectable in comparison with N2, for sufficiently great N .
The scheme we are going to describe in this section takes the basic principles of
the gravitational Tree-Code developed for the first time by (Barnes, 1986)(see also
Barnes and Hut, 1986, Hernquist, 1987, Warren and Salmon, 1992).

3.2.1 Fundamental theory: multipolar expansion of the potential
field

The Tree-scheme approximation exploits the multipolar expansion of the gravitational
field generated by a distribution of matter enclosed in a finite volume with a
characteristic extension length R. We are interested in finding an approximated
expression of the gravitational potential Φ(x, y, z), at distances r = |~r| >> R (the
reference system corresponds to the center of mass frame). Details on multipolar
field approximation formalism can be found in Binney and Tremaine (1987), chap.
2, and Hernquist (1987). Starting with the Poisson equation ~∇2Φ = 4πGρ and
expressing it in spherical coordinates (r, θ, φ), we can expand the potential solution
Φ(r, θ, φ) for r >> R:

Φ(r, θ, φ) = −4πG
∑
l,m

Ylm(θ, φ)
(2l + 1) rl+1 ·

∫
Y ∗lm(θ′, φ′) r′l ρ(~r′) d3~r′ (3.1)

where Ylm and Y ∗lm are the generic spherical harmonics functions and its complex
conjugate, characterized by a multipole order l and an angular number m ; and d3~r′

represents the infinitesimal volume element of integration r′2sinθ′dr′dθ′dφ′ . For
sufficiently large r we can arrest our expansion to the dipole term (for l=2) and sum
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all over the possible values of m. Switching to cartesian coordinates we then obtain :

Φ(~r) = −GM
r
− ~p · ~r

r3 −
1
2
G

r5~r
¯̄Q~r (3.2)

in which we can recognize the first monopole term which is the exact value the
potential would have if the whole mass M of the distribution was concentrated
in a single point. The second term contains the dipole moment ~p =

∫ ~r′ρ~r′d3~r′

which is null in the center of mass frame. In the last term we find the quantity
~r ¯̄Q~r ≡

∑
i,j
Qij xixj , where ¯̄Q represents the traceless quadrupole moment tensor,

defined as :
Qij =

∫ (
3x′ix′j − r′2δij

)
ρ(~r′)d3~r′ (3.3)

while xi, xj are two generic cartesian coordinates x,y,z. Besides the monopole term,
the quadrupole moment introduces a significant perturbation which depends on the
shape of the mass distribution through the radial coordinate only. Once we are able
to evaluate ¯̄Q, we are then able to write an approximated expression of Φ(r) for
large distances r. In an N body simulation, in place of a continuous distribution, we
have a discrete ensemble of particles (a cluster), so the quadrupole momentum is
discretized:

Qij =
∑
k

(
3x′ikx′jk − r′2k δij

)
mk (3.4)

where mk is the mass of the particle. It is straightforward to obtain the expression
of the acceleration field generated by the cluster: ~a(~r) = −~∇Φ(~r) . Thus, finally we
have :

Φ(~r) = −GM
r
− 1

2
G ~r ¯̄Q~r
r5 (3.5a)

~a(~r) = −GM
r3 · ~r + G ¯̄Q · ~r

r5 · ~r − 5
2
G ~r ¯̄Q~r
r7 · ~r (3.5b)

− 0 (3.5)

The main task of a tree scheme consists in classifying the particles in clusters and
keeping in memory the main parameters (center of mass ~rC , total mass M and their
total Q tensor). Once we realize that a particle is far enough from a cluster, we
evaluate once their mutual forces, by means of 3.5b.

3.2.2 Implementing the scheme

A tree algorithm uses an easy and efficient approach to this problem. As shown
in figure 3.2, a 3-Dimensional integration domain is enclosed in a D-sided cube,
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called the Root Box. Starting from this base, we apply a recursively octal-based
subdivision: the root box is thus decomposed in eight D

2 -sided cubes; conventionally
we consider it as L=1 order partition. Further orders of subdivision ( L=2, L=3,
L=4 and so forth...) generate subgrids of cubes having side DL = D · 2−L.

Figure 3.2. Representation of the particle mapping with a tree code. Left diagram:
simplified 2D representation of the octal domain decomposition. The root box of length
D is further subdivided into sub-boxes until each of them contains just one particle.
Grey-filled cells represent void boxes. Right diagram: tree structure; every box is
connected with its sub-boxes. During the force calculation, each particle walks through
the tree, starting from the top level L=0, until the terminal boxes (black dots) are
reached.

While proceeding with the domain decomposition, we have a set of shorter and
shorter cubes containing fewer and fewer particles. The partition arrests when a
cube contains just one particle (terminal cube), void boxes are ignored. The global
octal subdivision ends when all cubes are terminal cubes, and the algorithm is thus
stopped. For each order L, non-void cubes are identified as clusters, the particles
contained are recognized and center of mass ~rC , M and ¯̄Q are calculated. We have
thus obtained a Tree-structure which starts from the root level L=0 and expands
his arms towards higher L levels. Each branch-node represents a cube-cluster and
it’s connected with its sub-boxes, while the "leaves" represent the terminal cubes.
Once the tree is built, the algorithm begins to evaluate the accelerations: each i-th
particle is made interact with all the cubes by descending the tree untill it reaches



18 3. A new SPH algorithm for the evolution of self-gravitating systems

the leaves. Starting from the order L=1, the distance r ≡ |~ri − ~rC | about the center
of mass of each box is evaluated and compared with the side D1. A cube-cluster is
considered "far enough", to apply the quadrupole approximation, only if the so-called
Opening Criterium is satisfied:

D1
r
< θ (3.6)

where θ represents a constant tolerance parameter called Opening Angle (typical
values are 0.6 ÷ 1). Equation 3.6 means that the Newtonian field generated by a
cluster can be approximated only for distances larger than the order of the scale
length D1 of the cluster itself. In such case, we can update the acceleration ~ai using
3.5b, neglecting all the particles internal to the box. On the contrary, if a cube
does not satisfy the opening criterium, it will be opened and its internal cubes will
be checked. The particle thus descends the tree moving towards order L=2 cubes
and the algorithm compares again the mutual distance r with the side D2. Again,
whenever the opening criterium is satisfied, i.e. D2

r < θ , acceleration ~ai is updated
in quadrupole approximation, otherwise the boxes are further opened. The descent
of the tree keeps on until the terminal boxes reached, in such case, the particle i
makes a direct point-to-point interaction with the single particles contained.

In order to build the tree, we need an efficient way to map the points into the
octal grid space, we do it by following a prescription adopted by Miocchi and
Capuzzo-Dolcetta (2002) (see also Capuzzo-Dolcetta and Miocchi, 1998). Given a
nonvoid cube of order L, the position of each particle contained is codified through a
group of 3 bits corresponding to an 8-based number. The bits are straightforwardly
associated to one of the eight (L+1)-order sub-cubes enclosed. In practice, to map
a point we start from the root box L=0, we identify the 1st order sub-box where
particle lies by establishing whether its coordinates x,y,z are higher or shorter than
the respective coordinates of the root box center. In case a coordinate is higher, we
set a related binary number to 1, otherwise, we set it to 0. From this latter sub-box,
a further sequence of 3 bits identifies the 2nd order sub-box in which the particle is
enclosed (and so forth). Such these bit sequences form a series which is easily stored
in memory in such a way the program is able to know anytime straightforwardly
whether a particle belongs or not to a certain box-cluster.
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3.3 The lagrangian SPH approach for a gas system

3.3.1 Implementation of the basic Smoothed Particle Hydrody-
namics scheme

Since their first applications performed by Lucy (1977) , and Gingold and Monaghan
(1977), SPH algorithms have been used for a wide class of Astronomical problems
involving fluid systems. Given an ideal (or viscous) fluid, SPH allows integrating
the governing Eulerian equations(or, respectively, the Navier Stokes Equations) in
a Lagrangian approach by schematizing the system with a set of moving particles.
For an exhaustive explanation we remind the following references Monaghan and
Lattanzio (1985), Monaghan (1988, 1992, 2005), Cossins (2010). Each particle
represents the state of the fluid at a certain point, and its position evolves with
time depending on the velocity field ~v(~r, t) of the fluid. Given a particle at a
position ~ri, SPH allows to interpolate a generic quantity Ai (which may represent
~v(~ri, t), T (~ri, t), ρ(~ri, t), P (~ri, t)...), and its further derivatives ~∇Ai and ∇2Ai, over a
set of particles lying within a limited extended neighbourhood. we can write:

Ai =
∑
j

mjAjW (rij , h)) (3.7a)

~∇iAi =
∑
j

mjAj ~∇iW (rij , h)) (3.7b)

−−− (3.7)

where the mass mj and Aj refer to a generic neighbour particle at the position ~rj ,
while ~∇i ≡ ( ∂

∂xi
, ∂
∂yi
, ∂
∂zi

) is the gradient operator with respect to the system frame
of particle i. The summation domain is determined by the so called Interpolation
(or smoothing) Kernel W: a suitable weighting function which depends just on the
mutual distance rij ≡ |~ri−~rj | and spreads over a finite radial extension proportional
to the Smoothing Lenght h. So, for example, we can interpolate density ρi :

ρi =
∑
j

mj ·W (rij , h) (3.8)

Following the SPH formalism, we can also interpolate the gradients of ρ and ~v
with expressions in function of the gradient of W, we are then allowed to write an
expression of the continuity equation for the generic particle i :

dρi
dt

=
∑
j

mj ~vij · ~∇iW (rij , h) (3.9)



20 3. A new SPH algorithm for the evolution of self-gravitating systems

where ~vij ≡ ~vi − ~vj is the differential velocity vector; hereafter we will use Aij
referring to the generic variable Ai −Aj .
Kernel W is a radial, normalized and continuous distribution with continuous
derivatives. The smoothing length h represents its radial spread. It can be easily
shown (see for example Hernquist and Katz, 1989) that such these properties
guarantee interpolating errors limited to the order of h2 . In the early stages of SPH
implementation, Gaussian-like kernels were used, here is an example:

Wgauss(rij , h) = 1
(
√
πh)d

· exp(−q2) (3.10)

where q represent the ratio rij/h and d is the dimension number of the problem.
However, functions with compact support are preferred. In our code, we use the
so-called Cubic Spline function (introduced for the first time by Monaghan and
Lattanzio, 1985), whose expression is reported below :

W3spline(rij , h) = 1
πh3


1− 3

2q
2 + 3

4q
3 , if 0 ≤ q < 1

1
4 [2− q]3 , if 1 ≤ q ≤ 2

0 , if q > 2

(3.11)

The function is normalized and radial and the limited extension of its support to
rij = 2h guarantees a satisfying interpolation (with errors scaling as O(h2) ) involving
just a set of limited neighbor particles without introducing further error. Indeed,
to reach a good efficiency, the interpolation should be always done by choosing a
limited neighborhood. Unfortunately, the Gaussian kernels have infinite support,
and thus a cutoff is needed. But, whatever cut-off radius is chosen, the Gaussian
kernel and its derivatives are not null: this produces an additional noise associated
with the bordering particles.

Equation 3.9 can be integrated in time and used in place of 3.8 to find the
density, provided that a starting explicit value ρi(t = 0) is given. On the contrary,
we prefer to use directly the 3.8 calculating ρ from the particles positions. In the
SPH scheme, the spatial distribution of particles marks the actual shape of the
fluid. To perform a good interpolation, we need a sufficient number N ′of neighbor
particles, in a 3D problem, the number is ≈ 50÷ 60 (see Monaghan, 1985). When
we treat homogeneous fluids, such condition is easily satisfied provided we hose a
constant value of h sufficiently large. Conversely, when there are huge gradients of
density and/or we are in a non-stationary regime, the distribution of particles is not
uniform, nor constant. In order to keep a sufficient N ′ for all the points, we must
use a smoothing length h≡ h(~r, t) variable in space and time. Every particle must
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have its own hi in such a way that the more the number density ni, the less the
interpolation kernel radius :

hi = δ

(
mi

ρi

)1/3
∝ n−1/3

i (3.12)

typically with the constant δ ∈ [1.2, 1.5]. For such purpose, we use the following
classical prescription (see for example Hernquist and Katz (1989), or Monaghan
(2005)). For each particle, we start from an initial guess of h, and update it recursively
until the number N ′ reaches an ideal value Nn fixed a priori. In practice, we start
with an initial guess hprev = h0 and iterate a loop: each iteration the number of
neighbor points is counted using hprev, then we update the latter to a new value
hnew according to the following formula:

hnew = hprev ·
1
2

[
1 +

(
N0
N ′

)1/3
]

(3.13)

If the fluid was homogeneous, hprev · (Nn/N
′)1/3 would provide immediately the

correct value of smoothing length, without any further iteration. The added 1 lets the
program perform an average with the old smoothing length, damping any excessive
oscillation error due to inhomogeneities in the spatial distribution of particles. The
iteration is stopped when a convergence is reached according to the criterium:
|N ′ − Nn| ≤ M , where M is a tolerance number, typically M ≥ 10. Attwood, R.
E. et al. (2007) investigated the acoustic oscillations of a gas polytrope around the
equilibrium, by imposing a constant neighbor number N ′ and letting M vary. They
found that the fluctuation of N ′±M introduced an additional numerical noise which
broke the stability, giving rise to errors. As a result, the energy of the fundamental
mode of oscillation was dissipated incorrectly and the kinetic energy was transferred
to higher order modes. To prevent errors, a value of M = 0 should be chosen. It
can be shown that the choice of h according to the criterium N ′ ± 0 is statistically
equivalent to solve, for all the particles, the 2N -equations system described by 3.8
plus 3.12 and find the exact solutions of ρi and hi, with δ ≈ 0.31 N1/3.

SPH formalism allows us also to evaluate the Pressure gradient ~∇iP and thus to
obtain straightforwardly an expression for the Lagrangian equation of fluid motion.
Our investigations don’t involve the molecular viscosity, hence we use the Eulerian
equation:

d~vi
dt

= −
∑
j

mj

(
Pi
ρ2
i

+ Pj
ρ2
j

)
· ~∇iW ′(rij , h) (3.14)

Without dissipations, we use the differential of the specific internal energy
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du = Pρ−2dρ to obtain an equation for the internal energy:

dui
dt

=
∑
j

mj

(
Pi
ρ2
i

+ Pj
ρ2
j

)
~vij · ~∇iW ′(rij , h) (3.15)

In both 3.14 and 3.15 we use a particular form of the interpolation kernel
W ′(rij , h) = 1

2 [W (rij , hi) +W (rij , hj)], to guarantee the symmetry of the Eulerian
equations with respect to the exchange of particles i<—>j. 3.14 and 3.15 prevent
the non conservation of linear and angular momentum due whether to density
and pressure inhomogenities, or to space variation of Smoothing Lenght. It is
straightforward to show that the rate of total amount of cinetic energy lost by the

fluid, evaluated by summing
N∑
i=1

mi~vi
d~vi
dt

, is equal to the total rate of thermal energy
N∑
i=1

mi
dui
dt

gained by the fluid itself. Similarly, we have a conservation of the angular

momentum(see Monaghan, 1989).
To close the system, a perfect gas needs the following adiabatic equation of state:

Pi = (γ − 1) ρi ui (3.16)

As mentioned in section 2.2, our peculiar investigation involves isothermal radial
profiles for the protoplanetary disks, thus, we will use an equation of state containing
an isothermal speed of sound:

Pi =
(
Kb

mµ
Ti

)
ρi = c2

siρi (3.17)

Finally, the particles positions depend directly from the velocity field:

~ri = d~vi
dt

(3.18)

3.3.2 Artificial viscosity

In high compression regions, such as shock wavefronts, two layers may interpenetrate
generating unphysical effects. Additional artificial pressure terms are hence needed
to evaluate correctly the particle motion. The origin of such issues is related to
the physical mechanism of the shock waves. Actually, a shock wave front causes
non-isoentropic variations of energy that standard equations 3.14 and 3.15 cannot
handle. From a numerical point of view, in regions with a high ~∇ · ~v, the velocity
field may be very irregular even among close particles. The errors in the evaluation
of ~v may be amplified and numerical noises can arise, affecting the calculations
of the particles positions and leading to a non-realistic overlap of two portions of
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fluid. Furthermore, the microscopical scale-lengths involved in a shock front are
usually so short, in comparison with the smoothing scale h, that SPH resolution
wouldn’t allow us to reproduce them in details. In practice, a good solution adopted
in literature is given by the introduction of a non-adiabatic artificial force term
which, acting like a viscosity, damps the ~v-noise. The kinetic energy lost is converted
into thermal energy, emulating the physical effects of shock waves without dealing
directly with the Rankine-Hugoniot equations. Early attempts to face this problem
consisted in integrating the pressure with some damping terms proportional to
~∇ · ~v and to

(
~∇ · ~v

)2
(see Monaghan and Gingold, 1983, Nelson et al., 2000, for

detailed references), without positive outcomes. In our code, we added an artificial
term adopted the classical schematization of Monaghan (1989), who improved the
previous formulations by introducing a conservative suitable artificial viscosity aimed
at damping the velocities when the particles get close. With these prescriptions, the
Eulerian equations assume the following expressions:

d~vi
dt

= −
∑
j

mj

(
Pi
ρ2
i

+ Pj
ρ2
j

+ Πij

)
· ~∇iW ′(rij , h) (3.19)

dui
dt

=
∑
j

mj

(
Pi
ρ2
i

+ Pj
ρ2
j

+ Πij

)
~vij · ~∇iW ′(rij , h) (3.20)

where a new viscous pressure term Πij has been introduced:

Πij =


−αc̄µij + βµ2

ij

ρ̄ij
, if ~vij · ~rij < 0

0 , if ~vij · ~rij > 0
(3.21)

µij = h ~vij · ~rij
~r2
ij + η2h̄2

is related to the velocity divergence between two particles,

such as the quantity µij
mi
ρi

represents the infinitesimal local extimation of the
velocity divergence and thus

(
~∇ · ~v

)
i

=
∑
j
µij

mi
ρj
. η is a suitable term to prevent

singularities when particles get very close (we use a typical value of 0.1) while h̄, ρ̄ and
c̄ represent the average values 1

2 (hi + hj), 1
2 (ρi + ρj) and 1

2 (ci + cj). Πij gives two
main contributions. α is the so called bulk viscosity and is responsible to damp the
unphisical velocity oscillations contributing with a net diffusive effect, while β = 2α
is the Von Neuman-Richtmyer viscosity which contributes with a pressure term
proportional to

(
~∇ · ~v

)2
. Since the Πij is symmetric, two particles exchange exactly

two vector forces equal and opposite and thus equations 3.19 and 3.20, guarantee
the conservation of total energy, linear momentum and angular momentum.

In this simple formulation, the artificial viscosity is activated all over the fluid;
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nevertheless, there are two circumstances in which it should be switched off to
prevent unphysical effects. Viscosity must be softened both in regions where shear
dominates, and where ~∇ · ~v is low. In a pure shear regime, the layers of a fluid shift
longitudinally, along with ~v, without causing any fluid compression. In terms of
math, the velocity curl dominates over the velocity divergence. Nonetheless, if two
of these layers moved at different velocities, two respective SPH particles i and j
would get closer, hence the divergence term µij would not vanish (as it would be
expected in non-compressive fluids). As a result, we’d have a false compression and
thus an unnecessary dissipation of kinetic energy. To overcome this problem, we
multiply the viscosity term µij by the switching coefficient introduced by Balsara
(1995), and defined as follows:

f = |~∇ · ~v|
|~∇ · ~v|+ |~∇× ~v|+ 10−4 (csh−1 + ωm)

(3.22)

where we find a small perturbation proportional to cs/h, useful to prevent
singularities when particles are too close or there is a too low difference in velocities.
Generally, such term may not work usefully in very inhomogeneous systems like
circumstellar disks, where we may have a too low sound speed or too large h when
gas is rarefied. Thus, unless we don’t use lower and upper limits for cs and h, we add
the term ωm =

√
Gm
h3 ∝

√
Gρ which depends on the particle mass. Balsara’s switch

is commonly applied in a symmetric form. First, for each particle i we interpolate
the v-divergence and the v-curl :

(
~∇ · ~v

)
i

= ρ−1
i

∑
j
mj ~vij · ~∇iW (r, hi)(

~∇× ~v
)
i

= ρ−1
i

∑
j
mj ~vij × ~∇iW (r, hi)

(3.23)

then, for each couple i < − > j we multiply µij for the average value fij = 1
2 (fi + fj).

Even though we are not in a shear regime, some problems may arise when we are far
from high compression regions. In the classical formulation of Πij , α is a constant
term, whose ideal value is 1. In such scheme, the viscosity acts in every region with
the same effectiveness, while we would expect the artificial term to be efficient just
where it is needed, i.e. close to the shock fronts. We need hence, for every particle,
an individual αi which varies with time, too. Morris and Monaghan (1997) added
the following equation for the time variation of α:

dαi
dt

= −(αi − αmin)
τα

+ Si (3.24)

where Si = max(−(~∇·~v)i, 0) represents a source term, it increases with the proximity
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to the shock fronts; αmin represents the minimum value of α. The 3.24 tells us
that, starting from an initial α0 between αmin and 1, the bulk viscosity approaches
1 when the divergence of the velocity is strong, while it decays to αmin in weak
compression regime. τα = h

bcs
( with b < 1) defines the time-scale of adjustement

for α. It means that, once the fluid undergoes a compression, the viscosity changes
value in a reaction time greater than the propagation of the informations (i.e. the
sound waves) in the fluid over a resolution lenght h. It has been found that for
very strong shock, even α > 1 would be required; in our code we used a slightly
modified prescription of Rosswog et al. (2000), who renormalized the source term to
Si = max(−(~∇ · ~v)i, 0)(αmax − αmin). In their investigation on merging of neutron
stars, Rosswog et al. (2000) used αmax = 1.5, αmin = 0.05 and b−1 = 5. In the
next chapter we will show how in a shock problem α can reach values even greater
than 1.5; we use αmax = 2, αmin = 0.1 and b−1 = 5. These are the most common
values adopted in literature to face a wide class of problems involving collapse,
stars merging or protoplanetary disks (see, for instance, Rosswog and Price, 2007,
Stamatellos et al., 2011, Hosono et al., 2016)

3.3.3 The Hamiltonian approach

When we are dealing with irregular systems, a variable smoothing length leads
to a nonpysical evolution. Hernquist (1993) made a series of tests investigating
the collision of two polytrophic systems and found that, even though a satisfying
conservation of energy was reached, the SPH equations illustrated above didn’t
guarantee a good conservation of entropy, as was expected for particles far from the
shocks. Such issue can be ascribed to the systematic update of h during the time
integration. Writing, for each particle, an entropy function Ai(s) = Pρ−γ , it can be
shown that its time variation is not null when h is variable:

dAi(s)
dt

∝
∑
j

mj
∂W

∂hj

∂hj
∂t
6= 0 (3.25)

To overcome this problem, Springel and Hernquist (2002) derived a new form
for the SPH relations directly from the Euler-Lagrange equations, in order to keep
constant the total energy of the system. We can characterize a system of N
SPH particles with 2N independent variables (q1...q2N ) ≡ (|~r1|...|~rN |, h1...hN ): its

lagrangian is L = 1
2
N∑
i=1

mi|~̇q|2 −
∑
i
miui. The condition on keeping constant the

number N ′ of neighbours implies N constraint functions Φi(~qi) :

4π
3 (2hi)3ρi = N ′mi → Φi(q) = 4π

3 (2hi)3ρi −N ′mi = 0 (3.26)
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Thus, by means of the Lagrange multipliers, we can build the function L′ = L +∑
i
λiΦi(q) to which we apply the Euler-Lagrange equations to find the correct laws

which minimize the action. Thus, for every particle i, we have the following two
equations:

d

dt

∂L

∂ṙi
− ∂L

∂ri
=

N∑
k=1

λk
∂Φk

∂ri
(3.27a)

d

dt

∂L

∂ḣi
− ∂L

∂hi
=

N∑
k=1

λk
∂Φk

∂hi
(3.27b)

−−−−−−−− (3.27)

using the 3.27b to find λi, and substituting in the 3.27a we can obtain the equation
of motion:

d~vi
dt

= −
N∑
j=1

mj

[
Pi
ρ2
iΩi

~∇iWij(rij , hi) + Pj
ρ2
jΩj

~∇iWij(rij , hj)
]

Ωi = 1 + hi
3ρi

∑
j

mj
∂Wij(hi)
∂hi

(3.28)

which is very similar to 3.14 apart the correction terms Ωi which take into account
the time-variation of h. 3.28 represents a realistic equation of motion, since it comes
directly from the Lagrangian equations and indeed minimizes the action

∫
L dt.

With the same formalism, a similar form of the equation of energy can be obtained,
too. Let’s calculate the Lagrangian time derivative dρ

dt by deriving the 3.8. By means
of simple manipulations, it is straightforward to obtain:

dρi
dt

=
∑
j
mj

∂Wij(hi)
∂rij

(
∂rij
∂ri

vi + ∂rij
∂rj

vj

)
+
∑
j
mj

∑
k

∂Wij(hi)
∂hk

∂hk
∂t

and, rewriting ∂hk
∂t =

∑
q

∂hk
∂ρq

dρq

dt , and considering that ∂rij

∂rj
= −∂rij

∂ri
, we obtain the

correct expression for the continuity equation, very similar to the 3.9:

dρi
dt

= 1
Ωi

∑
j

mj ~vij · ~∇iWij(hi) (3.29)

Now, as done for the 3.15, we can obtain the energy equation:

dui
dt

= Pi
ρ2
i

dρi
dt

= Pi
ρ2
iΩi

∑
j

mj ~vij · ~∇iWij(hi) (3.30)

In both the equation above and in the 3.28, we need to put the additional
viscosity terms, which assume the same form as discussed in the previous section.
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3.4 Advanced technical features

3.4.1 Softened Newtonian interactions and further conservative
terms

When we are dealing with a pressureless medium, in estimating gravitational forces
between very close particles, several numerical errors can occur due to strong
Newtonian terms. One of the classical solution to face this problem is given by
softening the potential at short distances. For long distances, it gives back the
classical Newtonian contribution, while for short distances it is smoothed out, and
the related force fades to zero as particles get closer. Despite introducing some
errors in the evaluation the particles trajectories, such scheme prevents singularities
from which higher numerical errors may arise. Furthermore, it is necessary in case
of a pure pressureless N-body system, since the particles lack a "hydrodynamical"
repulsion. To soften the potential, a wide use of Plummer-sphere’s radial potential
function has been made (see, for instance, Evrard, 1988) :

Φ ∝ 1
(r2+ε2)1/2

leading to a softened acceleration:

|~a| ∝ r

(r2 + ε2)3/2 (3.31)

With this approximation, a particle is not a point mass object anymore, but rather
it behaves like a Plummer-like object whose mass is spread out over a "core" radius
of the order of ε . This radius defines the resolution of the problem, below which
gravitational force is being cushioned. ε represents a compromise between code
accuracy in reproducing the real physical laws and computational costs: the less the
radius, the more accurate is the code, the higher the CPU costs needed to handle
strong interactions. The choice of the optimal softening is non-trivial and depends
on the peculiar system we are dealing with, and it has to minimize the average mean
square error (that is, the average squared difference between the real Newtonian force
and the approximated force)(Romeo, 1998, Merritt, 1996). For common particles
distributions like plummer spheres, the optimal radii in general scale as ∝ Na, with
a ≤ 1 . Nevertheless, it is expected that, in order to do a realistic simulations
without undervaluing the self-potential of a system, ε must be a fraction of the
average inter-particle distance, and, in case of strong inhomogeneities, it must be a
fraction of the mean local distance at the densest regions, i.e. ε < n−1

max ∝ N−1.
Some problems arise: for distances greater than ε, the interaction restores its New-
tonian form, but since the 3.31 still contains ε even at highest distances where it’s
not requested, we’ll have some bias on the force estimation. On the contrary, we
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may choose a different class of softening function, with a compact support, with
softening actions disturb the gravitational field of a particle within a limited range.
Dehnen (2001), in a comparative study between several models of softening functions,
remarked the need of a compact-supported function, to avoid the propagation of
several numerical errors outwards. We opted for a radial function (described below)
derived from the cubic spline function 3.11, the potential is softened within a radius
2ε.

Even for SPH systems, we need to soften the Newtonian force, despite with a
different purpose than in the case of pressureless systems. For a gas, SPH particles
tend to avoid the singularities: firstly, a gaseous system has a natural inclination to
rarefy and to expand thanks to its internal energy; secondly, the artificial viscosity
3.21 prevents excessive compressions. The reason why we need to use softening
function is that we are not dealing with point particles. In the SPH formalism,
all the physical quantities are not relative to a single point but they rather spread
over an effective resolution radius h, thus, even the mass is smoothed out, and the
particle position represents just its barycenter. When two particles i and j are out of
their smoothing length influence, elementary theorems of the gravitational potential
tell us that they should interact with the usual Newtonian force ∝ mi mj r

−2. On
the other hand, if their mutual distance is less than one, or both, smoothing lengths,
they "overlap" and the gravitational potential is smoothed out over their effective
volumes 4π

3 (2h)3. Since their first introduction to SPH, Gingold and Monaghan
(1977) addressed such issue by describing a smoothed form for the gravitational
force. They interpolated the potential Φ = −G

∫ ρ(~r′)d~r′

|~r−~r′| by using the 3.8, for the
density, and the Poisson equation ∇2Φ = −4πGρ, obtaining:

~a(~r) = −~∇iΦi = −Gmi
∑
j

[
−4π
ξ2

ξ∫
0
W (r′, hi)r′2dr′

]
· ~∇ξ

with ξ = |~r − ~rj |. In our code, we use the same SPH-smoothed Newtonian terms
adopted by Hernquist and Katz (1989), who developed the expression above using
the cubic spline kernel W. Thus, we have:

Φsoft(r, h) = −m G f(r, h)

~asoft(r, h) = −m G r̂ g(r, h)
(3.32)

where f and g are respectively the softened potential and the softened acceleration
terms, such as lim

r>>h
f(r, h) = r−1 and lim

r>>h
g(r, h) = r−2. As shown in figure 3.3

they produce a softening for the potential and a dumping for the acceleration, whose
absolute value approaches to zero as particles get closer, while for r ≥ h g and f
restore the classical unsoftened values. So the intrinsic mechanism associated to the
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SPH particles gives rise to a natural damping of the classical Newtonian terms. h
defines the optimal softening length for self-gravitating gas, even though in their
original work Hernquist and Katz (1989) used the 3.32 with a constant ε < h for all
the particles. We reserve this latter approach just for non-gaseous particles, while
for the gas, we soften the force by means of an adaptive variable hi different from
particle to particle.
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Figure 3.3. Softening functions for the gravitational potential and for the acceleration. Full
lines represent f(r, h) (top panel) and g(r, h) (bottom panel). Dashed lines represent
the corresponding classical newtonian terms, without softening.

Adaptive softening lengths have been used for the first time by Dehnen (2001),
and represent nowadays a paradigm in modern SPH. Nevertheless, the use of an
adaptive h does not guarantee the conservation of energy since h can vary with time,
affecting the potential. Thus, we have a variable gravitational field and the potential
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energy varies abnormally with time, causing total energy not to be constant. This
constitutes an error since actually the Hamiltonian, lacking explicit time-dependent
terms, is constant in time. Price and Monaghan (2007), starting from the Lagrangian

L = 1
2
∑
i
mi|~ri|2 −

∑
i
miui −

∑
i
miΦ

applied the same variational principle who leads to 3.27a and 3.27b, this time
deriving also the gravitational part of L:

Lgrav =
∑
i
miΦ = −G2

∑
i

∑
j
mi mj

φ(rij , hi) + φ(rij , hj)
2

Besides the pressure normalization Ωi, a new gravitational correction term appears
to the equation of motion:[

d~vi
dt

]
corr

= −G2
∑
j
mj

(
ζi
Ωi

~∇iwij(hi) + ζj
Ωj

~∇iwij(hj)
)

with ζi = − hi
3ρi

∑
j
mj

∂Φ(rij , hi)
∂hi

. Thus, the final SPH equation of motion and

energy equation, provided with the artificial viscosity terms, are the following:

d~vi
dt

= −
∑
j

Gmj
1
2 (~asoft(rij , hi) + ~asoft(rij , hj)) ·

~rij
rij

−
∑
j

Gmj
1
2

(
ζi
Ωi

~∇iW (hi) + ζj
Ωj

~∇iW (hj)
)

+
∑
j

mj

(
Pi
ρ2
iΩi

~∇iW (hi) + Pj
ρ2
jΩj

~∇iW (hj)
)

+
∑
j

mjΠij
~∇i

1
2 [W (rij , hi) +W (rij , hj)]

(3.33a)

dui
dt

= Pi
ρ2
iΩi

∑
j

mj ~vij · ~∇iW (hi)

+
∑
j

mjΠij ~vij · ~∇i
1
2 [W (rij , hi) +W (rij , hj)]

(3.33b)

−−−−−− (3.33)

where we can recognize the gravitational force to be written in a symmetric form.
The pair-wise interaction between two generic particles i and j is driven by an average
between two softening functions, evaluated according to the respective lengths hi
and hj .
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3.4.2 Additional point mass objects

As remarked in the first section (page 13), in our code is possible to treat N -body
ensemble together with a small number Nob of point-mass objects. An object could
represent either a star or a planet and is uniquely defined by its mass and its phase
coordinates, plus some optional features (see below). Objects are coupled with
gas (or with pressureless particles) by means of a direct point-to-point interaction,
without the mediation of the tree-scheme. Furthermore, as will be discussed in
the next part, their motion is updated every iteration time without any individual
time-step, and their mutual interaction follows the classical direct N2 approach.
Provided that Nob is small (we use maximum 10 objects) in comparison with N

(whose common values range between 103 and 106 ) the introduction of such particles
does not affect significantly the calculous time. Especially for the peculiar purposes
of our investigations (in this work we will use Nob ≤ 2) it practically has a null
impact on the efficiency of the code.
Each point mass-particle can be provided with a peculiar softening length εob and
its force field is softened with the same functions 3.32. Consequently, the related
equation of motion takes the following form:

d~vob
dt

= −
∑
j

Gmj
1
2 (~asoft(~r, εob) + ~asoft(~r, hj)) ·

~r

r

+
∑
k

GMk
1
2 (~asoft(~r, εob) + ~asoft(~r, εk)) ·

~r

r

(3.34)

where the first summation is made all of the gas particles with mass mj , and
contains the average of two accelerations, softened according to the gas smoothing
length hj and at the object softening length εob. The second sum(available in case
Nob > 1) is made over the other object of mass Mk. It contains the average value of
two Newtonian forces softened according to the respective length εob and the generic
εk. Of course, we upgrade the 3.33a by adding the following term :

−
Nob∑
k=1

GMk
1
2 (~asoft(~rik, εk) + ~asoft(~rik, hi)) ·

~rik
rik

where index k again refers to the point masses.
As for the gas-gas interaction, with object-gas coupling, we have the same problem

of non-conservation of the total energy. The variation of h introduces further spurious
noises into the Hamiltonian, which now contains also the gravitational terms related
to stars and planets. We would need hence to use a variational approach in order to
derive the new gravitational terms of L. Hubber et al. (2013) indeed fixed this issue
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and found additional corrective terms. As a result, equation 3.34 does not change,
while in 3.33a only a little change is made in the terms ζi. Point-mass objects may
be provided by a sink radius, too. In some cases, as will be shown for protoplanetary
disks, this helps to avoid too large forces and with too expensive computational
efforts. A softening potential is already able to prevent singularities, but massive
objects (like stars) may accumulate matter at high pressures and densities, leading
to very small timesteps and reducing the efficiency of the algorithm. The particles
which approach the star within the sink radius are removed from the algorithm, and
their mass is absorbed by the object.

3.4.3 Integration technique

To let the gas evolve, we adopt a 2nd order integration method, very similar to a
classical 2nd order Runge-Kutta scheme but, at the same time, very close to a Leap
Frog integrator: the well-known Velocity-Verlet method (see Andersen (1983), Allen
and Tildesley (1989), chapter 3, for a detailed reference). The Verlet method is
made of a trapezoidal scheme coupled with a predictor-corrector technique for the
estimation of ~v and u.

Each time iteration, ~a and u̇ are evaluated twice, in correspondance to the current
step n and the next n + 1. We use ~a[n] and u̇[n] to predict the velocity and the
energy:

~v∗
[n+1] = ~v[n] + ~a[n] ·∆t

u∗[n+1] = u[n] + u̇[n] ·∆t

while the position is directly updated to the next step n+ 1, without any prediction:

~r[n+1] = ~r[n] + ~v[n]∆t+ 1
2~a

[n]∆t2 (3.35)

With such new quantities, a new calculation is performed for ~a and u̇ we thus have :

~a∗
[n+1] = ~a

(
~r[n+1], ~v∗

[n+1]
, u∗[n+1]

)
u̇∗

[n+1] = u̇

(
~r[n+1], ~v∗

[n+1]
, u∗[n+1]

)
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which we can use to correct velocity and energy :

~v[n+1] = ~v[n] +
(
~a[n] + ~a∗[n+1]

)
· ∆t

2

u[n+1] = u[n] +
(
u̇[n] + u̇∗[n+1]

)
· ∆t

2

(3.36)

It can be straightforwardly shown that, when acceleration does depend only
on the positions, i.e. in a Newtonian problem without the involvement of the
hydrodynamics, the Verlet method described above is equivalent to a standard
2nd order Kick-Drift-Kick (KDK) LeapFrog method. As a matter of fact, if the
acceleration does not depend on the velocity field nor on the internal energy, the
quantity ~a∗

[n+1] corresponds to the actual acceleration ~a[n+1] related to the next
step. The numerical method can thus be rewritten in the following way:

~r[n+1] = ~r[n] +
(
~v[n] + 1

2~a
[n]∆t

)
∆t = ~r[n] + ~v[n+1/2]∆t

~v[n+1] = ~v[n] + 1
2~a

[n]∆t+ 1
2~a

[n]∆t = ~v[n+1/2] + ~a[n] ∆t
2

which is indeed the standard expression of a KDK Leap-Frog integrator that
requires just one force calculation per time-step (see Hockney and Eastwood, 1988,
Hut et al., 1995, Quinn et al., 1997, for leap-frog methods and further improvements
). The main structure of such a scheme is very similar to the one adopted by the
classical symplectic leap-frog algorithms, although it requires a force estimation
twice per iteration. Nevertheless, the general Velocity-Verlet method applied to gas
takes a more advantage with respect to the symplectic algorithm. Indeed, like a
standard Runge Kutta method, velocity and positions are updated in correspondence
to synchronized times, without the shift ∆t/2. Such a feature provides a good
flexibility in problems with non-uniform time-step and which involve the interaction
of the gas with different components integrated with different methods, as in our
cases. We can find applications of Velocity-Verlet methods in SPH schemes for
example in Hubber et al. (2013) or in Hosono et al. (2016).

The additional point-mass objects don’t constitute a diffuse medium, they are
rather ballistic elements whose trajectories need to be calculated with a very high
precision, in order to perform realistic simulations. For such purposes, we integrate
the mutual Newtonian interaction between stars and planets with a 14th order
Runge-Kutta method, recently developed by (Feagin, 2012) through the so-called
m-symmetry formalism. The method consists in 35 force computations per timestep
and, in analogy with the well-known 2nd and 4th order RK algorithms, it updates
the velocities and the positions by suitable linear combinations of 35 different ~Kr and
~Kv coefficients. For a generic set of Nob objects we want to integrate the following
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differential equations associated with a generic object i :

d~ri
dt

= ~vi
d~vi
dt

= ~fi

we make a first estimation of the explicit derivatives at the iteration n:

~Kv
(i)
1 = ~f(~r[n]

1 , ~r
[n]
2 , ..., ~r

[n]
i , ..., ~r

[n]
N )

~Kr
(i)
1 = ~v

[n]
i

which we use to estimate the further quantities to a second sub-step n+ c2:

~Kv
(i)
2 = ~f(~r[n+c2]

1 , ~r
[n+c2]
2 , ..., ~r

[n+c2]
i , ..., ~r

[n+c2]
N )

~Kr
(i)
2 = ~v

[n]
i + a21 ~Kv

(i)
1 ∆t

where ~r[n+c2]
i = ~r

[n]
i + a21 ~Kr

(i)
1 ∆t represents the i-th particle position updated

to an intermediate time t+ c2∆t. Then we start an iterative cycle of consecutive
extimations of β-th terms:

~Kv
(i)
β = ~f(~r[n+cβ]

1 , ~r
[n+cβ]
2 , ..., ~r

[n+cβ]
i , ..., ~r

[n+cβ]
N )

~Kr
(i)
β = ~r

[n]
i +

β−1∑
γ=1

aβγ ~Kv
(i)
γ ∆t

(3.37)

with ~r[n+cβ]
i = ~r

[n]
i +

β−1∑
γ=1

aβγ ~Kr
(i)
γ ∆t the vector position of particle i at a generic

intermediate time t+cβ∆t. Note that, since γ < β, every quantity depends explicitly
on previous estimations. The coefficients aβγ are the elements of a 35x34 matrix,
while bβ and cβ represent two arrays of 35 elements (see Appendix A for the detailed
list of the elements). The matrix a requires the following restriction:

34∑
γ=1

aβγ = cβ (3.38)

Since we are dealing with a full explicit method, a is triangular, and aβγ = 0, for
γ > β. In total, each star will have 35 velocity-coefficients ~Krβ and 35 acceleration-
coefficients ~Kvβ, the resultant velocity and position at the next time step will be
given by:
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~v
[n+1]
i = ~v

[n]
i +

35∑
β=1

bβ ~Kv
(i)
β ∆t

~r
[n+1]
i = ~r

[n]
i +

35∑
β=1

bβ ~Kr
(i)
β ∆t

(3.39)

To calculate the time evolution of a mixed gas + stars system, we couple the Verlet
and the RK integration methods as follows. At the starting iteration n, the gas
particles feel the gravity field from the stars, the SPH mutual interactions and
eventually its self-gravity. Their positions are thus updated according to the 3.36,
furthermore ~v∗

[n+1] and u∗[n+1] are predicted. At the same time, stars positions
and velocities are first updated with the Runge-Kutta method, then, the explicit
force contributions due to the SPH particles ~a[n]

part are added to the 3.38. Stars
and SPH particles are coupled by direct point-to-point interaction, without any
approximation for the gravitational field. Finally, we correct the gas positions and
velocity according to the 3.36, by recalculating the accelerations and the energy
rates at the new stage n+ 1.

3.4.4 Time stepping

We chose the time-step ∆t following a standard Courant-Friedrichs-Lewy criterion
commonly adopted for SPH systems (see for example Monaghan, 1992, ), and by
putting some additional criteria. For each particle, an individual timestep ∆ti is
determined by considering the minimum of the following two quantities:

∆tterm = min

 C h

cs + h|~∇ · ~v|+ ϕ

[
αcs + βmax

j
(µij)

] , Cuu
u̇


∆tdyn = min

Ca
√
h

a
, Cd

v

a


(3.40)

where C represents the classical courant factor (typical values used lies between 0.1
and 0.4, we usually choose 0.15). Ca = 0.14. Cd << 1 represents a coefficient which
quantifies the relative |~v| variation in an interval ∆t ( after a time integration, the
kinetic energy variation ratio for each particle would be thus limited approximately
to ∼2cd ). We choose Cd = 0.02. cs is the usual speed of sound, while ϕ is a
coefficient, typically ranging from 0.6 to 1.2, we will adopt the latter value for all
the works presented in this paper. As for the kinetic energy, in a single time-step,
the variation of the thermal energy u/u̇ is limited to a certain fraction Cu = 0.04.
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For a non-hydrodynamical particle system, the individual timestep ∆t is limited to
∆tdyn , with a constant softening radius ε in place of h. The same form of timestep
is used for the mutual interaction between ballistic objects:

∆tdyn = min
ob

Cob

(√
εob
a
,Cd

vob
aob

)

We use Cob = 0.15.For a homogeneous medium, integration can be performed with
a global timestep ∆tmin = min

i
∆ti, the smallest value calculated among all the

particles and all the stars. But generally, the particles have different resolutions hi
and different accelerations which lead to a wide class of typical evolution time-scales.
Thus, for some particles, the integration could be done with different ∆ti, avoiding
the explicit force calculous every iteration, and saving some CPU time. We adopt a
usual technique implemented in several N-body algorithms, like, for instance, in the
classical TREE-SPH (Hernquist and Katz, 1989) or in the multi-GPU-parallelized
N-body code HiGPUs (Capuzzo-Dolcetta et al., 2013). We assign to each point a
time-step as a negative 2-power fraction of a maximum timescale ∆tmax = max

i
(∆ti)

(it can be a fixed parameter or it may change during a simulation). Particles are
updated periodically according to their ∆t, in such a way that, after an integration
time ∆tmax, all of them are synchronized. In our scheme, the stars and planets don’t
follow an individual time-step scheme and are integrated following the minimum
timestep. Furthermore, even the particles sufficiently close to the stars are integrated
according to ∆tmin. Practically, we evaluate the distance of each particle from the
stars and predict the distance at the following time iteration, too. If such values are
smaller than κεob (with ąconstant ≥ 2), the particle timestep drops to ∆tmin. As a
matter of fact, for our practical purposes, a small number of the object is expected to
be used (Nob <= 10), thus, the 35-stage RK scheme turns out to require a relatively
small CPU time (less than 1% with 104 gas particles).

In gas problems involving strong shocks, the use of individual timesteps may
lead to strong errors. Even thought courant conditions are satisfied, the strong
velocity and energy gradients may determine too strong differences in timestep
even between close particles. Consequently, close particles may be integrated with
excessively different time-scales. This may create too asymmetries in the their
mutual interaction. causing unphysical discontinuities of velocity and pressure and
consequently leading to errors. Following the idea of Saitoh and Makino (2009), for
each couple of neighbour particles i and j, we limit the ratio of timesteps ∆ti

∆tj ≤ A.
The investigators have shown that a good compromise is given by the choice of
A = 4, which gives good results without affecting abruptly the efficiency of the code.
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3.4.5 Shared memory parallelization

We parallelized the code to run with shared-memory architectures by using the
standard OpenMP libraries. We implemented a parallelization both for the density
evaluation routine and for ~a, u̇ calculation, distributing the operations made for
different particle to different threads. In the latter routine, both the far gravitational
forces and the close hydrodynamical interactions may cause, for two or more different
particle, to update the same quantity during the same routine cycle. Thus, many
so called Data-Race problems could arise: two or more threads may get access and
update the same memory location at the same time, leading errors in storing the
correct values. To overcome such issues, for each processor P, a private memory is
allocated to memorize temporary quantities ~aP and u̇P . After the main cycle of
force evaluation, temporary array are summed index by index and finally stored to
the memory :

~a =
∑
P
~aP ; u̇ =

∑
P
u̇P

In total, 4N · Nth real values are stored, being Nth the number of threads (they
request a relatively small amount of ram memory: 32Nth Mbytes per million of
particles, in double precision).

In figure 4.20 of the next chapter, we put in comparison the CPU-times needed
by the serial vesion of our algorithm and its parallelized version. We evaluated the
speedup in function of several processors number PN employed, performing an entire
cycle of calculous, both for density routine and for accelerations routine. The tests
show satisfying results for low PN while the efficiency degrades for Nth ≤ 4 : we
reach a maximum speedup of 5.3 out of an ideal value of 8.
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Chapter 4

Code testing and performance

4.1 Gaseous and pressureless systems

4.1.1 Plummer distribution of point-mass particles.

In this subsection we are going to show some tests performed to check the stability
of the code. We placed a set of self gravitating pressureless particles in a plummer
distribution (Plummer, 1911), such as, a radial number density:

n(r) ∝M
(

1 + r2

r2
0

)−5/2

in a local virial equilibrium, such as, for every particle, the total binding energy
E < 0 follows the distribution f(E) ∝ E7/2 (Eddington, 1916). Units are the total
mass of the sysem M , the gravitational constant G, and r0. We placed an ensemble
of N = 105 and conventionally choosing a cutoff radius rc ≈ 18r0 (the one containing
99.5% of the total mass of an ideal distribution from r = 0 to r = ∞. Particles
had equal mass m = N−1 and equal softening lenght ε, chosen as a fraction of
the central mean interparticle distance: ε = αsoft ·

(
m
ρ0

)1/3
= αsoft ·

(
4π
3N

)1/3
(with

αsoft ∈ [0.2, 1]).
Setting the plummer distribution in a dynamical equilibrium configuration,

we integrated its time evolution for 50 mean crossing-times τc. Such parameter is
defined as the initial ratio between the half mass radius R1/2 and the mean dispersion
velocity: τc ≡

R1/2√
<v2>

. Figure 4.1 shows the virial factor 2T
|Ω| (expected to fluctuate

in equilibrium around the mean value 1) in function of time, comparing four runs
made by using different combinations of θ (0.6; 1.0) and ε (0.2; 0.5).

The four results illustrated in figure 4.1 do not show any relevant differences:
virial ratio oscillates whithin a small fraction < 1%. Especially the case with θ = 1
and αsoft = 0.5, which was expected to be the most approximative, turns out to be
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Figure 4.1. Plummer distribution of 105 equal-mass particles. Oscillation of virial factor
in function of time, for 4 different configurations. Continuous line: θ = 0.6, ε = 0.2;
dashed line: θ = 1.0, ε = 0.2 ; dotted line: θ = 0.6, ε = 0.5 ; dashed-dotted line: θ = 1.0,
ε = 0.5. Time units: τc.

a good configuration. Furthermore, the radial mass distribution at the equilibrium
state is preserved, as can be seen in figure 4.2, where we indicated the lagrangian
radius values ( respectively the radial values containing the 15%, 30%, 50% and 75%
of the total mass) after 50 crossing times, for θ = 1 and αsoft = 0.5. Their values
remains exactly the same with respect to the initial ones. It is worth to note that here
we are not dealing with a classical regularized N-body code (a well-known example
can be given by the N-body6 code; seeAarseth (1999) for references) and thus the
newtonian potential is damped when the particles approach within a distance of the
order of ε, giving raise to errors.

4.1.2 The 2 body problem

We are going to discuss now some questions related to the peculiar numerical method
we adopted. Tipically, Symplectic Leap-frog methods are largely used in lagrangian
problems involving gas. One reason is that they guarantee a satisfying long-time
energy conservation, since the time evolution of the phase variables is performed by
means of canonical transformations, which depend on a constant Hamiltonian. On
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Figure 4.2. Cumulative radial mass distribution of a plummer-distributed system, after a

50-crossing-times evolution, defined as : M(R) = 4π
R∫
0
ρ(r)dr.

θ = 1 and softening parameter αsoft = 0.5 . Vertical lines indicate the values of the
Lagrangian radii R15, R30, R50, R75.

the other hand, they require just one acceleration calculous per timestep, providing a
good efficiency (we remind Dehnen (2011), for an explanation of Leap-Frog and other
methods for the resolution of gravitational N body problems). Nevertheless, in some
peculiar circumstances, such schemes don’t guarantee a perfect extimation of the
particles trajectories. Furthermore, when we integrate with a non constant dt, both
in space and time, the intrinsical structure of the Leap Frog (required to guarantee
a 2nd order accuracy) is broken, and some sophisticated techniquest to restore the
symmetry are required. This is a well known issue which Hut et al. (1995) and Quinn
et al. (1997) tried to overcome by introducing some sophisticated improvements to
the classical receipt of the Leapfrog. Two are the most suitable Leap Frog methods:
the so called Drift-Kick-Drift(DKD) and the Kick-Drift-Kick(KDK). Figure 4.3 is
taken from the well-known work of Springel (2005), related to the introduction of the
Code GADGET-2, designed to treat gas evolution and peculiarly for Cosmological
simulations. It compares the two symplectic methods showing a simple integration
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of the 2-body problem with high eccentricity orbits, in a variable time-step approach.
Orbits are expected to be constant but, as it can be seen, leap-frog integrators
accumulate significative errors after 200 orbits and the trajectories of the particles
correspond no longer to the actual keplerian solution, despite the KDK provides
better results than the DKD and the semimajor axis doesn’t make any precession.
Time-step is chosen according to the criterium dt = α′√

|~a|
, calibrating α′ in such a

way that there are 200÷ 250 timesteps per orbital period.

Figure 4.3. Advanced leap-frog method (KDK and DKD) applied to a strong 2-body
problem. Picture taken from Springel (2005) (pp. 116).

We will show now an application of the RK2nd order to the same problem: we
placed two equal-mass point particles (without softening radius i.e ε = 0) in an
elliptical relative motion, with orbital eccentricity e = 0.9.
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Figure 4.4. 2 body problem with the Runge-Kutta 2nd order integrator: relative elliptical
orbit, eccentricity 0.9. Time-step criterium dt ∝

√
1
|~a| Blue ellipse refers to the initial

orbit, while cumulative trajectories after 200 initial orbital period, are plotted in purple.

Figure 4.5. 2 body problem with the Runge-Kutta 2nd order integrator: same plot as 4.4,
comparison between different runs with different eccentricities.
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Figure 4.4 shows the relative trajectory, within an integration time of 200 initial
orbital periods, with the same timestep accuracy as used for the leap-frogs: dt ∝ 1√

|~a|
,

264 timestep per orbit. The RK2 method we adopted in our algorithm gives back
errors comparable with KDK, furthermore, it is fully explicit and, as illustrated in
the previous chapter 3.1, it needs extimation of the derivatives just for the current
and the next time-step, without introducing asymmetries due to intermidiate steps.
Figure 4.5 compares different configurations of the same 2-body problem integrated
with the RK2, with different values of eccentricities. Despite the strong case of
e = 0.9, for e <= 0.8 we have a few deviation of the orbits from the keplerian law,
with a reduction of the semimajor axis of less than 5%. The time-step criterium
adopted for such examples represents a suitable choice as far as we are dealing with
pressureless particles, with zero or constant gravitational softening length. For SPH
particles, dynamical timestep-criterium follows the rule dt ∝ h

|~a| (as can be found
in Monaghan, 1992, Springel, 2005, Wetzstein et al., 2009, for instance). Since the
smoothing length h scales approximatively as the local mean interparticle distance,
one can write dt ∝ r

|~a| .

Figure 4.6. 2 body problem with the Runge-Kutta 2nd order integrator: relative elliptical
orbit, eccentricity 0.9 . Time-step criterium: dt ∝

√
r
|~a| . Blue ellipse refers to the initial

orbit, while cumulative trajectories after 200 initial orbital period, are plotted in purple.

Integrating the 2-body problem according to the latter criterium, we may have
a clearer idea about the code accuracy with gas systems. Figue 4.6 and 4.7 shows
the relative orbits of two bodies with in the same configuration as illustrated in
4.4 and 4.5, but with a time-step scaling as ≈ r

|~a| . Differently from the previous
situation, after 200 periods, for e > 0 we have a sligh precession of the semimayor
axis, while for e = 0 the circular orbits mantain their shape. The main purposes
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Figure 4.7. Integration of the 2-body problem with the timestep criterium dt ∝
√

r
|~a| . For

e = 0, e = 0.6, e = 0.8, e = 0.9, we have integrated the orbit with a number of timesteps
dt per orbital period respectively 199, 215, 238, 278.

of the tests introduced so far consisted in giving an idea of the accuracy of the
Runge-Kutta 2nd order method to face dynamical problems, in comparison with
the leap-frog. Nevertheless, the inability of such schemes to preserve energy after
systematic accumulations of error does not affect pretty much the accuracy of the
code in handling gas or in general collisionless systems. In fact, as remarked by
Springel (2005), in collisionless systems or gaseous systems we don’t have the same
situation as illustrated in the previous examples, the gas particles rather make
very few close orbits during a typical dynamical time. Furthermore, the errors are
distributed among a wide neighbourhood of particle without affecting the position
or the velocity of a single point.

4.1.3 The accuracy of the 14-th order Runge kutta method.

Differently from the case of non collisional systems, the close interactions among
stars and/or planets, for instance the keplerian orbits of a binary system star + star
or star + planet, may be integrated as accurately as possible. As remarked in the
previous section, the exact determination of the ballistic trajectories of stars and
planets need to be determined with a very small error, in order to make realistic
investigations.
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Figure 4.8. 2 body problem integrated with the 14th order RK method. Overall relative
position of two equal-mass bodies, during an integration time of 105 orbital periods.
The curve matches a perfect eccentric ellipse within an error of ≈ 10−7%.

Figure 4.9. Same as Figure 4.8, but with a mass ratio of 106 between the two bodies.
Integration requested the 40 % of interation more than the previous run.

Here we show an example of high eccentric keplerian motion integrated with
the Runge-Kutta-14th order method, applied to two equal massive stars, for an
integration time of 105 orbital periods. The time-step criterium dt ∝ |~a|−1/2 has
been used, with 245 timesteps per orbital period. As for the examples shown above,
the relative position coordinates of the two objects x = x1 − x2 and y = y1 − y2,
are plotted in Figure 4.8, for all the time intervall of integration. Differently from
the previous case, the trajectories remains the same and the elliptical orbit remains
stable. Periastron and Aphastron have a relative variation (defined, as usual, as the
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variation with respect the initial value, divided by the initial value) of the order of
10−9, while energy varies of less than 5 × 10−7 %. A similar test, using the same
eccentricity, is illustrated in figure 4.9, despite the two objects have now a huge
mass ratio M1/M2 = 106. There are no relevant differences in terms of accuracy,
with respect to the previous test, the only difference lies in the number of iteration
necessary to integrate for a single orbital period; it increases of about 40% .

4.1.4 Sedov-Taylor blast wave solution

We now show an application to the blast waves explosions, to test the accuracy of
the artificial viscosity in handling with strong shock waves. Given a homogeneous
medium with constant density ρ0 and null pressure, if an ammount of energy E0

is injected at a certain point r0, an explosion occurs and a radial symmetric shock
wave then propagates outwards. L.I.Sedov (1959) investigated such problem and
found a simple analytical law for the time evolution of the shock front:

rs(t) =
(
E0
ρ0 · a

)1/5
· t2/5 (4.1)

where rs is the radial position of the front, relative to the point of the explosion r0,
while a is a function of the adiabatic constant γ ( it is close to 0.5 for γ = 5/3, and
it approaches 1 for γ = 7/5). Furthermore, the fluid density, pressure and velocity
right behind the shock front (r <= rs) have the following radial profile:

ρ(r, t) = γ + 1
γ − 1ρ0 Gγ

(
r

rs

)
P (r, t) = 8ρ0

25 (γ + 1)
r2

t2
Wγ

(
r

rs

)
v(r, t) = 4

5 (γ + 1)
r

t
Uγ

(
r

rs

) (4.2)

being Gγ , Wγ and Uγ some non analytical functions of the relative radial coordi-
nate r/rs .

Similarly as many previous works (see for example Rosswog and Price (2007)
or Tasker et al. (2008)), we set the initial conditions for a homogeneous and static
medium (ρ0 = 1, v = 0) by placing 106 equal-mass particles in a cubic lattice
structure, confined in a squared box with x,y, and z coordinates ranging, each one,
from -1 to 1. γ was set to 5/3, and the explosion was simulated by giving an amount
of energy E0 = 1 to the origin of the system. Space, density, and energy units are set
to 1, in such a way that a single particle has a mass of 8× 10−6 and time units are
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automatically set to 1. Actually, in an SPH framework, we are not able to reproduce
a point explosion with an SPH system, i.e. we are not allowed to concentrate E0 to
a single point, since the spatial resolutions characterizing the physical variables are
determined by the kernel support. Hence, we neededed to inject the energy in a small
region with the same scale as 2h. We thus gave, at a time t∗, the energy E0 to those
particles enclosed in a sphere having radius R = 2h. Figure 4.10 shows the time
evolution of the system along the x,y, plane, considering a slice with thickness 0.05
and passing to the axis origin. Figures 4.11,4.12,4.13, 4.14 and 4.15 shows the radial
profile of the density, pressure, internal energy, SPH viscosity α, and smoothing
lenght, compared with their analitical expected solution, at t = 0.2. Figure 4.16
illustrates the average values of radial ρ(r, t′) and P (r, t′) peofiles at t=0.2. Despite
the position of the front follows the expected law, the density does not reach the
maximum value expected, in this case γ+1

γ−1ρ0 = 4. Due to the smoothing kernel, the
density spreads out and follow a different distribution with respect to the analytical
one. Consequently, the shock front is enlarged of the order of the local smoothing
lenght h, rather than following a vertical discontinuity.
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Figure 4.10. Sedov-Taylor blast wave test: Particle position projected on x,y plane, from
z=-0.05 to z=0.05, at different times.
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Figure 4.11. Sedov-Taylor blast wave test: Particles density in function of the radial
distance from the explosion point. t=0.2 . Red dots represent the numerical result of
the test, black continuous line is the expected theoretical solution.
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Figure 4.12. Sedov-Taylor blast wave test: Particles Pressure in function of the radial
distance from the explosion point. t=0.2 . Red dots represent the numerical result of
the test, black continuous line is the expected theoretical solution.
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Figure 4.13. Sedov-Taylor blast wave test: Particles internal Energy in function of the
radial distance from the explosion point. t=0.2 . Red dots represent the numerical result
of the test, black continuous line is the expected theoretical solution.
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Figure 4.14. Sedov-Taylor blast wave test: numerical result of the SPH viscosity coefficient
α in function of the radial distance from the explosion point. t=0.2. The vertical black
line indicates the abscissa of rs(t = 0.2).
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Figure 4.15. Sedov-Taylor blast wave test: numerical result of the smoothing length h in
function of the radial distance from the explosion point. t=0.2. The vertical black line
indicates the abscissa of rs(t = 0.2).
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Figure 4.16. Sedov-taylor blast wave solution at t=0.2. On the top: average radial density
in function of r. On the bottom panel: average pressure radial profile. Full line represents
the analytical solution. Dots refer to the numerical results.

4.2 Code scalability and shared memory parallelization

We performed several tests in order to verify the scalability of our program, both
with uniform-density systems and with non homogeneous distributions of matter
(Plummer distributions). Tests have been made with a multi-threading Intel i7-
4710HQ architecture with 8MB of cache memory. In figure 4.17, the total cpu-time
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(in seconds) needed for a single force evaluation is plotted in function of particle
number N , performed on an homogeneous sphere. In horizontal axis, N · logN is
represented, normalized to a reference value 104 · log 104. A value of θ = 0.6 was
used for the tree code scheme. Red dots represent the total CPU-time needed to
compute the acceleration of a gas, the field is evaluated by descending the tree once
and calculating both the hydrodynamics and the gravitational contributions. Before
the acceleration routine, SPH spends an extra amount of time for neighbourhood
searching and for the density evaluation. During the neighbourhood searching phase,
depending on the dynamics and complexity of the system, as well as on the initial
smothing lenght, each particle may require several iterations before obtaining the
convergence, following the prescription 3.13. For homogeneous sphere and plummer
sphere we found that, after a preliminary adjustement phase, the average number of
iterations per particle was close to 1, and the total time taken by the density routine
was linear in N. Taking into account density routine and acceleration routine, the
overall time-machine per single step is plotted in the same figure (red triangles).
Making a work profiling, through fully separating the workload of the gravitational
calculus from the effort needed to make SPH evaluations, would be an impossible
task. Indeed, for the sake of efficiency, hydrodynamics interactions are calculated at
the same time with the long range particle-cube interactions, performing just a single
tree descent. Furthermore, the two operations are not indipendent and interfere
with each other because it may happen that far cubes (which the tree-code would
approximate with quadrupole) fall within the smoothing length. In this case the
algorithm makes a direct particle-particle coupling even for gravity, forgetting about
the pure tree-code scheme. Thus, it is not possible to build an exact work profiling
for the algorithm by simply separating the time interval taken by tree gravity part
from the one taken by hydrodynamics calculations. Thus, we can only extimate the
algorithm efficiency by testing on a pressureless system without using any softening
lenght ε, or simply by using gas and setting h to zero. In figure 4.17, blue dots
show the performances obtained for a simple gravitational field extimation, their
behaviour is expected to be linear.

Based on the results of figure 4.17 , table 4.1 shows the work profiling percentage
of the total time taken by a single force step. Pure tree code time, as explained
before, has been obtained by doing simulation in which smoothing lenght h was set to
zero. Subtracting the latter time quantity from the cpu-time taken to calculate force
by "turning on" SPH, one obtains the hydrodynamical overhead for the acceleration
routines. Furthermore, we take into account the percentage of time requested by the
iterative neighbourhood searching cycles, which is shown too. Time values shown in
4.1 contains tree-building costs too, whose expected behaviour is proportional to
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N 104 5 · 104 105 5 · 105 106 2 · 106

Pure tree
code. 37.0 38.7 34.6 41.7 45.4 48.3
SPH

overhead. 26.5 32.4 35.8 29.9 26.4 24.4
Neighbour
searching. 31.7 25.4 26.7 25.7 25.3 24.5

Tree
building. 3.8 2.4 1.9 1.7 1.8 1.7
Other

operations. <1 <1 <1 <1 <1 <1
Table 4.1. Work profiling for a uniform sphere, θ = 0.6, N ′ = 50 : percentage of workload

needed by bare tree gravitational routines, SPH overwork, neighbourhood searching,
tree mapping and other operations; results for several values of particles number N are
shown.

N · logN . Nevertheless, they give a small contribution to the overall time. It is worth
to remark that, despite some fluctuation for low N numbers, the percentage of extra
effort, needed through introducing SPH operations, decreases with the increasing of
N . On the other hand, the iterative searching algorithm takes a time proportional to
N . Nevertheless, inside the tree descent subroutines, the addition of SPH softened
force evaluation along with the particle-cluster coupling, both with hydrodynamical
terms extimation, requests a considerable amount of extra time machine.

This difference is not univocal and depends on the shape and density distribution
of the system considered. Similarly to the previous graph, figure 4.18 illustrates the
code performance for a plummer sphere distribution built with core radius R0 = 0.5
and cutoff radius RC = 2.5, with θ = 0.6. Despite the gravitational tree code
requests a cpu time ≈ N · logN , the performance of the algorithm, at the same
N, gets worse with respect to the previous model ( a comparison is illustrated by
figure 4.19 ). This is due to the fact that in Plummer system we have higher density
contrast with respect to the case of homogeneous sphere. Thus, the algorithm has to
deal with more subdivisions levels L, which are responsible for the logarithmic factor
that governs the behaviour of the calculus time. On the other hand, SPH overwork
time does not increase substantially (apart some fluctuations), because each particle
needs just a local amount of informations given by a fixed number of close particles,
neglecting the points above the smoothing kernel support. The combination of these
two behaviours leads to the reduction of the ratios between hydrodynamical efforts
and gravitational workload (see table 4.2 related to the distribution of workload for
the plummer profile).

Figure 4.21 compares the performance of the code, for plummer model, for



58 4. Code testing and performance

N 104 5 · 104 105 5 · 105 106 2 · 106

Pure tree
code. 49,8 45,1 45,7 52,5 55,4 57,2
SPH

overhead. 21,5 30,7 29,5 22,1 19,8 19,3
Neighbour
searching. 24,8 21,1 22,1 22,8 22,1 20,9

Tree
building. 3.0 2.1 1.7 1.5 1.7 1.6
Other

operations. <1 <1 <1 <1 <1 <1
Table 4.2. Work profiling for a plummer profile, θ = 0.6, N ′ = 50 : as in table 4.1 percentage

of workload needed by bare tree gravitational routines, SPH overwork, neighbourhood
searching, tree mapping and other operations; results for several values of particles
number N are shown.

θ = 0.25
N 104 5 · 104 105 5 · 105 106 2 · 106

Pure tree
code. 85.8 87.7 88.4 90.2 93.7 93.0
SPH

overhead. 5.0 6.1 5.9 5.3 1.9 2.9
Neighbour
searching. 7.4 4.7 4.4 3.3 3.1 2.9

Tree
building. 0.9 0.4 0.3 0.2 0.2 0.2
Other

operations. <1 <1 <1 <1 <1 <1

θ = 0.4
Pure tree
code. 71.4 73.0 74.5 78.8 76.9 83.5
SPH

overhead. 10.2 12.3 11.1 9.1 11.0 4.8
Neighbour
searching. 15.6 12.5 12.4 10.4 10.3 9.9

Tree
building. 1.9 1.3 1.0 0.7 0.8 0.8
Other

operations. <1 <1 <1 <1 <1 <1
Table 4.3. Work profiling for a plummer profile, for low values of opening angles θ = 0.25

and θ = 0.4;N ′ = 50 : as in previous tables, percentage of workload needed by bare tree
gravitational routines, SPH overwork, neighbourhood searching, tree mapping and other
operations; results for several values of particles number N are shown.
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θ = 0.8
N 104 5 · 104 105 5 · 105 106 2 · 106

Pure tree
code. 32.2 26.2 27.7 31.1 33.3 34.8
SPH

overhead. 30.7 43.9 42.5 36.4 34.3 33.5
Neighbour
searching. 32.2 26.4 26.7 29.6 29.3 28.6

Tree
building. 3.8 2.5 2.2 2.0 2.1 2.1
Other

operations. <1 <1 <1 <1 <1 <1

θ = 1.0
Pure tree
code. 21.1 18.8 16.2 18.6 19.0 21.6
SPH

overhead. 32.1 48.8 50.5 44.9 45.6 42.8
Neighbour
searching. 42.1 28.4 30.0 33.4 32.2 32.2

Tree
building. 3.7 3.0 2.3 2.1 2.2 2.3
Other

operations. <1 <1 <1 <1 <1 <1
Table 4.4. Work profiling for a plummer profile, for high values of opening angles θ = 0.8

and θ = 1.0;N ′ = 50 : as in previous tables, percentage of workload needed by bare tree
gravitational routines, SPH overwork, neighbourhood searching, tree mapping and other
operations; results for several values of particles number N are shown.
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different opening angles θ. Triangles represent the whole cpu-times for an acceleration
estimation both with hydrodynamical force and with preliminary ρ calculation, while
dots represent the pure gravitational code. The more the opening angle, the less the
amount of operations done by the routines: cubes are coupled with particles even
for shorther mutual distances, thus more direct particle-particle interactions are
neglected. With lower opening angles, linearity is still followed for θ = 0.4 , while for
θ = 0.25 we have a deviation. Clearly, in the limit of θ → 0, the algorithm tends to
reproduce the behaviour of a pure N body code, with calculus time proportional to
N2. With higher θ, code performance gets higher and higher for the bare gravitational
computation, but when we consider full SPH efforts, the situation changes and the
time needed for calculus does not decrease deeply. This is due to the fact that, as
was explained before, algorithm is forced to make direct interaction with particles
lying in the kernel dominium, even at those distances at which pure gravitational
algorithm would use quadrupole approximation. Thus, SPH algorithm puts a lower
limit to the code performance. On the other hand, when we use sufficiently high
values of θ, the code uses quadrupole approximation only for cubes not included
in the kernel dominium, so the closest particle undergo direct interaction, wheter
we use a mere self-gravitational evaluation or gravitational plus hydrodynamical
computations. This is the reason why the percentage of hydrodynamical workload
decreases whith higher θ (table 4.3 and table 4.4 summarise the ratio distribution of
work at various opening angles, related to the plummer system). Furthermore, times
taken by the density subroutine are indipendent from the choise of the opening angle
because they act locally, but theyr ratios (as shown in tables 4.3, 4.4 ) decreases with
θ, because gravitational efforts became more and more dominant. Linear behaviour
of neighbourhood searching routines is illustrated in figure 4.20 (results for plummers
profile are shown).
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Figure 4.17. (fig. a) CPU Tree descent time in function of N logN - normalized to
N0 logN0 ; N0 = 104 - for a uniform sphere. θ = 0.6 . Comparison among pure self-
gravity evaluation (blue dots), gravitational plus hydrodynamical calculations(red dots),
overhead due to neighbourhood searching with 1 iteration per particle (triangles).(fig.
b) Same results expressed in time(seconds) per particle - logN
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Figure 4.18. Plummer profile; θ = 0.6 . (fig. a) CPU Tree descent time in function
of N · logN - normalized to N0 · logN ; N0 = 104 - . Comparison among pure
self-gravity evaluation (blue dots), gravitational plus hydrodynamical calculations(red
dots), overhead due to neighbourhood searching with 1 iteration per particle (triangles).
(fig. b) Same results expressed in time(sec.) per particle - logN
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Figure 4.19. Tree gravitational code performance: comparison between uniform
sphere(green dots) and Plummer profile(red dots). θ = 0.6, units: seconds per particle
v.s. logN

0 500000 1000000 1500000 2000000
N

0

5

10

15

20

25

30

35

40

t (
se

c.
) 

Figure 4.20. Linear behaviour of CPU-time for neighbour searching routine (Plummer
profile)
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Figure 4.21. Plummer sphere, code performance at various θ, calculus time per particle
vs. logN). Tree gravitational algorithm(dots) and full SPH algorithm (triangles)
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Chapter 5

Evolution of circumstellar disks

Here we show some investigations on protoplanetary disks in equilibrium around
one star, illustrating also some general prescriptions adopted to build disks to be
used in a wide class of context. Here we introduce two main application which
characterizes our work activity: secular dissipation of protoplanetary disks in a
pseudo-equilibrium state around a star, and perturbation of disks by passing-by
star. The latter constitutes a first parametric approach of a complex problem: the
evolution of disks in star clusters, it involves the treatement of hybrid Gas + Nbody
systems.

5.1 SPH schematization of the Shakura-Sunyaev vis-
cosity

As discussed in section 2.2, in a Keplerian disk the turbulence dissipates the kinetic
energy emualating the effects of a pseudo-viscosity. To take such effect into account
we would need some dissipative term compatible with the eulerian equations, i.e.
different from the classical Navier Stokes molecular dissipation force. The SPH
artificial viscosity 3.21 is well suited to face such issue. Meglicki et al. (1993) found
that the SPH viscosity coefficient α provides a viscous acceleration with an effective
kinematic viscosity ν :

d~v

dt
|visc = ν ~∇ · ~S ∝ α h

2ρ {
~∇(csρ~S) + ~∇(csρ~∇ · ~v)}

containing a shear viscosity as first term, and a bulk viscosity as second addend; S
represents a momentum transport tensor with components S[ij] = ∂v[i]

∂x[j]
+ ∂v[j]

∂x[i]
. The

constant of proportionality is a function of the number of dimensions d considered
and the smoothing kernel. Provided we use a cubic spline function( 3.11 ) we
can show that the effective kinematic viscosity in the SPH formalism assumes the
following form:



66 5. Evolution of circumstellar disks

ν = δvαcsh (5.1)

with δv an appropriate coefficient of proportionality dependent on the dimension
of the problem. In several works (as in Artymowicz and Lubow (1994), or Nelson
et al. (1998)) a special prescription is used for the viscosity, acting no more only
for approachin particles, but also for points which move out (with ~rij · ~vij > 0).
Hence, it tourns out that δv = 1

2(d+2) = 1
10 for 3D systems. On the other hand,

adopting the classical SPH approach with α switched on just for particles moving
in, Meglicki et al. (1993) showed that the kinematic viscosity decreases by a factor
1
2 (see also Meru and Bate, 2012, for a deep explanation). Using the 2.6, we obtain
an expression of the Shakura-Sunyaev viscosity coefficient:

αSS = δvα
h

H
(5.2)

To investigate 3-dimensional disks in equilibrium around a star, we adopted the
approach mentioned above and turned on the viscosity whatever ~rij · ~vij is positive
or negative, thus we have a kinematic effective viscosity of the form ν = 1

10αSSH.
This peculiar modification of the SPH viscosity formalism provides a more realistic
prediction of the effect given by a kinematic viscosity since it acts under compressions
or under gas expansions, but is valid as far as we don’t deal with strong velocity
gradients, i.e. shock waves for instance. Indeed, the classical Morris and Monaghan
(1997) amplification law (3.24) would generate high dissipative forces, expected only
for approaching particles. Nevertheless, circumstellar disks, in perfect equilibrium
or in a perturbed state, are not expected to undergo such huge compressions to let
strong shock waves arise.Thus, we would not need the Morris-Monaghan terms to
amplify α. Lodato and Price (2010), for example, in investigating the evolutions
of warps in thin disks around binary stars, used a similar prescriprion for the SPH
viscosity by turning off the Morris-Monaghan term and keeping a constant low value
of α << 1, active for both compressions and expansions. Typical values used for the
viscosity coefficient are 0.05÷ 0.1 , we use α = 0.1 in our models.

5.2 General disk setup and dissipation timescales

Here we show some test related to the long-term viscous evolution of gaseous disks
in a radially isothermal equilibrium around one star. In order to build disks in
equilibrium, we must set a thermo-kinetic configuration such as the dynamic and the
pressure of ther gas keep the disk stable under gravitational perturbations. Several
numerical works (see for example Mayer et al., 2002, Boss, 1998, 2003) worked
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out some extimation of the gravitational collapse timescales in a protoplanetary
disk, being of the same order of its dynamical time. They have showns that, un-
der certain conditions, matter can undergo instabilities and eventually condense
forming clumps in 103 ÷104 yr, far less than the typical viscous timescales ( 2.7
). The equilibrium condition for a disk is given by the well-known Toomre’s criterium:

Q = csΩe

πGΣ > Q′ (5.3)

where Ωe represents the epicyclic frequency, approximatively eqivalent to Ωk for
keplerian disks (see Binney and Tremaine, 1987, Toomre, 1964, for a detailed
explanation). The Toomre’s factor is a general coefficient which quantifies the
predominance of the thermal and dynamical actions over the gravity: the more the
gravitational collapse timescale, the more the Q factor. Several numerical investiga-
tions showed that the treshold Q’ for the stability under gravitational collapse is
about 1.5 for thin and light disks (with mass far less than the mass of the central star).
In case of massive radially isothermal disks (with a disk to mass ratio ≈ 0.1÷1) it has
been found, for Q close to 1.5, a collapse and consequent formation of spirals which
rapidly lead to destruction of the whole disk and a satisfying equilibrium condition
with Q ≥ 2.2 (see Pickett et al., 1998, 2000). We tested the secular dissipation of
3D SPH models of disks with Md = 0.01M� around 1M� star and, as discussed in
paraghaph 2.2, we set up the gas particles in a cylindrical axisymmetric distribution
(r, θ, z), such that the disk midplane lies in the (X,Y) plane, with the star placed at
the origin. As illustrated by the equation 2.4, we adopted the Hayashi’s fitted profile,
typical of the Minimul Solar Mass Nebula, i.e. build the gas distribution according
to the surface density Σ ∝ r−3/2. This means that SPH particles have been placed,
with a montecarlo approach, according to the following number density:

n(r, θ, z) ∝ ρ(r, θ, z) ∝ Σ(r)
H

exp
(
− z2

2H2

)
∝ r−39/14 exp

(
− z2

2H2

)

Starting from the same basic configuration, we built tree different model of disks
(hereafter we will refer to them as D100, D200, D300) by choosing different internal
and external cut-off radius rint and rdisk, with a constant ratio rint

rdisk
= 0.1. So,

for the tree models we choosed respectively rint = 10AU , rint = 20AU . Figure
5.1(panel a) shows the initial configuration of the D100 disk , projected along the
midplane. Figures 5.2 and 5.3 refer to the simulations D200 and D300.
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Figure 5.1. Run D100. Colour surface gas density map Σ projected on the midplane,
evolution sequence from the initial conditions (panel a) to 6× 105yr (panel e). N = 104.
Units: 100 AU. Density map units = 885 g · cm−2.
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Figure 5.2. Run D200. Colour surface gas density map Σ projected on the midplane,
evolution sequence from the initial conditions (panel a) to 6× 105yr (panel e). N = 104.
Units: 100 AU. Density map units = 885 g · cm−2.
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Figure 5.3. Run D300. Colour surface gas density map Σ projected on the midplane,
evolution sequence from the initial conditions (panel a) to 6× 105yr (panel e). N = 104.
Units: 100 AU. Density map units = 885 g · cm−2.
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Figure 5.4. Expected ratios H
h in function of r, for the three models of disks. D100 (red

line), D200(green line), D300(blue line). Ratios below 1 are barely vertically resolved.

For each configuration, a sink radius for the central star was set: rsink = rint.
For all the disks, the temperature has the following radial profile :

T = T0

(
r

r0

)−q
(5.4)

with q = −3/7, r0 = 10 AU and T0 = 100K calibrated to guarantee Q >> 1.5. We
used, for each disk, a number of 104 particles. This choice, despite doesn’t allow us
to investigate in details on the internal structure of the disks, constitutes a sufficient
approach to understand the global evolution of the system in terms of accretion rate,
and it is usually a sufficient quantity to investigate on the equilibrium of such systems
around stars. It can be shown that ( see Lodato and Pringle (2007) and Lodato
and Price (2010)) disks with a scale heigth to smoothing length ratio H/h ≥ 1.7 are
sufficiently resolved in 3 dimensions. Our disks, as shown in figure 5.4, have expected
ratio even equal to unit, which means that they are barely resolved in the vertical
direction. D100, D200 and D300 are expected to evolve with different timescales, as
the kinematic viscosity, and thus αSS , are functions of the scale heigth and the speed
of sound. According to the simple schematization discussed in 2.2, equation 2.7 gives,
we can evaluate, for our models, the typical viscous timescales which are constrained
by the values in correspondence to the internal and external disk radii. Using an SPH
artificial viscosity α = 0.1, for D100 we have τν ∈ [9.2× 104, 1.8× 106]yr. For the
other two models D200 and D300, we have respectively τν ∈ [2× 105yr, 3.8× 106yr]
and τν ∈ [3.2× 105, 6.1× 106yr] .
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Figure 5.5. Residual percentage of disk mass (with respect to the initial value) in function
of time, for models D100 (red line), D200(green line), D300(blue line).

One of the most suitable parameter to quantify the viscous evolution of disks is
given by the inward flux of matter. Thus, the disk mass captured by the star during
the evolution is a relevant quantity. We let evolve the systems for at least 2 · 106

yr; the Figure 5.5 shows the rate % of the disk mass which still revolves around the
star. As it was expected, larger disks evolve slower and the central star accretes less
mass and, after the first Myr, only the smallest disk has lost a considerable quantity
of mass, far more than 50%.

The viscous evolution of disks is done in a simple way and the viscosity should
be taken

In recent works on hydrodynamical protoplaentary disks, the isothermal profile
has been modelled according to the 5.4 but with a different q = 1.5 (Lodato and
Pringle, 2007, Martin et al., 2014, Rosotti et al., 2014, Lubow and Martin, 2016).
At the base of such choice there are just numerical purposes, it’s straightforward
to show that, with a profile T ∝ r−3/2, H becames proportional to the smoothing
length h ∝ r3/4. Hence the resolution factor H/h, together with αSS turn to be
constant all over the disk.
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Figure 5.6. Disk mass accreted onto the star(with respect to the initial value) in function
of time, for the same three models, with the modify isothermal profile, such as cs ∝ r−3/4

(thick lines). Comparison with the original disks with cs ∝ r−3/14(thin lines). Same
color corresponds to the same radius Rdisk. D100 (red line), D200(green line), D300(blue
line).

Despite the idea to have a univocal definition of αss and an homogeneous
resolution for a disk is fascinating, it may result unrealistic, for several reasons.
Firstly, both the observations and the classical modellizations, as discussed in the
chapter 2, suggest an isothermal profile with q close to 0.5 rather than 1.5, and a
mere motivation based on numerical convenience sounds a poor argument. Secondly,
αSS should be rather than constant because the efficiency and the mechanism of
the turbulence phenomena depend both on several environment conditions which
may vary along r. Thirdly, but not less important, the different slope in the thermal
profile may influence substantially the disk evolution, i.e. its survival timescale,
a crucial parameter which can establish whether a proto-planet, once it has been
formed by means of the slow-process of core accretion, is still embedded in a living
disk and thus may capture gas. Figure 5.6 shows the rate % of disk mass accreted
into the central star, referred to the same three models presented above, but with
a slight modification in the thermal profile. We indeed set the temperature law
as T ∝ r−3/2. The graph shows a different evolution with respect to the previous
disks(thick lines), and a weaker accretion: the central star capture matter at shorter
rates.
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5.3 Disks perturbed by passing-by stars

As mentioned in the chapter 2, one of the most interesting mechanics of evolution of
protoplanetary disks is due to the gravitational perturbation induced by other stars.
If the star-disk system is embedded in a cluster, it may undergo large perturbations,
as far as the other stars approach with sufficiently short distances. Despite a semi-
analytical treatment of the disks is the dominant approach in the literature, a first
full 3D hydrodynamical investigation on such process can be found in the work
of Rosotti et al. (2014). Here, the dynamical evolution of 100 stars, 10 of which
surrounded by a gaseous disk, was coupled with the gas hydrodynamics, in an hybrid
SPH+direct-Nbody framework.

An important application for our code is addressed to face such problem, starting
from a simple parametric approach. Following the model mentioned in the previous
section, our code aims at investigating a simple model composed by a star plus a
circumstellar gaseous disk in equilibrium against Jeans instabilities ( i.e. Q >> 1.5).
Such system is enriched by a second passing-by star(hereafter indicated as S2) which
perturbs the equilibrium of the system and, as it would be expected, may accelerate
the disk dissipation processes by enhancing the rate of flux of matter towards the
first star (hereafter S1). A vicious approximation, necessary for our model, is applied
to S2: the second star star doesn’t emit radiation, and the thermodynamics of the
gas is influenced just by the first star, following the standard isothermal law 5.4. For
our purposes, we have built a basic starting condition, which mainly consist in a
star S1 with mass M1 = 1M� , and the same disk D100 illustrated in the previous
section. The disk, with 0.01M� , thus revolves in a keplerian equilibrium and starts
its secular dissipative evolution. After an initial evolution of 2000÷ 3000yr, S1 is
approached by a second star S2, with mass M2 = M1, with an impact parameter
and an initial velocity (approximately at infinite), parametrized respectively as bs
and v∞ ≈ v0. The initial conditions for the system have been set placing the two
stars with a mutual distance ~r12(t = 0) = (bs, d, 0), with d >> rdisk and a relative
velocity ~v12(t = 0) = (−v0, 0, 0), the trajectories of S2 and S1 are hence parallel to
the disk midplane. Star S2 has a sink radius of 5 AU, equal to its softening radius.
Our investigation consisted peculiarly in studying the intensity of the dynamical
perturbations undergone by S1, and the effects on the accretion processes, for
different scenarios, obtained modulating bs and v0. Generally we found that, with
the same value of v0, the strength of the perturbation is influenced by the impact
parameter. Figure 5.7 illustrates the accretion of the disk mass onto the two stars in
function of time, by analogy with the ratios found for isolated disks in the previous
section, at fixed v0 = −1.5km · s−1, for several values of bs, ranging from 150 AU to
300 AU.
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Figure 5.7. Disk mass rate % accreted onto the star S1 ( top panel) and S2(bottom panel),
after a close encounter with 2. Different curves represent different models with different
impact parameters. v0 = −1.5 km s−1 = cost. red curve: (bs = 150AU); green curve:
(bs = 200AU); blue curve (bs = 250AU); orange curve (bs = 300AU). The black line
(panel a) represents the disk evolution in an isolated system, without any perturbation.
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Figure 5.8. Fly-by sequence, related to the FB300 (parameters bs = 300AU, v0 =
−1.5kms−1). S2(green dot) approaches S1. Panels from (a) to (f) show the sequence of
stars approach, while panels from (g) to (l) show an unphysical phenomenon of explosion:
bad shock wave capturing leads to numerical errors. Units for x and y axes = 100 AU.
Units for the Density map = 885 g · cm−2.

As the graphs show, the gravitational perturbations given by the second star
cause an increasing of the flux of matter on S1, determining a strong discontinuity in
the accretion mass curves. The less bs, the stronger the perturbation, the stronger is
the jump. As it was expected, closer fly-bys causes stronger perturbations, and the
inward accretion of matter has a discontinuity during the fly-by time. The rate of
inward accretion is restored after the fly-by, as the S2 goes far away from S1. Figure
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5.8, related to the run performed with bs = 300AU, v0 = −1.5kms−1, shows a fly-by
sequence, starting from a phase in which the disk is in equilibrium. The density map
is centered in the coordinates of S1, projected on the X,Y plane. As S2 approaches
S1 whithin a distance of the order of rdisk, the protoplanetary disk is warped and,
after the fly-by, the external layers of gas are expelled outwards and, as a result,
the disk is been truncated. During a later phase, the gas expelled falls down again
towards S1. Then, as can be seen in the second half of panels of figure 5.8, as the gas
keeps on falling down, strong increasing of density arises, followed by an umphysical
explosion which ejects material from the inner layers of the disk and breaks its’
symmetry. As remarked above, the general treatement of the disk viscosity implies
the use of a constant and low value for α. Furthermore, since the Morris-Monaghan
scheme ( 3.24 ) is switched off, there is a lack of a suitable treatement of the shock
waves during strong compressions. The latter circumstance, usually never happen
during the evolution of a disk, provided that the fluctuations of its density field are
low. Such condition could be missed during very close star interactions: the strong
dynamical perturbations generated by the passing by star may change abruptly the
dynamical equilibrium of the disk, letting layers of matter to merge and leading to
strong shock phenomena. In shock waves are not treated properly, several errors
could arise, causing a bad extimation of the particles positions and of the velocity
field. We need a method to use the coefficient α only when compression occurs, as
the classical SPH prescription states, together with the α-disk formalism. For these
purposes, in our algorithm we adopted such hybrid scheme for the artificial viscosity:

Πij =


−αc̄µij + 2αµ2

ij

ρ̄ij
, if ~vij · ~rij < 0

−αmin c̄µij + 2αmin µ2
ij

ρ̄ij
if ~vij · ~rij > 0

(5.5)

The viscosity pressure term now is identical to the 3.21 when two particles
approach, the coefficient α is then updated with the usual methods described in
section 3.3.2. Thus, even in a disk, when compressions occur, the magnitude of
the viscosity increases and shock waves may be captured, while α falls down to
the minimum αmin ( see the 3.24 ) in case the strength of the velocity divergence
is low. On the other hand, when we have a positive value of ~vij · ~rij , we use the
Shakura-Sunyaev prescription and turn on the viscosity just setting a constant value
of α = αmin. As a result, the gas behaves like an α-disk in low perturbed states,
with a low viscosity coefficient active both in compression and in dilatation regymes,
while it increase it’s viscosity just in case a strong merging of particles occurs.
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Figure 5.9. Fly-by sequence, related to the new simulation FB300 with Morris-Monaghan
scheme included for the viscosity. S2(green dot) approaches S1(blue dot). Panels from
(a) to (c) show the fly-by, while panels from (d) to (f) show the new disk configuration
after the fly-by and during the gas infalling (in the same time lapse as the sequence
(g)...(l) of figure 5.8. Units for x and y axis: 100 AU. Density map units = 885 g · cm−2.
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Figure 5.10. Mass accretion in Simulation FB300. Comparison between the two cases of
pure α-disk (green line) and hybrid α-disk with artificial viscosity for shock capturing is
included (red line).
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Figure 5.11. Gaseous disk in run FB300 with viscosity correction scheme: azimuthally
average relative velocity divergence |~∇·~v||~v| in function of the radial distance from the star
S1. Black dotted curve represents the initial profile. The red full line refers to t= 3000
yr, during the fly-by. Green dashed curve represents the average profile at t=7500 yr,
after that the two stars are not close any more ( i.e. |~r| >> bs ).

We restarted the test FB300 adopting the new scheme, results are illustrated
in figure 5.9 and 5.10. The shock waves now are threated in a proper way and
numerical error due to excessive particle overlaps are prevented, as can be seen by
the frames related to the same time lapses as the previous simulation. No occasional
explosions occur and,after the fly-by, the infalling gas induces non-axisymmetric
warps to the outer layers of the disk. Figure 5.11 shows a radial profile for the disk
velocity gradient, averaged azimuthally with respect to the radial distance from
the central star S1. From the graph we can understand that the most important
contribution given by the SPH artificial viscosity for the shock waves treatement,
arises during the lapse of fly-by (t≈ 3000yr). On the other hand, while at the
beginning of the simulations, when the disk is still in an umperturbed equilibrium,
and at ≈ 7500yr, after the fly-by when the star S2 is far away from S1 (i.e the
mutual distance |~r| >> bs), |

~∇·~v|
|~v| assumes low values.

The Figure 5.12, in the same way as 5.10 made for a single run, shows the mass
ratio resulted from the four FB150, FB200, FB250, FB300 made with the new α
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prescription. The results are compared with the previous curves in graph 5.7 (panel
a). As it can be seen, the less the bs, the stronger is the different made by the shock
waves, and the more prominent is the role of the Morris-Monaghan prescription for
a variable α.
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Figure 5.12. Accretion mass ratios to the star S1. General comparison between old runs
with simple alpha-disk model(dashed lines), and new runs with hybrid prescriptions for
the artificial viscosity(dotted line). FB150(red curves), FB200(green curves), FB250(blue
curves), FB300(orange curves).
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Chapter 6

Conclusions and remarks for
the future.

The investigation of protoplanetary disks in complex contexts as open clusters
represent a very modern outer reach for the planetology. Understanding the role of
complex multi star-systems for the evolution of primordial gaseous disks may give
some important answers for the birth of our Solar System, too.

The investigation of such problems involves different systems, with different
time-scales, giving rise to several numerical issues.

We have so far developed an SPH-tree based Algorithm with the aim of treating
complex system, involving self-gravitating gas and coupling it with an ensemble of
ballistic objects. We have tested and used the Code, provided with a set of numerical
instruments to integrate the Eulerian Equation of a perfect fluid in a conservative
manner. We have investigated the modern problem of close encounters between stars
in a complex environment involving protoplanetary disks. For very close encounters
(with impact parameter of the order of the disk radius) we have realized that the
standard α-disk prescription, introduced by Shakura and Sunyaev in 1973 to model
the secular evolution of a protoplanetary disk in a pseudo-equilibrium state around
one star, fails because it cannot handle properly the shock waves, and thus needs to
be completed with some other suitable schemes.

So far, this work represents the first step, aiming at investigating deeply the
complex evolutionary processes involved in the multi-star systems, involving the
treatment of the binary stars, too. We aim, for the future, at integrating the code
with several suitable instruments in order to treat the interaction between gas and
dust, and the propagation of the radiation through matter.
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Appendix A

Runge Kutta explicit 14-th
order method: technical details

Below we list the non-null elements of the arrays aβγ , bβ , cβ , introduced in section
3.4.3 ( see equations 3.37, 3.38, 3.39 ).

For the matrix a we have:

a(2,1) = 0.11111111111111111111
a(3,1) = -0.83333333333333333333
a(3,2) = 1.38888888888888888888
a(4,1) = 0.20833333333333333333
a(4,3) = 0.625
a(5,1) = 0.19333333333333333333
a(5,3) = 0.22
a(5,4) = -0.08
a(6,1) = 0.1
a(6,4) = 0.4
a(6,5) = 0.5
a(7,1) = 0.10348456163667977667
a(7,4) = 0.122068887306407222589
a(7,5) = 0.48257449033124662247
a(7,6) = -0.03814096000156069997
a(8,1) = 0.12438052665409441288
a(8,5) = 0.226120282197584301422
a(8,6) = 0.01378858876180808806
a(8,7) = -0.067221013399668444974
a(9,1) = 0.09369190656596738155

a(9,6) = -0.006134068434505109872
a(9,7) = 0.216019825625503063708
a(9,8) = 0.423695063515761937337
a(10,1) = 0.083847981240905266461
a(10,6) = -0.011794936710097381431
a(10,7) = -0.247299020568812652339
a(10,8) = 0.0978080858367729012259
a(10,9) = 0.2175906892434206313600
a(11,1) = 0.06152553597694282279
a(11,6) =0.00592232780324503308
a(11,7) = 0.470326159963841112217
a(11,8) = 0.299688863848679000853
a(11,9) =-0.247656877593994914689
a(11,10) =0.110895029771437682893
a(12,1) =0.0419700073362782579861
a(12,6) =-0.00317987696266205093
a(12,7) =0.8063977149061920772608
a(12,8) =0.0975983126412388979093
a(12,9) =0.7785755781583989090275
a(12,10) =0.204890423831599428189
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a(12,11) =-1.56261579627468188307
a(13,1) =0.0437726782233730163574
a(13,9) = 0.006243650275201952087
a(13,10) =0.200043097109577314994
a(13,11) =-0.00805328367804983036
a(13,12) =0.021151752806739652191
a(14,1) =0.0283499250363514563095
a(14,9) =0.0024916320485581740753
a(14,10) =0.023013878785459314963
a(14,11) =-0.00322155956692977098
a(14,12) =0.009884425494476646689
a(14,13) =-0.02130107713288873513
a(15,1) =.34351189429024300104943
a(15,9) = 0.210451912023627385609
a(15,10) =1.034274520572304119364
a(15,11) =0.006003036458644224870
a(15,12) =0.855938125099619537578
a(15,13) =-0.97723500503676681087
a(15,14) =-0.66002698047929469461
a(16,1) =-0.014357400167216806953
a(16,9) =-0.036625327004903997029
a(16,10) =0.035025497563621368197
a(16,11) =0.036094601636211350893
a(16,12) =-0.02652199675536811063
a(16,13) =0.044569901130569811963
a(16,14) =0.124343093331358243286
a(16,15) =0.004138296932394806944
a(17,1) =0.3560324044251202909756
a(17,9) =-0.450192758947562595966
a(17,10) =0.430527907083710898626
a(17,11) =0.511973029011022237668
a(17,12) =0.908303638886404260390
a(17,13) =-1.23921093371933931757
a(17,14) =-0.64904866167176146514
a(17,15) =0.251708904586819292210
a(17,16) =0.779906470345586398810
a(18,1) =0.0130935687406513066406
a(18,13) =-0.00009320530679851139

a(18,14) =0.050537433426229935964
a(18,15) =0.000000804470341944487
a(18,16) =0.000591726029494171190
a(18,17) =-0.00000040161472215455
a(19,1) =0.0207926484466053012541
a(19,13) =0.000582695918800085915
a(19,14) =-0.00801700732358815939
a(19,15) =0.000004038476438471369
a(19,16) =0.085460999805550614422
a(19,17) =-0.00000204486480935804
a(19,18) =0.105328578824431893399
a(20,1) =1.4015344979573602141544
a(20,13) =-0.23025200098422126161
a(20,14) =-7.21106840466912905659
a(20,15) =0.003729015606948363352
a(20,16) =-4.71415495727125020678
a(20,17) =-0.00176367657545349242
a(20,18) =7.641305480386987655630
a(20,19) =3.506020436597518349898
a(21,1)=11.95146506941206867993
a(21,13)=7.79480932108175968783
a(21,14)=-56.450139386732579252
a(21,15)=0.09123763069306449013
a(21,16)=-12.733627992543488620
a(21,17)=-0.0396895921904719712
a(21,18)=54.4392141883570886996
a(21,19)=-3.6441163792156923684
a(21,20)=-0.8045032499105099108
a(22,1)=-148.809426507100488427
a(22,13)=-91.729527829125648435
a(22,14)=707.656144971598359834
a(22,15)=-1.1056361185748244090
a(22,16)=176.134591883811372587
a(22,17)=0.49138482421488066226
a(22,18)=-684.27800044981494435
a(22,19)=27.9910604998398258984
a(22,20)=13.1939710030282333443
a(22,21)=1.25128781283980445450
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a(23,1)=-9.67307946948196763644
a(23,13)=-4.4699015085850553144
a(23,14)=45.5127128690952681968
a(23,15)=-0.0713085086183826912
a(23,16)=11.2273614068412741582
a(23,17)=0.12624437671762272451
a(23,18)=-43.543933954948331360
a(23,19)=0.78717430754305897839
a(23,20)=0.53226469674468421566
a(23,21)=0.42242273399632532601
a(23,22)=0.08591312495030671073
a(24,1)=-10.0664032447054702403
a(24,9)=-0.03662532700490399702
a(24,10)=0.03502549756362136819
a(24,11)=0.03609460163621135089
a(24,12)=-0.0265219967553681106
a(24,13)=-6.2708897218146414359
a(24,14)=48.2079237442562989090
a(24,15)=-0.0694471689136165640
a(24,16)=12.6810690204850295698
a(24,17)=0.01196711689683237548
a(24,18)=-46.724976499248240800
a(24,19)=1.33029613326626711314
a(24,20)=1.00766787503398298353
a(24,21)=0.02095120519336650916
a(24,22)=0.02101347063312641773
a(24,23)=0.00952196014417121794
a(25,1)=-409.478081677743708772
a(25,9)=0.210451912023627385609
a(25,10)=1.03427452057230411936
a(25,11)=0.00600303645864422487
a(25,12)=0.85593812509961953757
a(25,13)=-250.51699854744786049
a(25,14)=1946.42466652388427766
a(25,15)=-3.0450388210231036550
a(25,16)=490.626379528281713521
a(25,17)=1.56647589531270907115
a(25,18)=-1881.9742899401117336

a(25,19)=75.2592224724847175278
a(25,20)=34.5734356980331067622
a(25,21)=3.21147679440968961435
a(25,22)=-0.4604080417384143913
a(25,23)=-0.0870718339841810522
a(25,24)=-7.3935181415830306756
a(26,1)=3.433474758535508789210
a(26,9)=0.002491632048558174075
a(26,10)=0.02301387878545931496
a(26,11)=-0.0032215595669297709
a(26,12)=0.00988442549447664668
a(26,13)=2.16252799377922507788
a(26,14)=-16.269986454645742132
a(26,15)=-0.1285345021205245528
a(26,16)=-8.9891504266650425308
a(26,17)=-0.0034859536323202533
a(26,18)=15.7936194113339807536
a(26,19)=-0.5744033309140950656
a(26,20)=-0.3456020390213932966
a(26,21)=-0.0066224149020658509
a(26,22)=-0.0077778812924220416
a(26,23)=-0.0035608419240227491
a(26,24)=4.79282506449930799649
a(26,25)=0.15372546487306857784
a(27,1)=32.30385208719854423269
a(27,6)=-0.00317987696266205093
a(27,7)=0.806397714906192077260
a(27,8)=0.097598312641238897909
a(27,9)=0.778575578158398909027
a(27,10)=0.20489042383159942818
a(27,11)=-1.5626157962746818830
a(27,13)=16.3429891882310570648
a(27,14)=-154.54455529354362123
a(27,15)=1.56971088703334872692
a(27,16)=3.27685545087248131321
a(27,17)=-0.0503489245193653176
a(27,18)=153.321151858041665070
a(27,19)=7.17568186327720495846
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a(27,20)=-2.9403674867530048194
a(27,21)=-0.0665845946076803144
a(27,22)=-0.0462346054990843661
a(27,23)=-0.0204198733585679401
a(27,24)=-53.352310643873585051
a(27,25)=-1.3554871471507865497
a(27,26)=-1.5719627580123275188
a(28,1)=-16.6451467486341512872
a(28,6)=0.005922327803245033080
a(28,7)=0.4703261599638411122
a(28,8)=0.2996888638486790008
a(28,9)=-0.247656877593994914
a(28,10)=0.110895029771437682
a(28,12)=-0.4917190438462291470
a(28,13)=-11.474315442728949696
a(28,14)=80.2593166576230272541
a(28,15)=-0.384132303980042847
a(28,16)=7.28147667468107583471
a(28,17)=-0.1326993846122483795
a(28,18)=-81.079983252573072667
a(28,19)=-1.2503749283562063952
a(28,20)=2.59263594969543681023
a(28,21)=-0.3014402983464045398
a(28,22)=0.22138446078983233745
a(28,23)=0.08275772747718929319
a(28,24)=18.9960662040611520464
a(28,25)=0.26923194640963968562
a(28,26)=1.62674827447066537462
a(28,27)=0.49171904384622914707
a(29,1)=0.083847981240905266461
a(29,6)=-0.01179493671009738143
a(29,7)=-0.24729902056881265233
a(29,8)=0.097808085836772901225
a(29,9)=0.217590689243420631360
a(29,11)=0.13758560676332522486
a(29,12)=0.04398702297150466850
a(29,14)=-0.5137008137681933419
a(29,15)=0.82635569115131550864

a(29,16)=25.7018139719811832625
a(29,24)=-25.701813971981183262
a(29,25)=-0.8263556911513155086
a(29,26)=0.51370081376819334195
a(29,27)=-0.0439870229715046685
a(29,28)=-0.1375856067633252248
a(30,1)=0.124380526654094412881
a(30,5)=0.226120282197584301422
a(30,6)=0.013788588761808088060
a(30,7)=-0.06722101339966844497
a(30,10)=-0.8562389750854283547
a(30,11)=-1.9633752286685890892
a(30,12)=-0.2323328227241194012
a(30,14)=4.30660719086453349461
a(30,15)=-2.9272296324946548265
a(30,16)=-82.313166639785894445
a(30,24)=82.3131666397858944454
a(30,25)=2.92722963249465482659
a(30,26)=-4.3066071908645334946
a(30,27)=0.23233282272411940123
a(30,28)=1.96337522866858908928
a(30,29)=0.85623897508542835475
a(31,1)=0.103484561636679776672
a(31,4)=0.122068887306407222589
a(31,5)=0.482574490331246622475
a(31,6)=-0.03814096000156069997
a(31,8)=-0.55049952531080232413
a(31,10)=-0.7119158115851892278
a(31,11)=-0.5841296056715513404
a(31,14)=2.110463081258649321
a(31,15)=-0.08374947367395721
a(31,16)=5.100214990723209140
a(31,24)=-5.10021499072320914
a(31,25)=0.083749473673957213
a(31,26)=-2.11046308125864932
a(31,28)=0.584129605671551340
a(31,29)=0.711915811585189227
a(31,30)=0.550499525310802324
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a(32,1)=0.1933333333333333333
a(32,3)=0.22
a(32,4)=-0.08
a(32,7)=0.10999342558072470391
a(32,8)=-0.2542970480762701613
a(32,10)=0.865570777116694254
a(32,11)=3.324164491140930831
a(32,14)=-12.0102223315977933
a(32,15)=0.476601466242493239
a(32,16)=-29.0243011221036390
a(32,24)=29.02430112210363905
a(32,25)=-0.47660146624249323
a(32,26)=12.01022233159779338
a(32,28)=-3.324164491140930
a(32,29)=-0.865570777116694
a(32,30)=0.2542970480762701
a(32,31)=-0.109993425580724
a(33,1)=-0.8333333333333333
a(33,2)=1.38888888888888888
a(33,5)=-0.75
a(33,7)=-0.49252954371802630
a(33,31)=0.49252954371802630
a(33,32)=0.75
a(34,1)=0.111111111111111111
a(34,3)=-0.22222222222222222
a(34,33)=0.22222222222222222
a(35,1)=0.285835140388971558
a(35,2)=0.291666666666666666
a(35,3)=0.21875

a(35,5)=0.1640625
a(35,7)=0.218194354945556658
a(35,8)=0.180392898478697766
a(35,10)=0.20571383940484501
a(35,11)=0.24271579158177023
a(35,12)=0.24646578081362930
a(35,13)=0-3.449919407908908
a(35,14)=0.22887556216003608
a(35,15)=0.28329059970215141
a(35,16)=3.21085125837766640
a(35,17)=-0.2235387773648456
a(35,18)=-0.7071211572044190
a(35,19)=3.21123345150287080
a(35,20)=1.40954348309669766
a(35,21)=-0.1513620534437426
a(35,22)=0.37235057452701427
a(35,23)=0.25297874640636133
a(35,24)=-3.2108512583776664
a(35,25)=-0.2832905997021514
a(35,26)=-0.2288755621600360
a(35,27)=-0.2464657808136293
a(35,28)=-0.2427157915817702
a(35,29)=-0.2057138394048450
a(35,30)=-0.1803928984786977
a(35,31)=-0.2181943549455566
a(35,32)=-0.1640625
a(35,33)=-0.21875
a(35,34)=-0.2916666666666666

Non-null elements of the array b :

b(1) = 0.0178571428571428
b(2) = 0.005859375
b(3) = 0.01171875
b(5) = 0.017578125 b(7) = 0.0234375
b(8) = 0.029296875
b(10) = 0.03515625
b(11) = 0.041015625

b(12) = 0.046875
b(14) = 0.052734375
b(15) = 0.05859375
b(16) = 0.064453125
b(18) = 0.1053521135717530
b(19) = 0.170561346241752
b(20) = 0.2062293973293519
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b(21) = 0.2062293973293519
b(22) = 0.17056134624175218
b(23) = 0.10535211357175301
b(24) = -0.064453125
b(25) = -0.05859375
b(26) = -0.052734375
b(27) = -0.046875
b(28) = -0.041015625

b(29) = -0.03515625
b(30) = -0.029296875 b(31) = -0.0234375
b(32) = -0.017578125
b(33) = -0.01171875
b(34) = -0.005859375
b(35) = 0.0178571428571428

Non-null elements of the array c :

c(1) = 0
c(2) = 1/9
c(3) = 5/9
c(4) = 5/6
c(5) = 1/3
c(6) = 1
c(7) = 0.669986979272772921
c(8) = 0.297068384213818357
c(9) = 0.727272727272727273
c(10) = 0.140152799042188765
c(11) = 0.700701039770150738
c(12) = 0.363636363636363637
c(13) = 0.263157894736842106
c(14) = 0.0392172246650270860
c(15) = 0.812917502928376762
c(16) = 0.166666666666666667
c(17) = 0.9
c(18) = 0.064129925745196692

c(19) = 0.204149909283428849
c(20) = 0.395350391048760565
c(21) = 0.604649608951239434
c(22) = 0.795850090716571151
c(23) = 0.935870074254803308
c(24) = 0.166666666666666667
c(25) = 0.812917502928376762
c(26) = 0.039217224665027085
c(27) = 0.363636363636363636
c(28) = 0.700701039770150737
c(29) = 0.140152799042188765
c(30) = 0.297068384213818357
c(31) = 0.669986979272772921
c(32) = 1/3
c(33) = 5/9
c(34) = 1/9
c(35) = 1
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