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Abstract

This dissertation arises from a joint study with the Department of Food Safety and
Veterinary Public Health of the Istituto Superiore di Sanità. The aim is to investigate
and validate the existence of distinct strains of the scrapie disease taking into account
the availability of a priori benchmark partition formulated by researchers. Scrapie of
small ruminants is caused by prions, which are unconventional infectious agents of
proteinaceous nature a�ecting humans and animals. Due to the absence of nucleic
acids, which precludes direct analysis of strain variation by molecular methods,
the presence of di�erent sheep scrapie strains is usually investigated by bioassay
in laboratory rodents. Data are collected by an experimental study on scrapie
conducted at the Istituto Superiore di Sanità by experimental transmission of scrapie
isolates to bank voles.

We aim to discuss the validation of a given partition in a statistical classification
framework using a multi-step procedure. Firstly, we use unsupervised classification
to see how alternative clustering results match researchers’ understanding of the
heterogeneity of the isolates. We discuss whether and how clustering results can be
eventually exploited to extend the preliminary partition elicited by researchers. Then
we motivate the subsequent partition validation based on the predictive performance
of several supervised classifiers.

Our data-driven approach contains two main methodological original contribu-
tions. We advocate the use of partition validation measures to investigate a given
benchmark partition: firstly we discuss the issue of how the data can be used to
evaluate a preliminary benchmark partition and eventually modify it with statistical
results to find a conclusive partition that could be used as a “gold standard” in future
studies. Moreover, collected data have a multilevel structure and for each lower-level
unit, mixed-type data are available. Each step in the procedure is then adapted
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to deal with multilevel mixed-type data. We extend distance-based clustering algo-
rithms to deal with multilevel mixed-type data. Whereas in supervised classification
we propose a two-step approach to classify the higher-level units starting from the
lower-level observations. In this framework, we also need to define an ad-hoc cross
validation algorithm.
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Introduction

This work analyzes data from an experimental study on prion diseases, focusing
on the scrapie of small ruminants. Prions are unconventional infectious agents of
proteinaceous nature a�ecting humans and animals. They lack nucleic acids, then
direct analysis of strain variation by molecular methods is not possible. The studies
on these diseases use data from the phenotypes observed by bioassay in laboratory
rodents.

Scrapie is historically known to occur as di�erent strains (Bruce et al. 2002), a
fact which has renewed interest due to the zoonotic risk posed by animal prions
(Cassard et al. 2014).

The scrapie strain characterization is routinely performed evaluating the pheno-
type of each rodent, and taking the average of collected variables from all animals
inoculated with the same sheep scrapie disease. A large experimental study on
strain characterization in bank vole has been carried out at Istituto Superiore di
Sanità (Italian National Institute of Health). The resulting experimental data can be
conceived as multilevel data with multiple bank voles (lower-level units) inoculated
with the same sheep scrapie (higher-level unit). Each lower-level unit presents
mixed-type because both continuous (survival time) and ordinal (vacuolation scores
of brain areas) variables are assessed for each experimental animal.

We address the general scientific issue of investigating how the available experi-
mental data can be used to evaluate the appropriateness of a partition, identifying
strains or groups of strains. This is done, taking into account a possible preliminary
benchmark partition proposed by researchers. Our aim is to validate a final, possibly
finer, partition.

The identification of natural partitions underlying available data is usually
achieved by means of unsupervised classification. It is common practice to employ
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a variety of di�erent clustering techniques and use visual inspection and prior
knowledge to select what is considered the most appropriate results (Handl et al.
2005, Hennig 2015). Several clustering validation techniques are also used (see
Handl et al. (2005) for a review) and we usually distinguish between internal and
external validation measures (Halkidi et al. 2001). Internal measures are based on
di�erent notions of clustering quality, as in intra-cluster homogeneity or separation
between clusters (Liu et al. 2010), but also on predictive power as proposed for
example in Yeung et al. (2001) Tibshirani & Walther (2005) and in Volkovich et al.
(2009). External measures take a known set of class labels (the “gold standard”)
and compare the cluster results with the known labels.

In our study, the “gold standard” is not known and the aim is to define it with
a statistically well-grounded partition which may account for some preliminary
knowledge elicited by researchers in terms of a prior partition. This partition will
be shortened hereafter with RP. Statistical analyses of the experimental data are
performed to question the a priori partition given by the researchers that could
undergo an extension or a reformulation.

Hence, we propose a sequential procedure based on both unsupervised and
supervised classification. The unsupervised classification is used to have alternative
clustering results to compare with RP in order to confirm or extend this partition.
Once the partition is refined, a final validation step can be based on the predictive
performance of supervised classification. We deviate somehow from the mainstream
of cluster validation techniques proposed in the literature, which often use a distance-
based index such as the silhouette index. We believe that a solid approach should rely
also on measuring the predictive performance via flexible supervised classification,
possibly combining multiple classifiers. In our experimental context, a su�ciently
good predictive performance, based on probability statements, could be better
interpreted by researchers and enable researchers to understand to what extent new
experimental data could be correctly identified within the validated group structure
so that the new partition could be used in future studies as the “gold standard”.

The experimental data have a multilevel structure with mixed-type data measured
for the lower-level units, so the statistical methods are extended to deal with this
challenging data structure.

The analysis of grouped data is often approached by using probabilistic mixed-
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e�ects models (Goldstein 2011). Model-based clustering for this type of data relies on
finite mixture modeling as pioneered in Vermunt & Magidson (2005), Vermunt (2008)
and more recently extended in Calò et al. (2014). However, with our mixed-type
data, we have decided to avoid the use of probabilistic assumptions on not yet well
understood ordinal data for which the use of finite mixture models would require the
distributional elicitation of suitable mixture components. Indeed, the model-based
approaches for clustering mixed-type data consider each group of variable’s type
separately and then a model for the joint distribution of the continuous latent
variables is assumed (Everitt & Merette 1990, McParland et al. 2014, Ranalli &
Rocci 2017, Carmona et al. 2016). Hence, we stick to distance-based methods.

Distance-based methods for clustering repeated measures are proposed in Yeung
et al. (2003) to deal with gene-expression data. They propose to employ hierarchical
clustering algorithms with an ad-hoc adjustment named FITSS (forcing into the
same subtrees) to account for the hierarchical nature of the data. Starting from
this work, we extend and refine distance-based methods for clustering hierarchical
mixed-type data. In our context, there is a relevant heterogeneity within observations
belonging to the same higher-level unit, di�erently from the typical case in Yeung
et al. (2003) where repeated measurements are considered. The substantial impact
of such heterogeneity in our hierarchical data can undermine the stability of the
results of a specific cluster analysis relying on a particular choice of distance and
algorithm. In order to account for this aspect, we propose a consensus clustering
of hierarchical algorithms based on alternative sensible choices of distances with
FITSS adjustment. We also discuss the results obtained using partitioning strategies
relying on a modified Partition Around Medoids (PAM) algorithm (Kaufman &
Rousseeuw 2009).

We also propose to measure the distance between two higher-level units with the
resolution of the optimal transport plan problem, such as a Wasserstein distance
between two higher-level units is defined and classical distance-based algorithms can
be used to perform the cluster analysis.

Another statistical challenge for our data analysis is related to the supervised
classification methods for hierarchical data. This problem has been addressed in
Yamal et al. (2011) and Yamal et al. (2015). They identify three possible approaches
to the problem: (i) extract higher-level features from the lower-level data, (ii) use a
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statistical model that accounts for the hierarchical data structure, and (iii) classify
at the lower-level and use an ad hoc approach to classify at the higher-level. We
provide a contribution within the third approach using a model based combination of
classifiers (Kakourou et al. 2014) on the average of lower-level predicted probabilities,
to enhance the performance of the supervised classification and have a unique
class label prediction for higher-level units. Comparative evaluation of supervised
classification is done in order to find the best classifier and hence validate the
group structure. In this process, overfitting issues may arise hence we need a cross-
validation (CV) strategy to obtain unbiased estimates of the classifiers performance.
In this framework, we propose a suitably modified double cross-validation (Mertens
et al. 2006) for higher-level units which takes into account the unbalanced nature of
the data.

The thesis is organized as follows. In Chapter 1 we discuss the two di�erent
approaches to deal with partitions: unsupervised and supervised classification with
attention to the validation problem. We also discuss the Istituto Superiore di
Sanità motivating example. We explicit our proposal to deal with the scientific
issue proposed by experimental researchers and we motivate it with a simulated
example. Chapter 2 starts with the description of the dataset and the multilevel
mixed-type data challenge. The central part is devoted to a review of the current
methodologies for the multilevel data and mixed-type data separately. We also
address some of the dataset’s limits. Clustering methods, both for multilevel data
and mixed-type data, are reviewed in Chapter 3 and our distance-based method
proposals are presented. In Chapter 4 we firstly review the current methods to
perform supervised classification with multilevel data. Secondly, we present a two-
step approach to performing classification and within this framework we propose a
model that simultaneously combines classifiers and aggregates the lower-level units
using the average predictive probabilities. At the end, a double cross-validation
algorithm is proposed for multilevel data. Finally, results on the Scrapie dataset and
final remarks are discussed in Chapter 5.



Chapter 1

A di�erent perspective to deal
with partitions

1.1 Learning from data with group structures

The recognition of patterns and regularities in data is a mainstream topic in statistical
literature. Pattern recognition, machine learning or data mining are di�erent fields
dealing with this problem. Following the distinction described by Bishop (2006)
pattern recognition has its origins in engineering, whereas machine learning grew
out of computer science. Duda et al. (2012), Friedman et al. (2009) and Bishop
(2006) are three of the most important books dealing with this problem and they
talk about “learning from the data”. Focusing on the problem of classification for
data with group structures, they distinguish when the learning process is trained
from labeled “training” data (supervised learning or classification), from the cases
where no labeled data are available and the aim is to discover previously unknown
patterns (unsupervised learning or classification).

In supervised classification, class labels are available for a set of data (the
training set) related to several variables called covariates or predictors. A supervised
algorithm analyzes the training data to learn an inferred function, which can be
used to classify new units in which a set of predictors is given, but the class label is
unknown.

Unsupervised classification, or cluster analysis, has a di�erent aim: the learning
algorithm is used to find unknown groups in data. Various algorithms are used to



1.2 Clustering validation techniques 2

cluster data and they di�er in the notion of what constitutes a cluster: in distance-
based methods, clusters are formed by units for which the relative distances are
smaller for units belonging to the same group than for units belonging to di�erent
groups; while in model-based methods, clusters are composed of units belonging most
likely to the same distribution. It is common practice to employ a variety of di�erent
clustering techniques and use visual inspection and prior knowledge to select what is
considered the most appropriate result, but as it was noted by Estivill-Castro (2002),
“clustering is in the eye of the beholder”. Hennig (2015) o�ers a philosophical point
of view about the “true clusters”, analyzing the problem of choosing and assessing
clustering methods and results. A critical point of his discussion is that what the
“true cluster” are, depends on the context and clustering aim. Therefore researchers
should specify what problem-specific “truth” they are interested in.

The existence of a rich variety of di�erent algorithms, both in unsupervised and
in supervised classification, highlights the need for an objective criterion to assess the
performance of di�erent methods. Validation techniques and indexes are available
to evaluate the alternative algorithms’ results. Jain & Dubes (1988) suggest “The
validation of clustering structures is the most di�cult and frustrating part of cluster
analysis. Without a strong e�ort in this direction, cluster analysis will remain a black
art accessible only to those true believers who have experience and great courage”.

1.2 Clustering validation techniques

Clustering techniques are used in the identification of group structures in data, but
alternative algorithms can lead to di�erent results. The clustering-validation tech-
niques have been widely developed in the literature and several reviews are available:
Handl et al. (2005) give a detailed review in post-genomic data analysis; Halkidi
et al. (2001) distinguish between internal and external validation measures whereas
Liu et al. (2010) focus on internal clustering validation measures. Brock et al. (2011)
provide an R package named clValid with the most popular validation indexes, and
more recently a new package, clusterCrit was developed by Desgraupes (2013a)
with a joint clustering validation techniques review provided by Desgraupes (2013b).
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1.2.1 Internal validation measures

Internal measures of cluster validity use only quantities and features related to
the dataset. Following Handl et al. (2005) we can distinguish six di�erent types
of internal measures. Three types are related to notions of clustering quality as
compactness, connectedness, and separation, while another type is based on the
combination of these notions. Other validation techniques are based on predictive
power/stability and compliance between partitioning and distance information.

Type I: Compactness. The measures of this type are based on the topological
concept of compactness: units of each cluster should be as close to each other
as possible. The most popular index is the intra-cluster variance and another
related index is the sum-of-squared errors minimum variance criterion (Halkidi &
Vazirgiannis 2001). Lower intra-cluster variance indicates better compactness. Also,
there are other indexes based on distance, such as maximum or average pairwise
distance, and maximum or average center-based distance. The variance based indexes
can be calculated only for quantitative data, while the indexes based on distance
can be adapted on other types of data (as categorical) with an appropriate choice of
the distance index.

Type II: Connectedness. The second type of internal validation technique is
based on the local concept of connectedness: data items should be on the same cluster
with their nearest neighbors. Ding & He (2004) introduce the K-nearest-neighbor
consistency concept requiring that for any data point in a cluster, its k-nearest
neighbors should also be in the same cluster. Handl et al. (2005) propose a synthetic
index called Connectivity defined using an indicator xi,nni(j) which is equal to 0
if the i-th observation and its j-th nearest-neighbor are in the same cluster of a
partition C and 1/j otherwise:

Conn(C ) =
Nÿ

i=1

Lÿ

j=1
xi,nni(j) (1.1)

this index varies from 0 to Œ, but it depends on the choice of L, the number of
nearest-neighbors to be considered.
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Type III: Separation. The third type of internal measure evaluates the degree
of separation between clusters. For example, an average of the distances between
cluster centroids or the minimum distance between data items belonging to di�erent
clusters can be used. Separation is measured by the between cluster sum of squares in
contrast with the within cluster sum of squares used for the compactness. Separation
indexes are mostly defined for quantitative data and are widely used for the number
of groups’ choice in the K-means algorithm.

Type IV: Combinations. These types of internal indexes simultaneously allow
for multiple concepts introduced above. Combinations of type one and type three
gives new indexes: the compactness improves with an increasing number of clusters,
while the separation is better suited for a lower number of clusters. The most
popular validation indexes are linear or non-linear combinations of the two measures
to validate clusters, balancing the two properties. A linear index is the SD-validity
index introduced by Halkidi et al. (2000) as a weighted average of the scattering of
clusters and total separation of clusters. The scattering, used for the compactness, is
calculated by the ratio of the clusters variance and variance of the dataset. The total
separation of clusters is based on the distance between cluster center points. This
index must be used only for quantitative data. Examples of non-linear combinations
are the Dunn Index (Dunn 1974), and the Silhouette Width (Rousseeuw 1987). The
Dunn Index measures the ratio between the smallest cluster distance and the largest
intra-cluster distance in a partition. Let Cm denote a cluster and dist(Ck, Cl) is the
minimal distance between pairs of data items i and j with i œ Ck and j œ Cl, while
diam(Cm) is the maximum intra-cluster distance within cluster Cm, the Dunn index
is defined as:

D(C) = min
CkœC

Q

amin
ClœC

dist(Ck, Cl)
max

CmœC
diam(C)

R

b . (1.2)

The Silhouette width index is an evaluation of how well a unit fits within its
cluster compared to the other clusters. Let a(j) be the average dissimilarity between
j and all objects in its cluster Cj – j and let d(j; C) be the average dissimilarity of j
to all objects in C, for a fixed C ”= Cj . Denote with b(j) the smallest distance d(j; C)
found among all clusters C ”= Cj . An evaluation of how well object j is classified in
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Cj or in the neighbor cluster C is given by the following silhouette width index:

s(j) = b(j) ≠ a(j)
max{a(j), b(j)} . (1.3)

s(j) assumes values into the interval [≠1; 1]. Observations with a value of s(j) close
to 1 are very well clustered, while a small value of s(j) means that the observation
can be assigned to two clusters, and observations with a negative s(j) are misplaced.
The silhouette index may help to select the number of clusters using the average
silhouette width s̃(K), which is the average of s(K) over all objects of any possible
clustering with K groups (Kaufman & Rousseeuw 2009).

Type V: Predictive power. These indexes are not related to cluster properties,
but use the ability of an algorithm to find the same groups even when the data are
perturbed. This ability is called predictive power and it is related to the stability
of an algorithm. These indexes are not external since they do not make use of a
class label but rely on the chosen clustering algorithm. The idea is re-sampling or
perturbing the original dataset and re-clustering these data. The consistency of
the corresponding results provides an estimate of the significance of the clusters
obtained from the original dataset.

Breckenridge (1989), Fridlyand & Dudoit (2001), Lange et al. (2004), Tibshirani
& Walther (2005) take this kind of approach: the data are repeatedly split into a
training and a test set (typically of equal sizes and with no overlap), and both sets
are clustered. The training set is then employed to derive a classifier to predict all
class labels for the test set. The cluster results on the test set are then compared
with the predicted class label of the classifier using a binary index of agreement.
We have to note that the classifier used for prediction has a significant impact
on the performance of this method. Lange et al. (2004) recommend the use of a
nearest-neighbor classifier for the single link, and of centroid-based classifiers for
algorithms such as k-means that assume spherically shaped clusters.

The stability of a clustering result can also be assessed by comparing the partitions
obtained from perturbed data (Bittner et al. 2000, Kerr & Churchill 2001, Li &
Wong 2001). For this purpose, a number of bootstrap datasets are generated from
the original data: a noise component is added to each data item using a simple error
model (Bittner et al. 2000) or more advanced methods such as ANOVA (Kerr &
Churchill 2001). The resulting datasets are subjected to a cluster analysis and the
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partitioning results of di�erent datasets are compared using external binary indexes.

Yeung et al. (2001) use the jackknife approach to validate clustering from gene
expression data, and define an index which they call “Figure of Merit”.

Type VI: Compliance between a partitioning and distance information.
Methods in this category are based on the cophenetic matrix C: a symmetric binary
matrix of size N ◊ N where N is the size of the dataset, the element C(i, j) is equal
to one, only if the unit i and the unit j have been assigned to the same cluster, while
for hierarchical clustering, C(i, j) represents the continuous value of the level within
the dendrogram in which the two data units i and j were first assigned in the same
cluster. The cophenetic matrix is compared to the original dissimilarity matrix with
a measure of correlation (Halkidi et al. 2001) like the Pearson or the Spearman rank
correlation.

1.2.2 External validation measures

External measures take a known set of class labels (the “gold standard”) and compare
the cluster results with the known labels to assess the degree of consensus between
the two partitions. Data mining literature provides a high number of indexes based
on the contingency table built between the true classes and the estimated one.

Given a set of n objects X = {X1, . . . , Xn}, suppose U = {u1, . . . , uR} and
V = {v1, . . . , vP } represent two di�erent partitions of X such that ui µ X, vj µ X

and
tR

i=1 ui = X =
tP

j=1 vj and ui fl uiÕ = ÿ = vj fl vjÕ for 1 Æ i ”= iÕ Æ R and
1 Æ j ”= jÕ Æ P . Suppose U is the clustering resulting partition and V the gold
standard partition, let a be the number of pairs of elements in the dataset that are
in the same subset in U and in the same subset in V ; b be the number of pairs of
elements in the dataset that are in di�erent subsets in U and in di�erent subsets in
V ; c be the number of pairs of elements in the dataset that are in the same subset in
U and in di�erent subsets in V ; d be the number of pairs of elements in the dataset
that are in di�erent subsets in U and in the same subset in V . The quantities a and
b can be interpreted as agreements, while c and d as disagreements. The Rand index
(Rand 1971) R is

R = a + b

a + b + c + d
. (1.4)

The Rand index has a value between 0 and 1, with 0 indicating that the two
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data clusterings do not agree on any pair of points and 1 indicating that the data
clusterings are exactly the same.

The problem with the Rand index is that the expected value of the Rand index
of two random partitions does not have a constant value on average and depends
on the number of units . Hubert & Arabie (1985) propose an adjusted form of the
Rand index assuming the generalized hypergeometric distribution as the model of
randomness. Considering a contingency table in comparing the two partitions U

and V , let nij be the number of objects that are in both class ui and class vj ; then
let ni. and n.j be the number of objects in class ui and in class vj respectively, the
Adjusted Rand index (ARI) is then defined as follows:

ARI =
q

i,j

!nij
2

"
≠

#q
i

!ni.
2

" q
i

!n.j
2

"$
/
!n

2
"

1
2

#q
i

!ni.
2

"
+

q
i

!n.j
2

"$
≠

#q
i

!ni.
2

" q
i

!n.j
2

"$
/
!n

2
" . (1.5)

Milligan & Cooper (1986) evaluate many di�erent indexes in measuring the
agreement between two partitions in clustering analysis with di�erent numbers of
clusters, and they recommended the adjusted Rand index as the index of choice.
Another index is the Jaccard coe�cient (Jaccard 1908), which can be defined using
the above notation of the Rand Index:

J = a

a + b + c
. (1.6)

Hubert & Arabie (1985) and Halkidi & Vazirgiannis (2001) highlight that external
validation techniques su�er from biases with respect to the number of clusters, the
distribution of resulting cluster sizes and the distribution of true class sizes in a
partition: for a one-cluster partition, indexes obtain maximum possible value and
tend to decrease with an increasing number of clusters. Moreover, the Rand Index
tends to be overly optimistic in situations where relatively small clusters have been
overlooked.

1.3 Supervised classification validation techniques

Let D = {x1, . . . , xn} be a dataset of n labelled observations with labels yi œ Y =
{1, . . . , G}, a classifier L maps a rule to assign an unlabelled observation to a label in
Y. The most used misclassification measure in a supervised problem is the 0/1 loss
function which is related to the probability of correctly classifying a new observation
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called accuracy of a classifier L (Kohavi et al. 1995). The accuracy index is then
estimated as the number of the observations correctly classified over the total number
of observations. In medical classification problems, the Sensitivity and Specificity
indexes are used to characterize a rule for the disease (Friedman et al. 2009). These
indexes can be defined by elements of a confusion matrix. Fawcett (2006) shows
a confusion matrix and use it to calculate several common metrics by considering
classification problems using only two classes. Following this idea, we can define
a confusion matrix in Figure 1.1 for each class in Y when the problem has more
than two classes: the value 1 indicates that the observations belong to the class and
otherwise the value 0 is assigned.

Figure 1.1. Confusion matrix for a classification problem, given a specified class. Definition
of Sensitivity and Specificity indexes for a class.

Estimating the accuracy of a classifier L induced by supervised learning algorithms
is important, not only to assess its future prediction accuracy but also for model
selection (Wolpert 1992). Typically supervised classification algorithms have one
or more tuning parameters, for example, the number of neighbors in a k-nearest
neighbor classifier or the lasso/ridge coe�cients in a lasso/ridge regression. The
idea is to choose the optimal parameters to minimize the predictive error criterion,
but at the same time, we want to evaluate the predictive performance of the model
in assessing how the results of a supervised classifier could be generalized to an
independent data set. As suggested by Friedman et al. (2009) if we have a large
number of observations, the best approach for both problems is to randomly divide
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the dataset into three parts: a training set, a validation set, and a test set. This is
the holdout method, the simplest kind of cross-validation. The training set is used
to fit the models; the validation set is used to estimate prediction error for model
selection; the test set is used for assessment of the generalization error of the final
chosen model. Since data are often scarce, this is usually not possible.

K-fold cross-validation is one way to improve the holdout method. The data set
is randomly divided into k subsets; each time, one of the k subsets is used as the
test set and the other k ≠ 1 subsets are put together to form a training set. Then
the average error across all k trials is computed. The advantage of this method is
that how the data gets divided is less important. Every observation is included in a
test set only once, while k ≠ 1 times it is used in a training set. The disadvantage
of this method is that it is computationally heavy because the algorithm is run
k times. When k = n, where n is the number of observations in the dataset, we
have the leave-one-out cross-validation. Each observation, in turn, is left out, and
the learning method is trained on all the remaining units. Witten et al. (2016)
highlight two reasons to use this method: using all the possible data for the training
set presumably increases the chance that the classifier is an accurate one and the
procedure is deterministic since no random sampling is involved.

Stone (1974) introduces the double cross-validation approach: each observation
is removed in turn from the data, and in the remaining training set another cross-
validation step is done to recalibrate the classifier L. The resulting classification
rule is then applied to the left-out observation to obtain an unbiased allocation
of this sample. The procedure is then repeated for all observations, after which
misclassification rates are calculated using the results for all the left-out observations.
Even if this method is computationally heavy, we are able to combine predictive
optimization and predictive unbiased validation in the same procedure, without loss
of data (Mertens et al. 2006). So it is a good approach for datasets with a small
number of observations. Mertens (1998, 2001, 2003) gives further details on the
computational burden.

1.4 A motivating example

Our work is motivated by an experimental study on scrapie, a prion disease, conducted
at the Istituto Superiore di Sanità by experimental transmission of scrapie’s diseases
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to bank voles.

Scrapie of small ruminants is caused by prions, which are unconventional in-
fectious agents of proteinaceous nature a�ecting humans and animals. Scrapie is
historically known to occur in di�erent strains (Bruce et al. 2002), a fact which has
renewed interest due to the zoonotic risk posed by animal prions (Cassard et al.
2014). Due to the absence of nucleic acids, which precludes direct analysis of strain
variation by molecular methods, the presence of di�erent sheep scrapie strains is
usually investigated by bioassay in laboratory rodents. Mice and bank voles are the
animal models of the election. Bioassay studies are performed inoculating a brain
homogenate of sheep scrapie intracerebrally into the recipient rodent. Complete
isolation, stabilization, and characterization of a scrapie agent requires serial pas-
sages of a sheep scrapie sample, hereafter referred to as isolate, in congenic mouse
or vole lines (Bruce et al. 2002, Di Bari et al. 2012). Within this experimental
setting, scrapie strain characterization is routinely performed evaluating, at least,
the survival time and the spongiform change (as vacuolization ordinal scores in
specific brain areas) of each injected animal, and taking the average of collected
variables from all animals inoculated with the same sheep scrapie isolate.

A large experimental study on strain characterization in bank vole model of
32 sheep scrapie isolates from several European countries has been carried out at
Istituto Superiore di Sanità (Italian National Institute of Health). The resulting
experimental data can be conceived as multilevel data with multiple bank voles
(lower-level units) inoculated with the same sheep scrapie isolate (higher-level unit).
Both continuous (survival time) and ordinal (vacuolation scores of brain areas)
variables are assessed for each experimental animal.

The general scientific issue is investigating how the available experimental data
can be used to evaluate the appropriateness of an isolate partition, identifying strains
or groups of strains. This is done by taking into account a preliminary benchmark
partition proposed by researchers. Our aim is then to validate a final, possibly finer,
partition that could be used as “gold standard” in future studies.

Remark 1. We believe that this is a relevant scientific question for which there is
not an o�-the-shelf statistical methodology. Indeed unsupervised classification is used
to find an unknown partition of units, while supervised classification algorithms are
used, starting from a well-known or objectively defined partition, in order to find the
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relationship between the classes and the data. Researchers’ prior knowledge has a
key role, not only to understand the statistical results, but to also set up a statistical
strategy to answer their scientific questions.

1.5 A procedure to validate an a priori partition: a
proposal

Figure 1.2. Diagram to illustrate the procedure proposed in this work.

Based on their pre-experimental understanding, researchers formulate a preliminary
partition (RP) of isolates. The attribution of each isolate to the corresponding group
in the partition is not based on direct evidence. Cluster analysis is used in the
attempt to find evidence in support of the partition using the experimental data,
but it can also lead to new interesting results. Hence the proposed procedure may
provide a formulation of a new candidate partition (denoted with NP) taking into
account alternative clustering results (generically denoted with the acronym EP)
and RP. EP results are chosen using internal clustering validation methods and
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are compared with RP using external validation clustering measures. NP does not
necessarily reflect the best EP outcome, instead, it is formulated by researchers
accounting for both RP and EP.

The new partition is then used to define labels for the isolates and a supervised
classification step is performed using these labels.

In order to validate the NP, an evaluation of the predictive performance of several
models ensues, crucially, with a cross-validation that properly accounts for the data
structure and avoids overfitting.

Figure 1.2 outlines the procedure: the rectangles indicate the steps using statis-
tical tools adapted to deal with multilevel mixed-type data.

1.6 Why not just use supervised classification?

Since the aim of the applied problem is predicting new further discovered isolates
within the strains, the question could be why not just use a supervised classification to
validate the researchers’ partition? We discuss this question using a simple example
composed of two similar simulation studies within the same framework: we simulate
N = 200 samples with n = 300 observations from two i.i.d. Uniform(0, 1000), then
we fix arbitrary thresholds to create 5 classes. In the Simulation 1 the groups are
defined by the thresholds but they are not well separated, while in the Simulation 2
we use hard thresholds to better separate the groups.

Firstly, we perform supervised classification on the simulated samples. We use 4
di�erent supervised classification algorithms for the supervised classification: the
Gradient Boosting Method (GBM) and the Random Forest (RF) as classification
tree-based methods; the Generalized Linear Elastic Net regression (GLMNET) and
the K-Nearest Neighbor (KNN). We split the original dataset into a training set (75%
of the observations) and in a testing set (25%); then use a 10-fold cross-validation
within the training set to calibrate the algorithms. Therefore we use the testing set
to predict the classes using the best models found within the cross-validation. On
the test set, we measure the indexes introduced in Section 1.3.

Finally, we use unsupervised classification on the same samples. We use distance-
based methods for clustering: hierarchical clustering with an average linkage, and two
partitioning algorithms, the K-means and the Partition Around Medoids (PAM). For
each dataset, we choose the best clustering results using three di�erent validation
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Figure 1.3. Simulation 1 example: two variables generated from two i.i.d. uniform
distributions. The observations are assigned to 5 classes created with arbitrary thresholds.

indexes: the Connectivity index (Equation 1.1 with L = 5), the Dunn Index
(Equation 1.2) and the Silhouette index (Equation 1.3). The highest index value
allows us to select the best method combined with the best number of groups for
each dataset and for each index.

Simulation 1: not separated groups. Figure 1.3 shows one simulated sample
with the assigned classes. In Figure 1.4, we report all the supervised validation
indexes measured over the 200 samples: both the Sensitivity and the Specificity
indexes in all the classes are very high for the two tree-based algorithms (from 0.8 to
1.0). The sensitivity index distributions of GLMNET and KNN are more variable,
even if the distributions are concentrated over 0.8, there are samples with lower
values in at least one group, while the Specificity indexes are always over 0.85. The
Accuracy indexes range from 0.8 to 1.0 for all the samples even if the GLMNET and
the KNN have more variable distributions than the GBM and the RF, which show
very concentrated values around 1.0. We can conclude that the supervised algorithm
will predict further new observations in those classes very well even though the
underlying classes are not well separated. Note that the samples did not have a
structured statistical distribution and the groups’ definition is based on arbitrary
thresholds. The supervised classification algorithms would be powerful if the classes
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were exogenously recognized as “gold standard”. Given they are not in this example,
we are not able to conclude that the supervised classification on these data provide
empirical evidence in support of the classes.

Therefore we rely also on cluster analysis to find if the classes are consistent with
the data. Table 1.1 summarizes the best choices: the Connectivity index, based on
the 5 nearest-neighbor observations, present maximum values only for a number of
groups equal to 2. The Dunn index mainly allows choosing the hierarchical method
with the highest number of groups that we fix at 8. The Silhouette index favors the
partition algorithms. These contradictory and heterogeneous results hint that data
do not have a well-defined partition structure.

Finally, the best clustering results are compared to the partition considered in
the supervised classification (Figure 1.5) using the Rand Index (Equation 1.4), the
Adjusted Rand Index (Equation 1.5) and the Jaccard index (Equation 1.6). Only
the Rand index (which is optimistic as discussed in Section 1.2.2) has high values
but the clustering results do not seem to agree with the defined partition.
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(a) (b)

(c)

Figure 1.4. Supervised classification validation indexes for the Simulation 1 on the 200
simulated samples using the 4 supervised algorithms for the 5 classes: (a) Sensitivity
index distributions (b) Specificity index distributions (c) Accuracy index distributions.
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Index Number of groups Methods

Hierarchical K-means PAM

Connectivity 2 180 12 8

Dunn 2 2 0 0
3 0 0 0
4 5 1 2
5 8 1 0
6 18 0 2
7 47 2 0
8 110 2 0

Silhouette 2 0 0 0
3 0 9 5
4 0 120 39
5 0 6 1
6 0 5 2
7 0 4 2
8 0 3 4

Table 1.1. Cluster analysis: internal validation indexes for the Simulation 1 example.
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(a) (b)

(c)

Figure 1.5. External validation indexes (RI: Rand Index; ARI: Adjusted Rand Index;
Jaccard: Jaccard index) on the best clustering results for the Simulation 1. The clustering
results are selected by the (a) Connectivity index (b) Dunn index (c) Silhouette index.
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Simulation 2: well-separated groups We repeat the simulation within the
same framework, but the classes are now well separated as shown in Figure 1.6.
Now the partition is well defined and we expect to have better results than the first
simulation in term of validation indexes.

Figure 1.6. Simulation 2 example: two variables generated from two i.i.d. uniform
distributions. The observations are assigned to 5 classes created with arbitrary thresholds
and the groups are well separated.

Figure 1.7 shows that all the supervised classification algorithms have a good
performance with all the indexes concentrated around 1.

The unsupervised classification results are reported in Table 1.2 and the best
choices are very heterogeneous: the Connectivity index select always a number of
groups equal to 2; the Dunn index and the Silhouette index select di�erent best
combination of methods and number of groups. Regarding to the number of groups,
the Silhouette index in most cases chooses the right number of groups (5), while
the Dunn index allows choosing the highest number of groups (8) in most cases.
Even if the founded groups are not the same, the external validation indexes on the
best partitions in Figure 1.8 show a good agreement between the resulting and the
initial partitions. So, even if we use a thresholds-based rule as in Simulation 1, the
well-separated groups are detected by unsupervised and supervised classification.

From this example we highlight some peculiarity from the validation indexes: the
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Connectivity index has the highest values always with a number of groups equal to 2,
while the Dunn index in most cases has the highest values with the highest number
of groups. The Silhouette index is better calibrated than the other internal indexes,
even if this index fits better with the partition algorithms than the hierarchical ones.
Regarding the external validation indexes, we highlight that the Rand Index is more
optimistic than the Adjusted Rand Index and the Jaccard index. These two indexes
also properly account for the di�erent number of groups in the two partitions.

Using this toy example, we can conclude that supervised classification algorithms
find the relation between data and groups even if no distributional rules are used to
define the classes. The predictive performances are really good when the groups are
well separated and the supervised classification allows to find the relation between
the defined groups and the covariates. Therefore, if the aim of the statistical analysis
is finding empirical evidence in support of a certain partition, we also need to rely
on clustering algorithms. This example also shows that in partition analysis, we
have to compare several validation indexes to understand what we can learn from
the data. Sometimes the validation indexes involve contradictory results and the
evaluation of these results have to be contextualized to the dataset and the problems.
Therefore we can conclude that in applied problems, results must be validated by
experts, particularly when statistical analysis provides heterogeneous results.
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(a) (b)

(c)

Figure 1.7. Supervised classification validation indexes for the Simulation 2 on the 200
simulated samples using the 4 supervised algorithms for the 5 separated classes: (a)
Sensitivity index distributions (b) Specificity index distributions (c) Accuracy index
distributions.
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Index Number of groups Methods

Hierarchical K-means PAM

Connectivity 2 169 17 14

Dunn 2 18 0 0
3 10 0 0
4 1 2 0
5 35 4 1
6 17 2 0
7 40 1 2
8 59 8 0

Silhouette 2 0 0 0
3 0 0 0
4 18 3 8
5 35 40 11
6 7 39 12
7 1 6 1
8 0 16 3

Table 1.2. Cluster analysis: internal validation indexes for the Simulation 2 example with
separated groups.
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(a) (b)

(c)

Figure 1.8. External validation indexes (RI: Rand Index; ARI: Adjusted Rand Index;
Jaccard: Jaccard index) on the best clustering results for the Simulation 2. The clustering
results are selected by the (a) Connectivity index (b) Dunn index (c) Silhouette index.



Chapter 2

Scrapie dataset and multilevel
mixed-type data

2.1 Data description

Sheep scrapie strains can be characterized by experimental transmission in laboratory
rodents, by evaluating the strain-specific di�erences in survival time, neuropathology,
type and distribution of misfolded prion proteins in the brain. Transmission studies
are performed by inoculating laboratory rodents with brain homogenates from
a�ected sheep. These experiments, usually referred to as primary transmissions,
typically result in long and variable incubation times, because the infecting prion
needs to cross a so-called species barrier, (it derives from sheep and needs to infect
rodents). Subsequent sub-passages in congenic laboratory rodents result in shortening
and stabilizing of the incubation time, a phenomenon referred to as adaptation,
during which a given prion agent adapts to the new species. Therefore, full isolation
of prion agents requires serial passages of natural isolates, which also leads to the
stabilization of the neuropathological phenotype in the new species.

While laboratory mice have historically been used in studies of prion diversity,
they are not fully susceptible to natural scrapie isolates. Bank voles have been
shown to be a species remarkably susceptible to di�erent prion sources (Nonno
et al. 2006, Agrimi et al. 2008, Di Bari et al. 2013, Pirisinu et al. 2016) and have
been exploited to isolate and discriminate di�erent scrapie strains (Di Bari et al.
2008). Strain characterization was performed using 32 selected sheep scrapie isolates
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from seven European countries. A variable number of bank voles were inoculated
with each isolate. After two subsequent vole-to-vole sub-passages (third passage),
survival times and brain lesion profiles were registered for every individual vole.
When di�erent pathological phenotypes were observed in animals inoculated with
the same inoculum at first passage, more than one second passage was initiated.
This was the case for 4 natural isolates so that 36 second passages were performed
from the initial 32 primary transmissions.

Due to these reasons we use the stabilized data of the third passage. The
experimental data has a multilevel structure: the higher-level units, indexed by
j = 1, . . . , 36, are the isolates; the lower-level observations, indexed by i = 1, . . . , nj ,
are the bank voles. The number of bank voles in each isolate nj (also reported in
Figure 2.1) varies from 3 to 11 to better characterize the unbalanced clustered data.
Note that

q36
j=1 nj = 279. For each lower-level observation the mixed-type outcome

variables are xij = (xij1, . . . , xijp, . . . , xijP ) where p = 1 corresponds to the survival
time measured in days (continuous), while p = 2, . . . , 10 correspond to the nine
lesion profile ordinal variables. In the supervised classification, we will also use the
class label yij = 1, . . . , g, . . . , G defined by a putative partition.

The individual lesion profile is a method (Fraser & Dickinson 1968, Di Bari et al.
2012) in which vacuolar change is assessed by assigning a non-negative integer score
from 0 to 5, depending on the severity of vacuolation, in nine brain areas, including
(1) medulla, (2) cerebellum, (3) superior colliculus, (4) hypothalamus, (5) thalamus,
(6) hippocampus, (7) septum, (8) retrosplenial and adjacent motor cortex, and (9)
cingulate and adjacent motor cortex.

Variability is observed both within and between scrapie isolates. The violin
plots of survival times for each isolate in Figure 2.1 show asymmetric distributions
with heterogeneous degrees of variability and tendency. Only 10 isolates (28.2%)
have an average survival time greater than 100. Lesion profiles also di�er between
and within scrapie isolates: di�erences may be in modal values or in distributional
frequencies, in one or more brain areas. A partial representation of heterogeneity
of lesion severity profiles within isolates is displayed in Figure 2.2. A remarkable
heterogeneity between isolates can be seen for It4, Uk4 and Fr4-A (Figure 2.2(a),
2.2(c) and 2.2(d)). On the other hand, many other pairs of isolates are more
homogeneous as is clearly the case for It4 and Uk14 (Figure 2.2(a) vs 2.2(b)).
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Figure 2.1. Violin plots for Survival Time for each experimental isolate. nj are reported
for each isolate. The 4 inocula, split into 2 isolates are highlighted in the labels.

2.2 Multilevel data

Many kinds of data, including experimental data in biological sciences and obser-
vational data in social sciences, have a hierarchical, nested, or clustered structure
(Goldstein 2011). Generally, we refer to these data structures as multilevel data, be-
cause each observation belongs to more than a single level. For example, individuals
from the same family, or students in the same school tend to show similar behaviors
influenced by the same environment. Multilevel data structures also exist in medical
studies like e.g. when measuring cell belonging to the same patients or di�erent
patients exposed to the same treatment but in di�erent hospitals. Our data have a
multilevel structure because the same isolate is inoculated into multiple bank voles.
We are interested in the higher-level unit, but data can not be obtained for the isolate
because it is not directly observable. The phenotype is thus indirectly measured by
only inoculating multiple bank voles, our lower-level units, with the same isolate.
The lower-level observations are then correlated within the same isolate.

Latent variable models are widely used for the analysis of multilevel data especially
by using means of mixed e�ects models. A linear model that incorporates both
fixed e�ects (for the covariates xij) and random e�ects uj can be used in a two-level
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(a) (b)

(c) (d)

Figure 2.2. Distributional plots for lesion profile in 9 brain areas (A1-A9) for isolates (a)
It4 (b) Uk14 (c) Uk4 (d) Fr4-A. A1=medulla, A2=cerebellum, A3=superior colliculus,
A4=hypothalamus, A5=thalamus, A6=hippocampus, A7=septum, A8=retrosplenial
and adjacent motor cortex, A9=cingulate and adjacent motor cortex.

framework to model the dependent variable yij . uj are latent variables used to
account for the heterogeneity of lower-level observations within the same higher-level
unit. A mixed e�ects model can be represented as

yij = – + —xij + uj + ‘ij (2.1)

where

uj ≥ N(0, ‡2
u) i.i.d

‘ij ≥ N(0, ‡2
‘ ) i.i.d

are independent from each other.
The increasing popularity of mixed e�ects models is explained by the flexibility

they o�er in modeling the within-group correlation often present in grouped data
and by the availability of reliable and e�cient software for fitting them (Fox 2002,
Gelman & Hill 2006).
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An alternative way to model the multilevel data is analyzing distribution functions
or probability density functions (pdf). Calò et al. (2014) shows in Figure 2.3 how
the two-level dataset has an intrinsic two-level hierarchical structure, in which
pdf-objects correspond to higher-level units and the random realizations from the
di�erent pdfs represent lower-level units. Some examples of the use of this approach
are the study of age distributions across countries in a given year (Delicado 2011), the
characterization of computer images by the distribution of the respective gray-scale
pixel values (Spellman et al. 2005), the comparison of the distributions of collagen
fibril diameters observed in di�erent mice strains (Chervoneva et al. 2012), and the
idea of performing customer segmentation after each customer has been represented
by the distribution of the item unit price across his purchases (Sakurai et al. 2008).
In this context, another way to look at the two-level data is considering histogram
data (Irpino & Romano 2007). Histogram data are introduced in the context of
Symbolic Data Analysis by Bock & Diday (2012) and they are defined by a set
of contiguous intervals of the real domain, which represent the support of each
histogram, with an associated a system of weights (frequencies, densities).

Figure 2.3. Hierarchical structure of a two-level dataset (Calò et al. 2014)

Several approaches are available for clustering multilevel data, both using latent
variable models and distributional analysis. These models are built to manage
continuous data. To the best of our knowledge, we have not found an approach to
clustering multilevel ordinal or mixed-type data. Learning from data approaches
with distance-based methods are less common (Yeung et al. 2003), but they can be
used more easily with any data type because they do not require the distributional
elicitation of suitable mixture components.
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Supervised classification of multilevel data has gained increasing importance in
many applied problems, but it has not received the same attention in the statistical
literature as cluster analysis for multilevel datasets or multilevel modeling.

2.3 Mixed-type data

Mixed-type data modeling has received increasing attention over time, especially
in model-based clustering approaches. Latent variable models are widely used.
Consider a vector xi = (xi1, . . . , xih, . . . , xiH) of mixed-type variables, in latent
variable models xi are a manifestation of an underlying latent continuous vector,
zi (for i = 1, . . . , N). The basic idea is to consider each group of variable type
separately and then modeling the joint distribution of the latent zi. Arminger &
Küsters (1988) assume zi to have multivariate Gaussian distribution with expectation
potentially dependent on covariates. Sammel et al. (1997) assume that each manifest
variable follows a one-parameter exponential family model, and they use a generalized
linear model to connect the manifest variables to fixed covariates and a specific
continuous latent variable. Dunson (2000) generalizes the framework of Arminger
& Küsters (1988) to accommodate non-normal latent variables and clustered data.
The author also manages non-linear relationships between the underlying and latent
variables, multiple latent variables for each outcome type and covariate-dependent
modifications of the relationship between the latent and underlying variables. The
joint distribution of the underlying variables is described by a mixture of generalized
linear models to detect heterogeneity. Furthermore, a distinct link function is used
for each underlying variable.

Focusing on the modeling of each type of variable separately, two latent variable
approaches are used to model ordinal variables in statistical literature: Item Response
Theory (IRT) and Underlying Response Variable (URV). IRT was first introduced
by Thurstone (1925) and is widely used in psychological and educational tests.
Extensions are given by Rasch (1960) with the Rasch model for binary outcomes,
while for data with K ordinal responses Samejima (1969) proposes the graded
response model, and Masters (1982) introduces the partial credit model. IRT
assumes that each observed ordinal response is a manifestation of a latent continuous
variable. IRT is based on the local independence assumption on variables xih, where
i denotes the individual and h is the item. The dependence between the manifest



29 Scrapie dataset and multilevel mixed-type data

variables xih is explained by the ability factor ◊i using a generic link function f

that specifies the link between the ordinal variables and the quantitative unobserved
variables (Equation 2.2):

f(xih) = ⁄h◊i ≠ bh. (2.2)

The latent trait ◊i can be unidimensional or multidimensional and it allows a
dimensionality reduction.

The URV approach was first introduced by Muthén (1984) within the Structural
Equation Modeling (SEM) framework and developed by Jöreskog (1990) and Lee
et al. (1990). The idea of URV is to consider ordinal variables xih = {0, . . . , k, . . . K}

as a categorization of the underlying continuous variables zih through a thresh-
old model (Equation 2.3). For each item a vector of threshold parameters “h =
(“h,0, . . . , “h,k, . . . “h,Kh

) exists. This vector is subject to the constraint:

≠Œ = “h,0 Æ “h,1 Æ . . . Æ . . . “h,Kh
= +Œ,

and the relation between the observed variables xih and the latent zih is:

“h,k≠1 < zih Æ “h,k ≈∆ xih = k. (2.3)

Models are therefore developed for the latent variables, for example assuming for
(zi1, . . . zih, . . . ziH) a multivariate Gaussian distribution. The thresholds “h,k can be
arbitrarily fixed or they have to be estimated. The URV thresholds method is also
used as link function between xih and zih in Equation 2.2 (McParland & Gormley
2013), so that the IRT model becomes zih = ⁄h◊i ≠ bh.

Also binary data are modeled as ordinal variables, with one unique threshold
generally fixed at 0:

xih =

Y
]

[
0 if zih < 0
1 if zih Ø 0.

(2.4)

Nominal variables are categorical variables with unordered responses. For each
nominal variable xih with Kh possible responses, we need Kh ≠ 1 underlying contin-
uous variables zih i.e. zih = (z1

ih, . . . , zKh≠1
ih ). The observed nominal response xih is

related to the zs
ih as follows:

xih =

Y
]

[
1 if max {zs

ih}

k if zk≠1
ih = maxs {zs

ih} and zk≠1
ih > 0 for s = 2, . . . , Kh.

(2.5)



2.4 Addressing some of the dataset’s limits 30

Let X denote a data matrix with N rows and P columns. Suppose that the
continuous variables are in the first C columns, the ordinal and binary variables are
in the following O columns and the nominal variables are in the final P ≠ (C + O)
columns. We associate at X the matrix Z where the first C columns are equal to
the same of X and the other columns are built with the latent variables. Finally, we
have to model the joint distribution for Z.

2.4 Addressing some of the dataset’s limits

Even if the multilevel mixed-type data modeling is a methodological challenge, we
have to deal with some limits due to the dataset. The dataset has unbalanced sample
sizes between classes and also within isolates (Table 2.1). The lowest number of
bank voles within an isolate is equal to 3, whereas the smallest group is SSBP/1like
for which the phenotypes are measured on 9 bank voles nested in 2 isolates. It is not
always easy to detect a small group within a supervised classification analysis because
of the splitting into the training and the testing sets. For example, we perform the
supervised classification for the Simulation 2 presented in the Section 1.6 forcing
the group 2 to be “small” with 10 units. Figure 2.4 shows the resulting supervised
classification index. Note that for the GBM algorithm the Sensitivity index is very
heterogeneous, assuming also values equal to 0.

The problem of size discourages the use of a model-based clustering approach:
using a URV model for ordinal data with the integration of the survival time, the
number of parameters to estimate is at least 10 µ and 10 ú (10 + 1)/2 = 55 for the �
covariance matrix with 65 parameters over 279 total observations. If we also want to
estimate those parameters for each class, we end up requiring more parameters than
observations. We have implement a Bayesian hierarchical model with uninformative
prior distributions to model our dataset. We use a Markov chain Monte Carlo
(MCMC) sampling process to perform the statistical inference procedures necessary
for estimation of the parameters, but we have experienced convergence problems for
MCMC and more improperly unstable parameter estimates. For these reasons we
opted for distance-based methods to cluster our data.

Looking at the lower-level units and focusing only on the ordinal data (lesion
profile), the observations are similar and they do not show high heterogeneity. We
calculate some descriptive statistics on the lesion profile (Figure 2.5). The median
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(a) (b)

(c)

Figure 2.4. Supervised classification validation indexes for the Simulation 2 on the 200
simulated samples using the 4 supervised algorithms for the 5 separated classes and
with a “small class” (group 2): (a) Sensitivity index distributions (b) Specificity index
distributions (c) Accuracy index distributions.
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lesion profile corresponds to the modal one (Figure 2.5(a)) and all the areas show
median scores equal to 3, except from the cerebellum (1) and the superior colliculus
(4). Looking at the absolute di�erence from this profile, we find 15 observations
(5.3% of the dataset) with the same values and 37 observations with a di�erence
of one point in one area (Figure 2.5(b)). Since the lesion profiles are not highly
heterogeneous, we expect that the statistical results, both for the clustering and
the classification, will be more influenced by the survival time variable than by the
ordinal scores.
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Inocula Isolates Number of bank voles Researchers’ partition (RC)
It1 It1 11 It93
It2 It2 11 It93
It3 It3 8 It93
It4 It4 7 It93
It5 It5 6 It93
It6 It6 10 It93
It7 It7 10 It93
Uk1 Uk1 10 It93
Uk2 Uk2 7 Uk85
Uk3 Uk3 6 Uk85
Uk4 Uk4 4 SSBP/1like
Uk5 Uk5 7 Uk85
Uk6 Uk6 11 It93
Uk7 Uk7 7 It93
Uk8 Uk8 4 Uk85
Uk9 Uk9 9 Uk85
Uk10 Uk10 9 Uk85
Uk11 Uk11 9 Uk85
Uk12 Uk12 8 Uk85
Uk13 Uk13 11 Uk85
Uk14 Uk14 11 Uk85
SSBP/1 SSBP/1 5 SSBP/1like
Ir1 Ir1 4 Uk85
No1 No1 6 It93
Ge1 Ge1 10 Uk85
Fr1 Fr1 4 Uk85
Fr2 Fr2-C 9 TypeC
CH1641 CH1641-A 8 TypeA

CH1641-C 10 TypeC
Fr3 Fr3-A 8 TypeA

Fr3-C 5 TypeC
Fr4 Fr4-A 10 TypeA

Fr4-C 10 TypeC
Sp2 Sp2-A 3 TypeA

Sp2-C 7 TypeC
Sp1 Sp1-A 5 TypeA

Class Number of isolates Number of observations
It93 11 97
Uk85 13 98
SSBP/1like 2 9
TypeA 5 34
TypeC 5 41

Table 2.1. Inocula used to perform the primary transmission and the relative isolates
selected for the second passages. Researchers’ a priori classification in 5 groups.
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(a)

(b)

Figure 2.5. (a) Median and modal lesion profile in 9 brain areas (A1-A9) for iso-
lates. (b) Absolute distances from the median profile: frequency distribution on
the dataset A1=medulla, A2=cerebellum, A3=superior colliculus, A4=hypothalamus,
A5=thalamus, A6=hippocampus, A7=septum, A8=retrosplenial and adjacent motor
cortex, A9=cingulate and adjacent motor cortex.



Chapter 3

Unsupervised classification for
multilevel mixed-type data

Unsupervised classification algorithms are here used in order to find similar groups
of the higher-level units (the isolates). One very common (and simple) approach for
dealing with multilevel data is to compute the average of variables over all lower-level
units belonging to each higher-level unit and use these averages to build up a new data
matrix for the higher-level units only. On this matrix, the pairwise dissimilarities can
be computed and standard distance-based algorithms can be implemented. However,
in the presence of mixed-type data, with also ordinal variables, the average is either
impossible or misleading. Moreover, the average is not advised also for continuous
data because of the possible loss of useful information, due to the presence of varying
degrees of heterogeneity in lower-level units as well as because of di�erent sample
sizes for each isolate. The average is also not a good summary statistic where the
data present asymmetric distributions.

To the best of our knowledge, methods for clustering multilevel mixed-type
data have not been proposed so far; while model-based approaches to clustering
multilevel data exist as well as clustering mixed-type data models. However, with
our mixed-type data, we have decided to avoid the use of probabilistic assumptions
on not yet well understood ordinal data for which the use of finite mixture models
would require the distributional elicitation of suitable mixture components. Hence
we stick to distance-based methods. As explained in Section 2.4 our dataset also
presents unbalanced and often small sample sizes, this issue discourages us from the
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use of a model with a too rich parameterization.

3.1 Clustering algorithms for multilevel data

Looking at the problem of cluster analysis for multilevel data, we can classify four
di�erent ways to approach the problem: (i) model-based clustering relying on finite
mixture modeling; (ii) distance-based methods extended to multilevel data; (iii)
cluster analysis of cumulative distribution functions or probability density functions
(pdf); (iv) functional cluster analysis. The way to look at the data hierarchies
produces the di�erent approaches: methods in (i) and (ii) extend the classical cluster
analysis methodologies to the multilevel data by accounting of specific features
of higher and lower-level units; methods in (iii) look at the lower-level units as
realizations of the pdf objects (higher-level objects); methods in (iv) look at the
higher-level unit as a functional object and the lower-level observations are used to
build the functional data. Methods (i) and (iii) can also overlap in some definitions.
All these methods are mostly applied to continuous data.

3.1.1 Clustering multilevel data via mixture models

Within the first approach, Celeux et al. (2005) propose a mixture of linear mixed-
e�ects models (Equation 2.1) in order to cluster gene expression repeated data.

They choose linear mixed-e�ects models to take into account data variability.
Authors provide a maximum likelihood estimation approach through the EM algo-
rithm. Their model requires the strong independence assumption for the genes, so
that Ng et al. (2006) consider the extension of normal mixture models to correlated
and replicated data for gene expression data.

Higher-level units can also be classified through non-parametric maximum like-
lihood (NPML) (Aitkin 1999) or via multilevel latent class (or mixture) models
(Vermunt & Magidson 2005, Vermunt 2008, Asparouhov & Muthen 2008) where
random e�ects occur as discrete latent variables. Vermunt & Magidson (2005)
propose the hierarchical mixture model which consists of two parts. The first part
allow to classify the higher-level unit xj in one of the K classes with the discrete
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random e�ect uj :

f(xj) =
Kÿ

k=1
fi(uj = k)f(xj |uj = k)

f(xj |uj = k) =
njŸ

i=1
f(xij |uj = k). (3.1)

Note that the lower-level observations xij , given the class membership for the
higher-level unit, are assumed conditionally i.i.d. within a higher-level unit.

The second mixture is used to model the f(xij |uj = k), at the lower-level with
the aim of detecting the heterogeneity within a higher-level unit. The random e�ect
at this level is denoted by wij ; given T components for the mixture, the model at
this level is defined as follows:

f(xij |uj = k) =
Tÿ

t=1
fi(wij = t|uj = k)f(xij |wij = t). (3.2)

The use of a mixture at the lower-level allows modeling the data variability with
discrete random e�ects instead of the continuous ones used by Celeux et al. (2005).
The hierarchical mixture model also permits to classify both the higher-level units
and the lower-level observations at the same time in the two di�erent levels. If we
compare the standard mixture model with the hierarchical mixture model, we see
two important di�erences: (1) we obtain information on class membership for both
higher-level units and lower-level units; (2) groups are assumed to di�er with respect
to the prior distribution of their members across lower-level latent classes.

These models are estimated using variants of the EM algorithms, but external
methods are used to choose the number of components. Azzimonti et al. (2013) extend
it with an EM-based approach where the number of mass points is automatically
selected depending on some problem-driven tuning parameters.

3.1.2 Distance-based methods for multilevel data

The challenge with the distance-based methods for multilevel data is how to measure
the distance between a pair of higher-level units (Figure 3.1). Methods proposed in
literature do not take into account the distances between lower-level units. Usually,
the information within the same object is previously summarized and then the
distance-based algorithms are performed.
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Figure 3.1. Distance between two higher-level units.

In this framework, Yeung et al. (2003) compare several clustering algorithms that
incorporate repeated measurements. They perform an empirical study on real and
synthetic gene expression datasets with the aim of evaluating alternative clustering
methods.

Yeung et al. (2003) compare four di�erent approaches to clustering repeated
measurements: (i) average over repeated measurements; (ii) variability-weighted
similarity measures; (iii) hierarchical clustering of repeated measurements; (iv)
IMM-based approach.

The simplest and widely used approach is to compute the average over all the
lower-level units for each higher-level unit. Then, the pairwise similarities can be
computed on these average values and the classical distance-based algorithms are
used. The averaging approach does not take into account the variability in repeated
measurements within the same higher-level object.

Hughes et al. (2000) propose an error-weighted clustering approach. The idea is
use error estimates to weigh values in pairwise similarities such that higher-level units
with high variability are down-weighted. These error-weighted pairwise similarities
are then used as inputs to clustering algorithms. Yeung et al. (2003) use directly



39 Unsupervised classification for multilevel mixed-type data

variability’s estimates as a weight for the pairwise dissimilarities, in particular, they
use the standard deviation and the coe�cient of variability for continuous data only.

Yeung et al. (2003) propose to cluster the repeated measurements as an individual
object in hierarchical clustering algorithms. The idea is to employ hierarchical
clustering algorithms with an ad-hoc adjustment named FITSS (forcing into the
same subtrees) to account for the multilevel nature of the data: lower-level units of
each higher-level object are assigned to the same subtree in the dendrogram and
then the analysis continues as usual to build the final dendrogram. The initial rules
to force lower-level units in the same dendrogram are not explicitly illustrated in
the paper.

Medvedovic & Sivaganesan (2002) propose an infinite Gaussian mixture model
(IMM model) for gene-expression data which incorporates repeated data. Within a
higher-level unit, the lower-level observations are assumed to follow a multivariate
normal distribution. They use a Gibbs sampler to estimate the posterior pair-
wise probabilities. These posterior pairwise probabilities are treated as pairwise
similarities, which are finally used as inputs to hierarchical clustering algorithms.

We will focus on these methods proposing methodologies for measuring the
distance between higher-level units as questioned in Figure 3.1. We avoid the use
of a summary statistic for the data, but we summarize all the possible distances
between pairs of lower-level units.

3.1.3 Cluster analysis of probability density function

The third way to consider multilevel data is by using pdf objects. Gibbs & Su (2002)
provide a review of the metrics used to measure the distance between probability
measures. Symbolic Data Analysis (SDA) is widely used in this field. SDA aims to
analyze complex and structured data with higher-level units modeled by symbolic
objects described by multivalued variables (Bock & Diday 2012, Billard & Diday
2003). Irpino & Verde (2006) present a new distance, based on the Wasserstein
metric, in order to cluster a set of data described by distributions with a finite
continuous support (histograms as called in SDA). A Wasserstein-based distance
is also used by Irpino & Verde (2008) for interval data, that are statistical units
described by means of intervals of values.
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Terada & Yadohisa (2010) have proposed a non-hierarchical clustering method
that works with empirical cumulative distribution functions, in order to avoid that
the number of histogram bins (or the range of bins) a�ects the results of clustering.
Kim & Billard (2013) introduces various dissimilarity measures for histogram data
and they also develop a cumulative distribution measure for histograms. These
approaches have been developed for both univariate and multivariate settings, even
if in the last case, a large number of observations is required due to the curse of
dimensionality.

Vrac et al. (2012) propose a model to cluster a set of estimated multivariate
distribution functions based on the notions of a function of distributions and of
multi-dimensional copulas.

Calò et al. (2014) introduce a hierarchical mixture modeling for the pdf estimation
in the univariate context; then they extend the model to multivariate densities by
means of a factorial model performing dimension reduction. EM algorithm is used
to fit the model. This approach is classified by the authors as pdf unsupervised
classification, even if it is an extension of the Vermunt & Magidson (2005) approach.

We have attempted to build a model-based clustering for multilevel mixed-type
data following the model proposed by Calò et al. (2014). We use the mixed-type
model proposed by McParland et al. (2014) for modeling the pdf objects, but we
run into identification and overparameterization issues because of the use of several
latent variables at the di�erent levels.

3.1.4 Functional cluster analysis

The multilevel data can occur also when the lower-level observations are associated
with a particular domain as, for example, time or space. In this case, the higher-level
object can be seen as a function of the lower-level data. In functional data analysis
(FDA) (Ramsay 2006) data can be seen as a realization of continuous functions
on a given domain X = {X(t), t œ T}. The lower-level units are used to build the
functional data (curves) for the higher-level object. The choice of an FDA approach
is motivated by two main aspects, (1) data are collected at an almost continuous
rate in space and time; (2) FDA allows for dimensional reduction and it is then
suitable for very large datasets. Several standard statistical techniques have been
adapted in FDA in order to capture features of functions and of their derivatives.
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FDA is widely used with spatiotemporal data and high-dimensional data especially
in environmental studies (see for instance Ignaccolo et al. 2015, Secchi et al. 2015,
Ranalli et al. 2016).

Clustering functional data is generally a di�cult task. The lack of a definition for
the probability density of a functional random variable, the definition of distances
or estimation from noisy data are some examples of such di�culties. Di�erent
approaches have been proposed. Jacques & Preda (2014) provide a comprehensive
review for the functional cluster analysis (FCA). They suggest to distinguish four
main approaches to the FCA: (i) methods working directly on the evaluation points of
the curves; (ii) filtering methods that first approximate the curves into a finite basis
of functions and then perform clustering using the basis expansion coe�cients (two-
stage methods); (iii) methods that perform simultaneously dimensional reduction of
the curves and clustering, leading to functional representation of data depending on
clusters; (iv) distance-based methods using clustering algorithms based on specific
distances for functional data.

3.2 Clustering mixed-type data

The challenge of clustering mixed-type data is essentially due to how one can model
the joint distribution of multivariate data measured by continuous, binary, categorical
and ordinal data. In particular, the challenge is how to model categorical, binary and
ordinal variables as explained in Section 2.3. Latent variable models for clustering
categorical or mixed-type data have been proposed by many authors. On the other
hand, only two dissimilarity indexes are proposed for mixed-type data to properly
account for ordinal data.

3.2.1 Model-based clustering for mixed-type data

As pioneered by Everitt (1988) the URV approach (Equation 2.3) is widely used
for ordinal data to establish thresholds in the categorical data and then using the
underlying continuous latent variables in a joint distribution with the observed
continuous variables. Assuming a mixture for the joint distribution for Z (see
Section 2.3) is the way to perform cluster analysis.
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Everitt & Merette (1990), Muthén & Shedden (1999) are the first to provide
the intuition of clustering mixed-type data with the use of latent variable models.
Everitt (1988) assumes a multivariate homoscedastic normal mixture density to
model both observed and latent variables, while Lubke & Neale (2006) assume a
heteroscedastic one. The estimation is done by maximum likelihood, but due to
computational reasons, they are able to include only a few ordinal variables (Everitt
& Merette 1990).

Cai et al. (2011) propose a mixture of generalized latent variable models to
handle mixed-type heterogeneous data using di�erent link functions to model data
of multiple types. They estimate the model within the Bayesian framework. Browne
& McNicholas (2012) use a mixture of latent variables model for the model-based
clustering and also to perform discriminant analysis of mixed-type data. The
estimates are carried out within the expectation-maximization (EM) framework.
Mixed binary and continuous variables are analyzed by Morlini (2012) with an
approach where each binary attribute is generated by a latent continuous variable
that is dichotomized with a suitable threshold value, following the URV approach.

Cagnone & Viroli (2012) propose a latent variables model for binary data by
a finite mixture of multivariate Gaussians in order to achieve both a dimension
reduction and model-based clustering. They use a generalized version of the EM
algorithm for the model estimation. Gollini & Murphy (2014) extend latent class
analysis with a mixture of latent trait analyzers model by assuming a model for
the categorical response variables that depends on both a categorical latent class
(for finding the group structure) and a continuous latent trait variable (dependence
within the unknown groups).

Ranalli & Rocci (2016) use a latent Gaussian mixture model to classify ordinal
data following the URV approach: the observed categorical variables are considered
as a discretization of an underlying finite mixture of Gaussians and the model is
estimated within the EM framework maximizing a pairwise likelihood. Recently
Ranalli & Rocci (2017) incorporate also continuous variables in the model: both
the continuous and the ordinal variables are assumed to follow a heteroscedastic
Gaussian mixture model, where the ordinal variables are modeled by the URV
approach and the threshold parameters are estimated within the model.

The mixture of factor analyzers model for mixed-type data is proposed for ordinal
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data by McParland & Gormley (2013), using the IRT approach (Equation 2.2) with
a URV link function. Successively McParland et al. (2014) extend their previous
work to the mixed-type data, with a finite mixture model (MFA-MD) based on a
combination of factor models for quantitative data; IRT models for ordinal data
(Equation 2.2) and ideas from the multinomial probit model for categorical data
(Equation 2.5). The MFA-MD model can explicitly model the nature of each variable
type directly, as we have explained in Section 2.1. Even if McParland et al. (2014)
achieve a dimensionality reduction with the IRT, they assume unknown thresholds
and the model is computationally expensive. Therefore, the authors introduce also
the model clustMD (McParland & Gormley 2016) that employs a parsimonious
covariance structure for the latent variables. They use an EM algorithm combined
with a Monte Carlo EM algorithm to estimate parameters.

All these models need the estimation of a high number of parameters: in addition
to the mixture components’ parameters, we need to estimate also the thresholds
within the URV approach or the IRT parameters. More recently Canale & Dunson
(2011) and Carmona et al. (2016) propose another parsimonuis model within the
Bayesian framework, also extending the problem to complex design setting. Carmona
et al. (2016) propose an infinite mixture and they model the ordinal variables within
the URV approach. They do not reduce the dimensionality in the parameterization
of the mean of the latent variables, but they fix thresholds’ values.

Model-based approaches with latent variables present some di�culties: firstly
all the models are computationally expensive, secondly, the models are deeply
associated with the underline assumptions for categorical and ordinal variables. To
our knowledge all the models reviewed in this subsection have not been extended to
deal with multilevel data structures.

3.2.2 Measuring the dissimilarity between mixed-type data

On the other hand, distance-based clustering methods rely on the choice of an index
to measure the distances between units, but they are computationally less demanding.
We account for two di�erent types of dissimilarities used in literature, the Gower
index (Gower 1971) and the Gower index with Podani correction (Podani 1999).
While the Gower index treats the ordinal variables as quantitative variables rescaled
for their range, Podani extends the Gower index to ordinal variables considering a
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distance-based on their rank.
Gower dissimilarity for two units l and i is defined, in absence of missing data

and binary variables, as follows:

d(l, i) =
Pÿ

p=1
dp(l, i); (3.3)

where the p-th variable contribution to the total distance, denoted by dp(l, i), is a
distance between xl,p and xi,p.

The contribution dp(l, i) for quantitative and ordinal variables is

dp(l, i) = |xl,p ≠ xi,p|
range(xp) , (3.4)

where the xi,p is the observed numeric value in the ordinal scale. For ordinal variables,
this is the same as using them as quantitative variables. When the dataset has only
quantitative and ordinal variables the Gower index is a rescaled Manhattan distance.

Podani (Podani 1999) extends the Gower index to ordinal variables considering
the ranks:

dp(l, i) = |rl,p ≠ ri,p| ≠ (Tl,p ≠ 1)/2 ≠ (Ti,p ≠ 1)/2
rmax,p ≠ rmin,p ≠ (Tmax,p ≠ 1)/2 ≠ (Tmin,p ≠ 1)/2 , (3.5)

where Ti,p (Tl,p) is the number of units which have the same rank score for variable p

as unit i (l) including i (l) itself, rmax,p and rmin,p are the maximum and minimum
observed ranks for variable p respectively, Tmax,p is the number of units with the
maximum rank, and Tmin,p is the number of units with the minimum rank.

3.3 Unsupervised classification via consensus clustering
of distance-based methods

Starting from the FITSS proposed by Yeung et al. (2003), we extend and refine
distance-based methods for clustering multilevel mixed-type data. In our context,
there is a relevant irregular heterogeneity, with possibly asymmetric features, within
observations belonging to the same higher-level unit di�erently from the typical case
in Yeung et al. (2003) where repeated measurements are considered. The substantial
impact of such heterogeneity in our multilevel data can undermine the stability of
the results of a specific cluster analysis, relying on a particular choice of distance and
algorithm. In order to account for this aspect, we propose a consensus clustering of
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hierarchical algorithms based on alternative sensible choices of distances with FITSS
adjustment. With a similar idea we use partitioning strategies relying on a modified
Partition Around Medoids (PAM) algorithm (Kaufman & Rousseeuw 2009) to deal
with the multilevel data challenge.

We choose to implement both a hierarchical clustering and a partitioning method
in order to compare di�erent results: we consider hierarchical methods in order to
build alternative hierarchies of clusters; and we use a non-hierarchical PAM algorithm
(Kaufman & Rousseeuw 2009). Both methods are adapted to the multilevel data
using the consensus clustering (Gordon 1999, Hornik 2005) illustrated below.

Starting from di�erent partitions/hierarchies the general idea of consensus clus-
tering is finding the partition/hierarchy z that minimize the following objective
function over all the b = 1, . . . , B partitions/hierarchies,

L(z) =
Bÿ

b=1
wbd(zb, z) (3.6)

where zb is the partition/hierarchy of the b≠th method, the weights wb are the
weights for the partitions and d is the distance between partitions. Consensus
clustering will be used both in the hierarchical algorithms and in the PAM to have
a unique, more stable and robust clustering result.

3.3.1 Cluster analysis via hierarchical algorithms: extending the
FITSS

Our aim is to propose a general method accounting for the heterogeneity of lower-
level units belonging to the same higher-level observation. Starting from the FITSS
(forcing into the same subtrees) introduced by Yeung et al. (2003) we initialize
the agglomerative algorithms by assigning units of the same higher-level unit to
the same subtree in the dendrogram. The idea is to use di�erent agglomerative
algorithms managing distances between higher-level units starting from di�erent
summary statistics (minimum, average, quantiles...) of the dissimilarities computed
on multivariate outcomes observed on each lower-level unit. After this step, we
use a linkage method with distance update between subgroups relying on the same
(or possibly more similar) summary statistics. For example in a single linkage
hierarchical algorithm, the cluster dissimilarity of two clusters is the minimum
dissimilarity between two pairs of units belonging to the clusters, while in a complete
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linkage hierarchical algorithm the cluster dissimilarity is the maximum distance.
However, with data which can be substantially more heterogeneous than repeated
measures, we believe that other summary statistics of distances are better suited.
We have also to deal with the mixed-type data using the dissimilarities presented in
Section 3.2.2.

Since both the Gower index and the Gower index with Podani correction are not
metrics we restrict the attention to the following common hierarchical algorithms
(Kaufman & Rousseeuw 2009): single linkage, complete linkage, average linkage and
McQuitty linkage.

Method Names Linkage method Distance update FITSS distance
between higher-level units (Distances between

couples units
belonging to j and v)

SINGLE single linkage d(jv, l) = min{d(j, l), d(v, l)} Minimum
SINGLE_Q1 single linkage d(jv, l) = min{d(j, l), d(v, l)} First Quartile
COMPLETE complete linkage d(jv, l) = max{d(j, l), d(v, l)} Maximum
COMPLETE_Q3 complete linkage d(jv, l) = max{d(j, l), d(v, l)} Third quartile
AVERAGE average linkage d(jv, l) = nj d(j,l)+nvd(v,l)

nj +nv
Average

MCQUITTY McQuitty d(jv, l) = d(j,l)+d(v,l)
2 Average

Table 3.1. Hierarchical methods used for consensus clustering.

Table 3.1 shows the basic ingredients of these four agglomerative methods with
FITSS distance where, in the case of single and complete linkage, the FITSS has been
diversified using two di�erent summary statistics for the initialization: minimum
(SINGLE) and first quartile(SINGLE_Q1) for the single linkage and maximum
(COMPLETE) and third quartile (COMPLETE_Q3) for the complete linkage.

With the hierarchical methods, we show how the use of consensus clustering
improves the quality and robustness of our analysis yielding a unique dendrogram.
We remind that there is a bijection between dendrograms and ultrametrics so that
a generic dendrogram can be denoted by u = (ulj) where ulj is the ultrametric
distance between the l-th unit and the j-th unit.

In our consensus approach we use the Manhattan distance for d and the weights
wb are considered all equal so that the objective function (3.6) becomes:

L(u) =
Bÿ

b=1

ÿ

i<j

|hljb ≠ ulj | (3.7)
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where hljb is the ultrametric distance between the l-th unit and the j-th unit
corresponding to the b-th dendrogram. The minimization problem for (3.7) is solved
via the Sequential Unconstrained Minimization Technique (SUMT) (De Soete 1984).
We use visual inspection for the final choice of the number of clusters because
validation indexes can not be used for the consensus final partition. In fact the
indexes are calculated using distances between units: in the consensus clustering of
hierarchical algorithms initialized by di�erent distances we are not able to rely on
final distances between units. Otherwise the notions of compactness, connectedness
and separation are not extendible to the multilevel data because also observations
far away from each other could be measured in the same higher-level unit.

3.3.2 Cluster analysis via partition algorithms: extending PAM for
hierarchical data

Despite hierarchical clustering is more suitable for exploring and visualizing hetero-
geneity in our experimental data, we decided to challenge our results implementing
also a non-hierarchical partitioning method. PAM (Kaufman & Rousseeuw 2009)
looks for k representative units m1, . . . , mk, . . . , mK , called medoids so that each
medoid mk represents a cluster Ck. Each unit j belongs to the cluster whose medoid
is closest to that unit. The optimal search of K medoids is based on the following
objective function to be minimized:

Kÿ

k=1

ÿ

jœCk

d(j, mk).

The PAM algorithm used for minimization has two phases: (i) the build/initialization
phase and (ii) the swap phase. It first looks for a good initial set of medoids and
then at each swap step, one iteratively tries to swap in turn each unit with a medoid
and the swap is accepted provided that the new choice of medoids improves the
objective function. The algorithm stops when no swap can improve the objective
function. Compared to the k-means approach, PAM is more flexible and robust since
it is not limited to use euclidean distances and it accepts any kind of dissimilarities.
The Silhouette index (Equation 1.3) may help to select the number of clusters using
the average silhouette width s̃(K), which is the mean of s(K) over all objects of any
possible clustering with K groups (Kaufman & Rousseeuw 2009).

In order to implement the algorithm with our data we need to input a dissimilar-
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ity/distance matrix for higher-level units. Since PAM is a partitioning method there
is no natural linkage distance to drive the choice of a summarizing distance between
lower-level units belonging to di�erent higher-level units. Hence we found it more
appropriate to try alternative starting summaries. We use the minimum, the first
quartile, the median, the third quartile and the maximum. Once the distance is
provided, the PAM algorithm is implemented with a fixed number of clusters. Then,
one could approach the selection of a suitable number of clusters relying on some
criterion. The most used is the maximization of s̃(K) provided there is reasonable
evidence of well-formed partition, which is verified, as suggested by Kaufman &
Rousseeuw (2009), when s̃(k) Ø 0.51. In order to get a unique partition taking into
account the possibly di�erent results, we use again a consensus clustering approach.
Suppose we have B alternative partitions, {P1, . . . , Pb, . . . , PB} of the same set of
n units. A partition can be represented as a graph whose nodes correspond to the
units and two units in the same class are connected by an arc. Hence a partition
Pb can be represented in terms of the corresponding adjacency matrix Cb = (c(b)

lj ),
where c

(b)
lj = 1 if the l-th and the j-th units belong to the same class and 0 if they

do not. Similarly to the consensus clustering for hierarchies we opted for d as the
Manhattan distance and equal weights wb so that (3.6) can be rewritten as

L(z) =
Bÿ

b=1

ÿ

l<j

|cljb ≠ zlj | (3.8)

where zlj = 1 if the l-th and the j-th units belong to the same class in the optimal
partition P and 0 if they do not. Note that the minimization is carried out with
suitable conditions as in Gordon (1999) to ensure that z identifies a partition. In
order to find a unique resulting partition, we include in the consensus clustering
algorithm all partitions in K clusters obtained from the di�erent starting distances.
The optimization in (3.8), solved via the SUMT, automatically selects a suitable
number of clusters within the range of groups which have been given in input.

3.4 Distance between higher-level units: a proposal

Using the FITSS methods, proposed in Section 3.3, we measure the distance between
two higher-level units (Figure 3.1) relying on a summary statistics of the all possible
distances between pairs of lower-level units. Now we want address the issue of
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measuring the distance between two higher-level objects considering all the distances
between all the possible pairs of lower-level units.

We rely on the optimal transport problem introduced by Monge (1781). We
formulate the problem in the general form as follows: given two objects A and B

composed of a set of objects {A1, . . . , Ai, . . . , Am} and {B1, . . . , Bj , . . . , Bn}. At
each object Ai is associated a mass ai Ø 0, such as at each object Bj is associated a
mass bj . Let xij be the non negative mass transported from Ai to Bj . Hence xij Ø 0.
The transport plan “ = {x11, . . . , xij , . . . , xmn} (Figure 3.2) for moving masses from
A to B is a bijection between {A1, . . . , Ai, . . . , Am} and {B1, . . . , Bj , . . . , Bn}. Let
cij be the unit cost of transporting a mass from Ai to Bj , we want to find the
transport plan “ for moving masses from A to B that minimizes the total cost,
subject to the following constraints:

• Necessary and su�cient condition: the total mass transported from A must
be equal to the total mass received by B:

mÿ

i=1
ai =

nÿ

j=1
bj ; (3.9)

• All the mass of Ai must be transported to the object B:
nÿ

j=1
xij = ai i = 1, . . . , m; (3.10)

• All the mass of Bj must be received from the object A:

mÿ

i=1
xij = bj j = 1, . . . , n. (3.11)

The subset � represents all the possible transportation plans “ for which (3.10)
and (3.11) hold true. The optimal transport plan is then defined as the minimization
problem:

“ú : arg min
“œ�

mÿ

i=1

nÿ

j=1
cijxij (3.12)

subject to the constraints (3.9), (3.10) and (3.11).
When the cost is defined in terms of a distance, we end up formalizing the

Wasserstein distance between two objects A and B, which is in fact related to
the optimal transport plan. As suggested by Villani (2008), the terminology of
Wasserstein distance is very questionable since the explicit definition of the distance
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Figure 3.2. An example of a transport plan between two objects A and B with a given
matrix for the costs of transport.

is not so easy to find in Wasserstein’s work. Moreover, these distances are “discovered
and rediscovered” by several authors over time, including Gini (1921), Kantorovitch
(1958), Vaserstein (1969), Mallows (1972), Tanaka (1973), so that the distance occurs
with di�erent names as the Mallows distance, the optimal transport distance, the
Earth Movers’ distance etc...

Villani (2008) define the Wasserstein distance of order p between two probability
measures µ and ‹, using the notion of transport plan “, as following.

Definition 1 (Wasserstein Distance). Let (X , d) be a Polish metric space (complete
separable metric space), and let p œ [1, Œ). For any two probability measures µ, ‹ on
X , the Wasserstein distance of order p between µ and ‹ is defined by the formula:

Wp(µ, ‹) =
A

inf
“œ�(µ,‹)

⁄

X
d(x, y)pd“(x, y)

B1/p

. (3.13)

Given µ œ P (X ) and ‹ œ P (Y), then �(µ, ‹) is the set of all joint probability
measures on X ◊ Y whose marginals are µ and ‹ respectively.

For example, when we want to calculate the Wasserstein distance between two
objects A = {A1, . . . , Ak} and B = {A1, . . . , Bk} with the same masses equal to 1
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and with the Euclidean distance as cost function we have the simplified formulation:

Wp(A, B) =
ÿ

i

Î ai ≠ b“ú(i) Îp . (3.14)

The Wasserstein distance has no closed form solution and can only be solved
by linear programming algorithms. The R-package transport (Schuhmacher et al.
2017) propose several algorithms to solve the problem for the optimal transport
plan:

• shortsimplex: The shortlist method, based an a revised simplex algorithm,
as described in Gottschlich & Schuhmacher (2014);

• revsimplex: The revised simplex algorithm with various speed improvements,
including a multiscale approach, as described in Luenberger & Ye (2015);

• primaldual: The primal-dual algorithm as described in Luenberger & Ye
(2015);

• aha: The Aurenhammer et al. (1998) method with the multiscale approach
presented in Mérigot (2011);

• auction: The auction algorithm by Bertsekas (1988) with epsilon-scaling, see
Bertsekas (1992);

• auctionbf: A refined auction algorithm that combines forward and revers
auction, see Bertsekas (1992).

Finally, our proposal is use the optimal transport plan problem to measure the
distance between two higher-level units A and B by taking a dissimilarity measure
(Gower or Podani for mixed-type data) as cost function. The masses are fixed as
follows: aj = 1/na and bi = 1/nb, so that

qna
j=1 aj =

qnb
i=1 bi = 1 to account for the

unbalanced sizes of the higher-level units.





Chapter 4

Supervised classification for
multilevel data

Supervised classification is used in order to estimate the predictive performance of
several classifiers, given a classification of the isolates formulated by researchers. Our
final goal is the partition validation, so we focus on the cross-validation algorithm
to avoid the overfitting problem. We use several classifiers to have more indexes
to evaluate the predictive performance. The challenge of mixed-type data is not
relevant in supervised classification because the variables are used as covariates in the
algorithms. On the other hand we need to define modified strategies for supervised
classification of hierarchical data structure, using a model that simultaneously
combine predictors and gives a unique prediction for a higher-level unit. In this
way, with supervised classification, we have the possibility to classify new future
discovered prion diseases within the defined partition.

4.1 Supervised classification for multilevel data

Supervised classification problems with a multilevel structure have not received the
same attention in the statistical literature as the general classification problem, as
evidenced also by Yamal et al. (2011) and Yamal et al. (2015). These are perhaps
the only two papers published in statistical journals, while heuristics methods
are widely proposed in medical literature where we can find some examples of
that problem: classifying measurements of cell nuclei from fine needle aspirates to
diagnose breast cancer (Mangasarian et al. 1995), measurements of mouthwashes
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for patient diagnosis of oral cancer and periodontal pathogens (Sciubba et al. 1999,
Christian 2002, Boutaga et al. 2007) and flow cytometric measurements (Cadez et al.
1999). Yamal et al. (2011) identify three possible approaches to the problem: (i)
extracting higher-level features from the lower-level data, (Bashashati & Brinkman
2009, Lugli et al. 2007, Thiran & Macq 1996) (ii) using a statistical model that
accounts for the multilevel data structure (Swartz et al. 2005) and (iii) classifying
at the lower-level and then use an ad hoc approach to classify at the higher-level
(two-steps approach) (Cadez et al. 1999). Cadez et al. (1999) use a hierarchical
Bayesian model with two levels, firstly modeling the distribution of the lower-level
units with a mixture model, and then modeling the probability at the higher-level
for each class.

Swartz et al. (2005) propose the cumulative log-odds (CLO) approach. They deal
with the multilevel classification problem by obtaining estimates for the posterior
log-odds of diseases, given the observed data at the lower-level and then combining
those estimates to calculate the posterior log-odds of disease at the higher-level.
The model is applied to classify patients (higher-level unit) with adenocarcinoma of
the cervix, while the lower-level data are cellular measurements within each patient.
CLO assumes that given the disease state, the cellular measurements share an
identical distribution and are independent of each other, modeled by the posterior
log-odds of disease. In other words, the assumption is that conditional on the
class, the feature vectors for the members of the same population (the lower-level
units) are i.i.d. The density functions are approximated using a kernel density
estimate. CLO is similar to the naïve Bayes. The only di�erence is that in the
naïve Bayes the unit of measurement and unit of classification are the same, whereas
in the CLO lower-level units are for the measurement and higher-level units are
for the classification. An extension of this method was proposed using latent-class
cumulative log-odds (LACLO) by (Yamal et al. 2011), allowing for heterogeneity
of the distributions of the data within a disease state. They assume the existence
of an unobserved latent variable and that the features are i.i.d., given the class
and the latent variable. The densities are estimated with a functional clustering
method: firstly they compute a density estimate for each higher-level unit and then
apply a clustering algorithm to the densities. The proposal methods only deal with
the binary classification problem; in the model-based methods, only quantitative
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variables that can be modeled with density estimation are considered.
There is not evidence of the best approach to the multilevel supervised classifica-

tion problem: Tsybrovskyy & Berghold (1999) show that ignoring the higher-level as
the unit of analysis, leads to an increase in bias. Therefore a multilevel method could
be the best approach to this problem. Yamal et al. (2015) apply several methods of
the three approaches to the same dataset and compare the predictive performance
to find the best one. Results highlight good performances of the two steps approach
using Elastic Net and Tree-based methods for the lower-level classification.

These papers do not deal with the problem of adapting cross-validation algorithms
to consider the multilevel structure of the dataset. Only Yamal et al. (2015) explain
their cross-validation strategy. They divide the data into three sets: training,
validation, and test sets, following the basic rules of Friedman et al. (2009). They use
the training set to estimate the parameters of a classifier, either by using the whole
training set to fit models with no “free” parameters (e.g., logistic regression) or by
using five-fold cross-validation to choose the model parameters (e.g., the penalization
parameter of L1-regularized logistic regression), relying on double cross-validation
even if they do not formalize the algorithm. The validation set is used to obtain
estimates of the trained classifier’s performance using the parameters estimated in
the training set and to select a classifier to apply to the test set. The test set is used
to obtain an unbiased estimate of the chosen classifier’s performance, re-estimating
the classifier’s parameters using fivefold cross-validation within the combined training
and validation sets.

4.2 A classification algorithm for multilevel data

Our problem is di�erent from the typical one already dealt with in the literature.
Firstly we do not have a binary partition, but a multi-class partition where a
class label yij = 1, . . . , g, . . . , G is defined for each higher-level unit. Secondly, our
predictors or covariate are the mixed-data xij and we can not use methodologies
to model the joint density. We propose a method within the “two-steps approach”:
firstly we classify the lower-level units and then we use an ad hoc approach to classify
at the higher-level.

We assume that the probability for a lower-level unit to belong to a group,
given the class label, does not depend on the higher level unit. These probabilities
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can be then used to classify the higher level unit. We start from predicting the
class probabilities at the lower-level using several classification algorithms and then
use a suitable approach to classify at the higher-level. In this way, we can also
evaluate alternative standard classifiers and use a combination of classifiers. We now
introduce methodological details of our supervised classification analysis.

4.2.1 Classification for lower-level units

We use classifiers for the i-th lower-level observation nested within the j-th higher-
level unit. The probability of belonging to the g-th class, derived from the k-th
classifier, is denoted by p̂k

ijg(x). Classification methods dealing with mixed-type data
used for the analysis are Random Forest (RF, k = 1), Gradient Boosting Method
(GBM, k = 2) and Neural Network (NNET, k = 3) (Friedman et al. 2009). The
best tuning parameters are chosen using a 10-fold cross-validation, for each classifier,
within a step of the higher-level leave-one-out procedure as described in Section
4.3. The double cross-validation approach of Mertens et al. (2006) is adjusted
for multilevel data. Moreover, in order to enhance the predictive performance,
combination approaches at the lower-level may be considered (Kakourou et al. 2014).
As a first approach, we consider a simple convex combination. We take the average
of predicted probabilities fitted by each classifier k:

pAV E
ijg (x) =

Kÿ

k=1
wkpk

ijg(x) (4.1)

where wk are the weights for the k-th classifier with
qK

k=1 wk = 1. In the absence of
a priori information, we set equal weights: wk = 1

K .

Alternatively, we use a model based combination approach (Kakourou et al. 2014)
by fitting a multinomial logistic regression to the set of posterior class probabilities
functions:

log
A

P (yij = g)
P (yij ”= g)

B

= —0 +
Kÿ

k=1

Gÿ

g=1
—kglogit

1
pk

ijg(x)
2

(4.2)

There are some non trivial issues with the model in Equation 4.2. Using the
predictive probabilities pk

ijg(x), calibrated on the training set, can lead to both
overfitting and bias (LeBlanc & Tibshirani 1996). Kakourou et al. (2014) choose to
use leave-one-out “double cross-validation” (Mertens et al. 2006) to calibrate the
predicted class probabilities of the classifiers to be combined. On the other hand
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logit(pk
ijg(x)) are correlated predictors, so we use the Elastic Net Regression (Zou

& Hastie 2005) that performs both regression and variable selection. The penalty
index – œ (0, 1) appearing in the term

qp
j=1(1 ≠ –)1

2Î—jÎ2
2 + –Î—jÎ2, is also chosen

via cross-validation. Note that in this elastic net framework with – = 0, we get the
lasso penalty and with – = 1, we get the ridge penalty.

4.2.2 Prediction for the higher-level unit

Given a classifier k, for each lower-level unit, probabilities p̂k
ijg(x) are derived as

explained in Section 4.2.1. However, it may happen that di�erent lower-level units
within the same higher-level unit may result as predicted in di�erent classes. Indeed
we need to elaborate predictions from lower-level units nested within a higher-level
unit to get a single higher-level prediction. Hence we consider the following three
di�erent methods for exploiting lower-level predictions.

Modal value method. Firstly, we assign each lower-level unit to the most prob-
able class:

ŷk
ij = argmax

g=1,...,G
p̂k

ijg(x) (4.3)

and obtain a vector of labels: ŷk
j =

1
ŷk

1j . . . , ŷk
njj

2
for the higher-level unit. Then,for

each j-th higher-level unit, the class predicted is the modal class,

ŷk
j = Mode{ŷk

j } (4.4)

A possible issue occurs when the subset of class labels is multi-modal, in that case,
there is no unique assignment of class label.

Average method. For each class g, the predictive probability for the j-th higher-
level unit is obtained as the average of predicted probabilities for the nj lower-level
units nested in the j-th higher-level unit,

‚pk
jg = 1

nj

njÿ

i=1
p̂k

ijg (4.5)

and we finally use the class with the highest value of the average probability for
classification:

ŷk
j = argmax

g=1,...,G

ˆ̄pk
jg (4.6)
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Higher-level model-based combination (HLMBC method). The basic idea
is to aggregate the information of the standard classifiers using the average of the
predicted probabilities

1
pk

jg(x)
2

as the predictors on the model-based combination
approach as follows:

log
A

P (yj = g)
P (yj ”= g)

B

= —0 +
Kÿ

k=1

Gÿ

g=1
—kglogit

1
pk

jg(x)
2
. (4.7)

However, issues related to the estimation of the predicted probabilities pk
jg(x) arise.

We decide to estimate the probabilities pk
jg(x) exploit the 10-fold cross-validation

step within the leave-one-out. For each fold, we calculate the estimated probabilities
p̂k

ijgf (x). Finally, we take the average within each fold to have a probability for the
higher-level unit, denoted by ‚pk

jgf (x). We now have a new training set composed
only of higher-level units repetitions (indexed with j for the higher-level and f for
the di�erent folds) and each repetition is composed of di�erent lower-level units:

T =
Ó1

yj , ‚pk
jgf (x)

2
; g = 1, . . . , G; f = 1, . . . , F

Ô
(4.8)

On this training set, we perform another 10-fold cross-validation to tune the best
parameters of an Elastic Net Regression based on Equation 4.7. This way we avoid
overfitting problems since the ‚pk

jgf (x) are calibrated in an external way during the
10-fold cross-validation on the standard classifiers and the performance is evaluated
in an external testing set as described in Section 4.3.

4.3 Cross Validation for multilevel data: higher-level
unit leave-one-out

We use a double cross-validation approach each training set of the overall cross-
validation an embedded cross-validation is performed in order to find the best tuning
parameters and estimate the predictive class probabilities.

We modify the cross-validation algorithm in order to take into account the
multilevel structure of the dataset. With this algorithm, we want to avoid the
overfitting problems and also have an evaluation of the predictive performance of
the classifiers using di�erent samples of lower-level units for the same higher-level
unit. We also aim at avoiding a possible bias due to a specific testing set. We have
to work both in the training set, to correctly calibrate the predictive probabilities
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for the model-based combination of classifiers, and in the testing set in order to have
alternative samples of lower-level units for the same higher-level unit to predict the
class which the higher-level unit belongs to. We first use a leave-one-out strategy
for the higher-level units so that the training set is composed of all lower-level
units not belonging to the j-th higher-level unit. With this training set, we use the
10-fold cross-validation in order to find the best tuning parameters, as well as model
parameters. Hence we get the calibrated estimates of lower-level class probabilities
in (4.2) and (4.7).

Let Dj = {(yij , xij); i = 1, . . . , nj} denote the subset of data corresponding to the
j-th higher-level unit. We use all possible samples of the lower-level units in Dj to
create alternative testing sets. In this way, we can evaluate the predictive performance
of the same higher-level unit. In fact, we start from di�erent combinations of lower-
level units because we want to avoid results influenced by a specific choice of
lower-level units. Another benefit of this sampling in Dj is to use a fixed minimum
number m of lower-level units. Since the goal of classifiers is the potential prediction
of new strains, a possible future testing set will be new experiments with m bank
voles for each new strain. If we fix m = min {nj} = 3 and get a good predictive
performance then we can safely plan triplicate experiments. Indeed we note that m

should be as low as possible for ethical reasons. The notation for the leave-one-out
training datasets is the following: D≠1, ..., D≠j , ..., D≠J , where D≠j =

t
l ”=j Dl.

We specify the pseudo code for the adjusted higher-level “leave-one-out” modified
strategy in Algorithm 1 and in Figure 4.1

Note that for the HLMBC method we use the predicted probabilities ‚pk
jgf (x) for

the folds created in the first cycle and then we use the training set defined in (4.8)
with another 10-fold cross-validation to calibrate the model (4.7).



for j = 1 to J do
Remove all the lower-level units belonging to the j-th higher-level from D:
D≠j ;
for k= 1 to K do

Train classification algorithms on D≠j ;
Do a 10-Fold cross-validation to find best tuning parameters;

end
Use Dj to form di�erent testing sets Sj

l l = 1, . . . , Lj with a fixed number
m of lower-level units with Lj =

!nj
m

"
;

for k= 1 to K do
for l= 1 to Lj do

Determine the predictive probability p̂k
ijg(x) of the i-th lower-level

unit in the l-th testing set Sj
l of the j-th higher-level unit to belong

to the g-th class;
Assign the j-th higher-level unit to one of the G classes properly
combining p̂k

ijg(x);

end

end

end
Algorithm 1: Higher-level unit “leave-one-out”



61 Supervised classification for multilevel data

Figure 4.1. A schematic representation of the Algorithm 1 .





Chapter 5

Application to the scrapie
disease data

In this Chapter, we apply the proposed methods to the scrapie dataset, described in
Section 2.1. The aim is the validation of the a priori partition elicited by researchers.
They have originally formulated 5 groups for the 36 isolates (RP partition): (1) the
SSBP/1 like group composed only by 2 isolates, (2) the UK35 with 13 isolates, (3)
the It93 groups with 11 isolates, (4) the Type-C with 5 isolates and the (5) Type-A
with 5 isolates. The researchers’ external evidence for eliciting this group partition
have been essentially based on the geographic sources, while the Type-A and the
Type-C groups have occurred as new variants when di�erent pathological phenotypes
were observed in animals inoculated with the same inoculum at first passage.

Following the outline in Figure 1.2, we discuss the cluster analysis with several
methods and then we compare the resulting EP partitions with the a priori RP
partition using the Adjusted Rand Index. Finally, researchers elicit the new partition
(NP) taking advantage of the results of the cluster analysis elicited a new partition
based on the EP and the RP. Then we use supervised classification to validate the
NP partition using the evaluation of the predictive performance of the Accuracy
index, the Sensitivity and Specificity index for the groups (see Section 1.3). Good
predictive performances of the indexes validate our group structure and we can use
the best classifier for predicting new further discovered isolates within this group
structure.
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5.1 Clustering analysis

We use distance-based algorithms proposed in Chapter 3 to cluster the scrapie disease
dataset. We first need to choose the metrics for measuring the distance between
units for all the clustering methods. We focus on the two indexes introduced in the
Section 3.2.2: the Gower index (Gower 1971) and the Gower index with Podani
correction (Podani 1999) (thereafter called “Podani index” to simplify). For example,
in Figure 5.1 we compare the two indexes computed between all couples of lower-level
units, one belonging to Uk1 and the other belonging to a possibly di�erent isolate.
On the left, in red, we highlight the distribution of dissimilarities within the same
isolate (Uk1). Podani index is better suited for detecting more dissimilarity between
units belonging to di�erent isolates rather than units within Uk1. This happens
also when we replace Uk1 with a di�erent isolate. For this reason, we choose Podani
index as dissimilarity measure for our cluster analysis.

Figure 5.1. Distribution of Gower index and Podani index for the isolate Uk1. In red on
the left the distribution of dissimilarities within the isolate Uk1. In grey the distributions
of dissimilarities between all couples of lower-level units one belonging to Uk1 and the
other belonging to a possibly di�erent isolate.
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5.1.1 Hierarchical FITSS clustering results

We apply the FITSS algorithms to the scrapie dataset using the alternative six
methods listed in Table 3.1. We initialize each algorithm with a summary statistics
for distances which are associated with the linkage method.

Figure 5.2. Dendrogram of hierarchical algorithms in Table 3.1
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Figure 5.2 shows the resulting six dendrograms for all the considered methods.
Despite some of the dendrograms appear to provide more similar evidence, others
show some peculiar features: a chaining e�ect (units merging at every step in one
unique elongated cluster) is apparent for the single linkage (SINGLE) whereas
the same is less apparent for the complete linkage (COMPLETE) method. The
chaining e�ect is not present when the FITSS initial distances are the first quartile
for the single linkage (SINGLE_Q1) and the third quartile for the complete linkage
(COMPLETE_Q3). Looking at each dendrogram separately we observe that the
isolates TypeA and TypeC merge the other isolates at high distances. The isolates
SSBP/1 and Uk4 are neighbors in all the dendrograms except for the single linkage
methods (SINGLE and SINGLE_Q1).

Validation indexes lose importance with the multilevel data because observations
which are di�erent from each other are forced to be in the same cluster by the mem-
bership to the same higher-level unit. However, we calculate the internal validation
indexes within each dendrogram: the Connectivity index is always minimized for a
number of groups equal to 2; the Dunn index does not show homogeneous results,
but it shows very low values for the SINGLE algorithm; the Silhouette index yields
negative values for the SINGLE algorithm, while in the other methods presents the
highest value for a number of groups equal to 3.

Even if the hierarchical methods show overall similarity, finally, we use consensus
clustering to improve the quality and robustness of our analysis yielding a unique
dendrogram. Figure 5.3 shows the resulting dendrogram for the consensus clustering
obtained from combining the alternative hierarchical methods. We can not calculate
the internal validation indexes for the consensus clustering results, so we consider to
cut the dendrogram at di�erent levels and compare the results with the RP. There
is visual evidence of at least k = 3 groups (H3 partition in Table 5.1) with the
possible further partitioning of two of them for a maximum of k = 5 subgroups (H5
partition in Table 5.1). In the latter finer partition there are two groups made of
few isolates: one consists of a single isolate It7, whereas the other contains only Uk4
and SSBP/1. As we have observed in the singular results, isolates with “A” su�x
aggregate each other at a distance of 0.06 and are in the last cluster aggregated at a
distance of 0.14. Also, the isolates with “C” su�x are well isolated from the other
units. The consensus clustering of hierarchical methods seems to aggregate the two
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groups Uk85 and It93 in a unique big group. These are also the two groups with the
highest number of isolates and with the big sizes also in terms of lower-level units.
The small sizes in isolates do not seem to a�ect the hierarchical clustering method.

Figure 5.3. Dendrogram for consensus clustering of hierarchical methods.

5.1.2 Partitioning clustering results

We now rely on the Partitioning algorithm as explained in Section 3.3.2. To measure
the distances between higher-level units we rely on several summaries of the distances
between all the couples of lower-level units. We use the same summaries of the
hierarchical algorithms: the minimum, the first quartile, the third quartile and the
maximum and we consider the median instead of the average. Then we apply the
PAM algorithm starting from all the distances. We compute the algorithm for all
the partitions with a number of groups from 2 to 8. We include in the consensus
clustering all partitions with s̃(k) Ø 0.51 (Figure 5.4) regardless of their number
of groups. The partition with the highest number of groups has 6 clusters and is
obtained using the First Quartile distance. Other partitions included for consensus
clustering have from 2 up to 5 clusters for the other distances. The algorithm with
initial maximum distance yields partitions for which the condition s̃(k) Ø 0.51 is not
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met for any k. The consensus clustering yields a final partition of 4 groups, denoted
with PAM4 in Table 5.1.

Figure 5.4. Silhouette indexes for the PAM results starting from di�erent summaries of
the distances.
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5.1.3 Results for the distance-based methods with the Wasserstein
distance

We apply distance-based algorithms using the Wasserstein distance introduced
in Section 3.4 within the optimal transport plan paradigm. Firstly, we rely on
hierarchical algorithms with the single, the complete, the average and the McQuitty
linkages. We use consensus clustering to have a unique result. In Figure 5.5 we
report the dendrogram for each of the 4 methods. The groups TypeA and TypeC
are well separated from the other isolates by all the methods. In all dendrograms,
we note that the isolate Uk4, which belongs to the SSPB1like group in RP, merges
the other isolates at a higher distance than the other isolates without TypeA and
TypeC su�xes.

Figure 5.5. Dendrogram of hierarchical algorithms using the Wasserstein distance.

Figure 5.6 shows the final dendrogram obtained with the consensus clustering.
The isolates with su�x TypeA and TypeC aggregates the other isolates only at the
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last step. The isolates Uk4 and the It7 seem to be di�erent from the majority of the
other units. The Uk4 forms the SSBP1like group with the SSBP/1 isolate in the
RP partition, but in the dendrogram, the isolate Uk4 shows a relevant di�erence
from all the other isolates. Also, It7 is far away from the others. Due to a visual
inspection, the best number of groups is k = 3 (H3.W partition in Table 5.1). If we
choose k = 4 we will have a group formed just by the Uk4 isolate, while if we choose
k = 5 we will have also a group composed just of the It7 isolate.

Figure 5.6. Dendrogram for consensus clustering of hierarchical methods with the Wasser-
stein distance.

Secondly, we use the Wasserstein distance also with the PAM algorithm. We
compute the average silhouette index s̃(k) (Figure 5.7) to choose the best number of
groups. We choose to compare with the RP partition both the k = 3 and the k = 4
PAM results (PAM3.W and PAM4.W partitions in Table 5.1). Also, this results
highlight the peculiar features of the TypeA and the TypeC isolates which form two
distinct classes.
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Figure 5.7. Silhouette indexes for the PAM algorithm with the Wasserstein distance.

5.2 Comparison of clustering results and the a priori
researchers’ partition

In Table 5.1 we compare all six di�erent partitions (H3, H5, PAM4 and H3.W,
PAM3.W, PAM4.W for Wasserstein distance), obtained with our cluster analyses, to
a benchmark partition in 5 groups, that has been elicited a priori by researchers (RC:
1- SSPB1like, 2- Uk85, 3- It93, 4- TypeC, 5- TypeA). The H3, H3.W, and PAM3.W
have obtained the same clustering results. All the clustering results distinguish
TypeC and TypeA groups. The single isolate It7 is allocated in di�erent groups
over all the clustering results. The group SSPB1like is found only in the hierarchical
method with 5 groups. The groups labeled as Uk85 and It93 are collapsed in the
hierarchical methods, while in the consensus PAM with 4 groups they are partially
found because Uk85 integrate also the SSPB1like and the isolate No1 belonging to
It93; while in the PAM4.W No1 is correctly assigned to It93.

Overall these results have a di�erent number of groups from the RP. The results
seem to be in good agreement with the a priori partition although they suggest that
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the presence of a separated new group It7 could be appropriate. It7 segregation
might be explained by the biological properties of the original isolate, composed
of a pool of more brains of sheep a�ected with scrapie, instead of single brain. In
Table 5.1 we report also the Adjusted Rand index. The di�erent number of groups
implies lower values of the index but they indicate a good agreement between the
partition conceived by researchers and the clustering results. Finally, we propose a
new partition denoted with NP which integrates the It7 class. Groups in H3 and
H5 agree with the new proposal NP better than RC. While the PAM algorithms
with 4 groups show a worse agreement in terms of the Adjusted Rand index. The
NP classification will be validated via predictive performance using the supervised
classification.

5.3 Supervised classification for the NP partition

After labeling each isolate with the class denoted by the NP partition, we evaluate the
performance of alternative classifiers and combination methods using the accuracy
index as a quantitative key indicator. Accuracy and its confidence interval for modal
value, average probability, and HLMBC method are compared in Table 5.2. There
is no substantial di�erence in term of accuracy in using the modal value methods
rather than the average probability for each specific classifier. On the other hand
the distribution of predictive groups for each isolate can be multi-modal and in this
case, there is still some degree of uncertainty in classification. Indeed we consider a
correct classification for the j-th isolate if the right group is within the modal values.
This means that the accuracy in Table 5.2 is in fact slightly overstated as far as the
modal value method is concerned. We report in Table 5.2 the mean percentage of
times (%SMV) that there is a single modal value and the overall average number of
modal values in each isolate (AMV).

Regardless of the way of exploiting group probabilities at lower-level the best
single classifier is the Random Forest. On the other hand, all combination methods
relying on group probabilities at lower-level are outperformed by the HLMBC method
(Equation 4.7) which first aggregates at higher-level the lower-level group probability
and then fits a model based on such higher-level predictors. The good accuracy
consistently achieved by all methods can be regarded as a first solid validation of
the NP partition. However, we could look at a finer level the predictive performance
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Isolates RP H3 H5 PAM4 H3.W PAM3.W PAM4.W NP
Uk4 1 1 1 1 1 1 1 1
SSBP/1 1 1 1 1 1 1 1 1
Uk12 2 1 2 1 1 1 1 2
Uk10 2 1 2 1 1 1 1 2
Uk11 2 1 2 1 1 1 1 2
Uk13 2 1 2 1 1 1 1 2
Uk14 2 1 2 1 1 1 1 2
Uk5 2 1 2 1 1 1 1 2
Uk8 2 1 2 1 1 1 1 2
Uk9 2 1 2 1 1 1 1 2
Fr1 2 1 2 1 1 1 1 2
Ge1 2 1 2 1 1 1 1 2
Ir1 2 1 2 1 1 1 1 2
Uk2 2 1 2 1 1 1 1 2
Uk3 2 1 2 1 1 1 1 2
No1 3 1 2 1 1 1 2 3
Uk6 3 1 2 2 1 1 2 3
Uk1 3 1 2 2 1 1 2 3
Uk7 3 1 2 2 1 1 2 3
It4 3 1 2 2 1 1 2 3
It5 3 1 2 2 1 1 2 3
It6 3 1 2 2 1 1 2 3
It1 3 1 2 2 1 1 2 3
It2 3 1 2 2 1 1 2 3
It3 3 1 2 2 1 1 2 3
It7 3 2 3 2 2 2 2 6
Sp2-C 4 2 4 3 2 2 3 4
Fr4-C 4 2 4 3 2 2 3 4
Fr3-C 4 2 4 3 2 2 3 4
Fr2-C 4 2 4 3 2 2 3 4
CH1641-C 4 2 4 3 2 2 3 4
CH1641-A 5 3 5 4 3 3 4 5
Fr3-A 5 3 5 4 3 3 4 5
Fr4-A 5 3 5 4 3 3 4 5
Sp1-A 5 3 5 4 3 3 4 5
Sp2-A 5 3 5 4 3 3 4 5
Adjusted Rand Index
RP 0.403 0.524 0.795 0.403 0.403 0.894 0.956
NC 0.956 0.435 0.556 0.759 0.435 0.435 0.851

Table 5.1. A priori classification of researchers (NP) compared with clustering results. A
new proposal of partition (NP) is then compared with the others. The Adjusted Rand
indexes are presented to investigate the similarity between groups. The (RP)groups are:
1- SSPB1like, 2- Uk85, 3- It93, 4- TypeC, 5- TypeA.
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evaluation for each group. We consider the predictive performance for each group
using Balanced Accuracy (BA), Sensitivity (SE) and Specificity (SP), (Table 5.3).
These indexes help to validate the proposed NP partition and assess whether or
not our proposed NP partition with a separated It7 group is supported. In fact,
both Sensitivity and Specificity are more than satisfactory thus providing additional
support to the partition and confirming the usefulness of our integrated approach.
On the other hand, the class featuring a less impressive performance is the SSBP1like
with SIÆ 0.5 for all classifiers, except for the GBM with modal value method and
the HLMBC method. However, the HLMBC method with an SI= 78.57% and the
highest values of SP for all classifiers still allow to specifically validate this cluster.

Aggregation method
for higher-level unit

Method for
lower-level unit

Accuracy (95% CI) %SMV AMV

Average Random Forest 98.11% (97.48%-98.62%)

Gradient Boosting 97.39% (96.67%-98.00%)

Neural Network 95.71% (94.82%-96.49%)

Convex combination 98.07% (97.43%-98.58%)

Model Combination 97.56% (96.86%-98.14%)

Modal value Random Forest 98.07% (97.43%-98.58%) 94.59% 1.02

Gradient Boosting 97.35% (96.62%-97.96%) 89.18% 1.06

Neural Network 95.58% (94.67%-96.37%) 91.89% 1.03

Convex combination 97.35% (96.62%-97.96%) 94.59% 1.04

Model Combination 97.27% (96.53%-97.88%) 94.59% 1.04

HLMBC method
(4.7)

RF-GBM-NNET 98.87% (98.35%-99.25%)

Table 5.2. Evaluation of classifiers’ performance for the NP partition: Accuracy. %SMV is
the mean percentage of times that there is a single modal value and AMV is the overall
average number of modal values in each isolate.

5.4 Characterization of the final partition

Finally, we want to analyze the data belonging to each group of the final partition.
The aim is to understand how the variables allow characterizing the groups. Especially
we look at the data in relation with the clustering and supervised classification
results. We have decided to rely on descriptive graphs to describe the distributions
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Aggregation method for
higher-level unit

Method for lower-level
unit

Groups Balanced
Accuracy

Sensitivity Specificity

Average Random Forest It93 98.63% 98.34% 98.91%
SSBP1like 60.71% 21.43% 100.00%
It7 75.00% 50.00% 100.00%
TypeA 100.00% 100.00% 100.00%
TypeC 99.93% 100.00% 99.85%
Uk85 98.62% 98.91% 98.32%

Gradient Boosting It93 98.22% 98.34% 98.10%
SSBP1like 64.28% 28.57% 100.00%
It7 82.50% 65.00% 100.00%
TypeA 99.81% 100.00% 99.63%
TypeC 98.84% 97.83% 99.85%
Uk85 97.93% 97.34% 98.52%

Neural Network It93 96.40% 94.70% 98.10%
SSBP1like 50.00% 0.00% 100.00%
It7 50.00% 0.00% 100.00%
TypeA 95.37% 91.77% 98.97%
TypeC 99.93% 100.00% 99.85%
Uk85 98.42% 100.00% 96.84%

Convex combination It93 98.50% 98.01% 98.98%
SSBP1like 60.71% 21.42% 100.00%
It7 72.50% 45.00% 100.00%
TypeA 100.00% 100.00% 100.00%
TypeC 99.93% 100.00% 99.85%
Uk85 98.74% 99.28% 98.19%

Model Combination It93 98.33% 98.56% 98.10%
SSBP1like 50.00% 0.00% 100.00%
It7 77.50% 55.00% 100.00%
TypeA 100.00% 100.00% 100.00%
TypeC 99.93% 100.00% 99.85%
Uk85 97.80% 97.34% 98.26%

Modal value Random Forest It93 98.74% 99.45% 98.03%
SSBP1like 67.85% 35.71% 100.00%
It7 75.00% 50.00% 100.00%
TypeC 100.00% 100.00% 100.00%
TypeC 99.93% 100.00% 99.85%
Uk85 98.22% 97.34% 99.10%

Gradient Boosting It93 97.94% 97.57% 98.30%
SSBP1like 82.14% 64.29% 100.00%
It7 85.00% 70.00% 100.00%
TypeA 99.81% 100.00% 99.63%
TypeC 98.84% 97.83% 99.85%
Uk85 97.80% 97.34% 98.26%

Neural Network It93 96.35% 94.80% 97.89%
SSBP1like 50.00% 0.00% 100.00%
It7 50.00% 0.00% 100.00%
TypeA 94.93% 90.95% 98.92%
TypeC 99.93% 100.00% 99.85%
Uk85 98.15% 99.40% 96.90%

Convex combination It93 97.80% 97.57% 98.03%
SSBP1like 67.86% 35.71% 100.00%
It7 75.00% 50.00% 100.00%
TypeA 100.00% 100.00% 100.00%
TypeC 99.93% 100.00% 99.85%
Uk85 97.67% 97.34% 98.00%

Model Combination It93 97.80% 97.57% 98.03%
SSBP1like 60.71% 21.43% 100.00%
It7 75.00% 50.00% 100.00%
TypeA 100.00% 100.00% 100.00%
TypeC 99.93% 100.00% 99.85%
Uk85 97.35% 97.34% 97.35%

HLMBC method (4.7) RF-GBM-NNET It93 99.02% 98.78% 99.25%
SSBP1like 89.29% 78.57% 100.00%
It7 92.50% 85.00% 100.00%
TypeA 100.00% 100.00% 100.00%
TypeC 99.95% 100.00% 99.90%
Uk85 98.94% 98.79% 99.10%

Table 5.3. Evaluation of performance of the classifiers for the NP partition: Sensitivity,
Specificity and Balanced Accuracy.
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for both the survival time and the lesion profiles in 9 brain areas. Figure 5.8 shows
the violin plots for the survival times of the bank voles in the 6 final groups. The
TypeA class shows an asymmetric distribution which essentially overcomes the
other distributions, with a median survival time equal to 145. Also, bank voles
inoculated with TypeC isolates show higher survival times than the other remaining
groups. The It7 isolate shows higher survival times than the It93 that is the group
in which researchers classified the It7 in the RP. Finally the Uk85 and the SSPB1like
shows similar distributions for the survival times with the same median equal to 72.
Looking at these evidence for the survival time we can also find some relation with
the clustering results: all the methods have identified clearly the TypeA and the
TypeC groups, while many methods have not been able to detect the di�erences
between It93 and Uk85.

Figure 5.8. Violin plots for the Survival time in the 6 classes of the NP partition.

We study the discrete distributions of the lesion profile in the 9 areas with bubble
plots (Figure 5.9) for the six final groups. The It93 (Figure 5.9(a)) shows a similar
distribution to the Uk85 group (Figure 5.9(c)), and the modal value for each area
are equal to the modal values of all the dataset as shown in Section 2.1. However,
the It93 is more heterogeneous than the Uk85. The It7 (Figure 5.9(b)) shows a more
variable distribution, and also low values for the A6 (hippocampus). The SSBP1like
(Figure 5.9(d)) shows very heterogeneous results deviating from the dataset modal
values especially for the A8 and A9 areas (retrosplenial and adjacent motor cortex;
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cingulate and adjacent motor cortex). The TypeA (Figure 5.9(e)) shows more bank
voles with high values in all the areas with respect to the overall modal values. The
di�erence is highlighted especially for the A2 area (cerebellum) which is not infected
in the majority of the other isolates. The TypeC (Figure 5.9(f)) shows high values
in the A1 (medulla), but lower values for the A6 and the A8 areas (hippocampus;
retrosplenial and adjacent motor cortex). Again the descriptive analysis highlights
the di�erence of the TypeA and the TypeC isolates which are variants arisen in the
second passages of the experiment. The lesion profile seems to be di�erent also for
the It7 and the SSBP1like, the two groups which are not always separated in the
cluster analysis and which also show relatively lower values of Sensitivity index in
the supervised classification. These groups are also a�ected by the size problem
in term both of isolates (higher-level units: 1 and 2 respectively) and bank voles
(lower-level units: 10 and 9 respectively).

Finally, we study the correlations between the survival times and the ordinal
variables of the lesion profile areas using the Spearman correlation index. Using the
correlogram plot (Figure 5.10) we are also able to detect some “spatial” information.
In fact, the areas are enumerated following a proximity criteria. The It93 group
does not show significant correlations between the survival times and the scores
evaluated in the nine areas. Significative correlations are highlighted in the quadrant
composed of the areas from A3 to A9 in Figure 5.10(a). The A2 present significative
negative correlations with no adjacent areas A4, A6, and A7. The It7 correlations
(Figure 5.10(b)) show a significant negative correlation between the survival time
and the scores in the A7 area. From A3 to A9 there are some significative positive
correlations, especially for the two areas A8 and A9. The Uk85 group (Figure 5.10(c))
shows a high significative positive correlation only between the A8 and A9 areas.
The survival time is positively correlated with the A3 and the A8 areas. SSBP1like
group (Figure 5.10(d)) present a high positive correlation between the A1 and the
A3 areas and also between A5 and A6. The survival time for the TypeA group
(Figure 5.10(d)) is positively correlated with A3, A4, and A9, while the other
correlations appear substantially a block excluding the A2 and the A6 areas. TypeC
(Figure 5.10(e)) shows positive correlations between the survival times and the A5
area, while adjacent correlations appear from A7 to A9 areas.

In conclusion, the TypeA and TypeC groups stand out from the other groups both



in term of survival time and in lesion profiles. For TypeA the highest survival times
are correlated with the superior colliculus which is very lesioned with scores greater
than 3. Also the hypothalamus and cingulate and adjacent motor cortex influence
the survival time even if they do not present peculiar values in the distribution.

The It7 isolate group shows middle values for the survival time, which is negatively
correlated with the lesions in the septum area, where several bank voles show lower
values than the others belonging to the other di�erent groups. Low values of survival
time in the SSBP1like are relatively lower uncorrelated with scores in the lesion
profiles, but in a short time, many bank voles are very damaged in the areas from
A5 to A9.

It93 is similar to Uk85 in lesion profile values, but It93 has higher survival times
than the Uk85. the correlation structures of these two groups are also di�erent: the
survival time is uncorrelated with the areas for It93, while in Uk85 is correlated with
the superior colliculus and retrosplenial and adjacent motor cortex scores. Those
two groups are merged into the hierarchical cluster, while are well separated from
the partition method PAM.



(a) (b)

(c) (d)

(e) (f)

Figure 5.9. Distributional plots for lesion profile in 9 brain areas (A1-A9)
for classes (a) It93 (b) It7 (c) Uk85 (d) SSBP1like (e) TypeA, (f) TypeC.
A1=medulla, A2=cerebellum, A3=superior colliculus, A4=hypothalamus, A5=thalamus,
A6=hippocampus, A7=septum, A8=retrosplenial and adjacent motor cortex,
A9=cingulate and adjacent motor cortex.
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(c) (d)

(e) (f)

Figure 5.10. Spearman correlation plots for survival times and lesion profile in
9 brain areas (A1-A9) for classes (a) It93 (b) It7 (c) Uk85 (d) SSBP1like (e)
TypeA, (f) TypeC. Crosses indicate not-significative coe�cients. TS=survival
time A1=medulla, A2=cerebellum, A3=superior colliculus, A4=hypothalamus,
A5=thalamus, A6=hippocampus, A7=septum, A8=retrosplenial and adjacent motor
cortex, A9=cingulate and adjacent motor cortex.



Conclusions and future
developments

The aim of this work is to provide appropriate tools for guiding researchers in under-
standing how data can be used to validate and possibly improve the understanding of
an isolate partition, identifying strains or groups of strains. We discuss the problem
of identifying and validating a putative “true partition” combining results from both
unsupervised and supervised classification.

In the field of prion strains characterization, this study introduces methodologies
that properly account for multilevel structures of transmission studies, mixed-type
data, and heterogeneity. We have considered a multiple-step approach suggesting
appropriate adjustments on both unsupervised and supervised classification steps.
The distance-based cluster analysis is used in an explorative way and allows also to
allows to match and integrate the starting partition with new information. In fact,
a comprehensive cluster analysis points out a peculiar cluster, comprising a single
isolate, It7. Although this finding was originally unexpected and overlooked in the
partition proposed by the researcher experimental classification, it has represented
an interesting contribution by the proposed extensive statistical analysis. Indeed, It7
segregation might be explained by the biological properties of the original isolate,
which represents one of the two samples in our dataset (the other is Uk7) composed
by a pool of more brains of sheep a�ected with scrapie, instead of a single brain.
This explains the motivation for formulating another partition integrating this
information and creating a new group with It7. The supervised classification is used
to validate the new proposed partition with the predictive performance evaluation
using the Accuracy index for the overall predictive performance and the Sensitivity
and Specificity indexes for the groups. Good predictive performance provides further
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validation of the newly proposed group structure and we can use the best classifier
for predicting new further discovered isolates within this partition.

In this work, we use the combination of easily understandable statistical tools
to answer experimental questions about the similarity in prion disease strains. The
proposed methods make fine-tuned use of strategies to account for the multilevel
structure of the data and the unbalanced experimental design. We advocate the use
of a data-driven approach with a mix of exploratory/confirmatory methods avoiding
explicit probabilistic assumptions. We use the consensus clustering methods with
distance-based algorithms to manage the multilevel structure of the data and the
heterogeneity within higher-level units.

The main methodological issue faced in unsupervised classification is how one can
measure distance between higher-level units also accounting for the variables’ nature,
as for example with our mixed-type data. We propose to summarize the distance
between all the couples of lower-level units belonging to two di�erent higher-level
units. Using hierarchical algorithm, with a linkage coherent with the summary
statistic chosen for the distances, is the first proposed method. This is similar to the
FITSS approach proposed by Yeung et al. (2003), even if they do not explain how to
force data into the same dendrogram. We avoid using a singular method, especially
with the purpose of not relying on a single summary statistic for the distances
between two higher-level units. We propose to use consensus clustering of di�erent
methods because of the heterogeneity of lower-level units within the same higher-level
unit and also because two lower-level units of di�erent higher-level units can be
very close, even if the other lower-level units are far away from each other. Starting
from this idea we also look for another way to measure the distance between two
higher-level units. Hence we present a distance based on the optimal transport plan
problem as the Wasserstein distance (a.k.a. Kantorovitch, Fortet-Mourier, Mallows,
Earth Mover’s distances etc..). For mixed-type data with unbalanced higher-level
unit sizes, we consider a Wasserstein distance where the costs are measured by
Gower or Podani dissimilarities, while the masses for the lower-level units in the
higher-level unit j are taken equal to 1/nj .

We provide a contribution in supervised classification for multilevel data with
the HLMBC method that simultaneously combines classifiers and aggregates the
lower-level units using the average predictive probabilities. In this framework, we also
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propose the higher-level leave-one-out cross-validation that properly accounts for the
multilevel nature of the dataset within the double cross-validation’s paradigm. The
HLMBC method, combined with this cross-validation, also allows for the problem of
unbalanced data using the samples generated in the k-fold cross-validation. At the
same time, we avoid overfitting because the testing set used is external to this k-fold
cross-validation thanks to the double cross-validation’s paradigm.

We are working on the development of a model-based clustering for multilevel
mixed-type data within the Bayesian framework. Although we have tried to use the
mixture of linear mixed-e�ect models combined with the latent variables models for
mixed-type data, but we run into identification and overparameterization problems.

The methodologies proposed in this work are linked to the scrapie dataset. The
small size of the data permits us to develop computationally expensive methods
without bumping into the curse of dimensionality. In further developments, we want
to challenge the Wasserstein distance with bigger datasets and compare it with
the existing model-based methods. The supervised classification methods with the
classifiers’ combinations and the higher-level leave-one-out cross-validation algorithm
are computationally expensive even with the scrapie dataset, so we would like to
manage it to be suitable also for a bigger dataset.
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