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Abstract. The present paper concerns rigorous homogenization of a Hencky-
type discrete beam model, which is useful for the numerical study of complex
fibrous systems as pantographic sheets as well as woven fabrics. Γ-convergence
of the discrete model towards the inextensible Euler’s beam model is proven
and the result is established for placements in Rd in large deformation regime.
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1. Introduction

Rigorous results on homogenization are very important for today’s theoretical
and applied mechanics. This is especially true for the numerical investigation
of very complex systems, as even with today’s computational tools they may
require a long computation time, and thus the a priori reliability of the results
is of course desirable. The investigation of metamaterials (see [11] for a review of
recent results) is among the topical research directions in which one often deals
with very expensive numerical simulations, as the implementation of the desired
(often exotic) properties at the macro-scale are usually realized by means of a very
complex microstructure ([18, 13]). The theory of microstructured/micromorphic
continua is by now well developed, with several sound and interesting results (see
e.g. [5, 19] as general references on Cosserat continua, [33, 48, 4] for related
results and [40, 23, 47, 29, 9, 42, 36, 38] for different kinds of applications of
microstructured models). Still, it is necessary to develop suitable convergence
arguments if one wants to solidly rely on the numerical simulations based on the
solution of the simplified equations coming from the micromorphic/generalized
continuum model used for the description of the metamaterial.
In the present paper we focus on special micro-structured systems which can be
described as discrete systems. In this case, the reliability of the homogenization
has to be intended in two ways:
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(1) Real world micro-structured systems with suitably small characteristic
lengths have to be well described by the homogenized continuum model;

(2) The numerical simulation of the equations coming from the homogenized
model (that are usually way simpler than the ones coming from the discrete
model) has to converge in a suitable sense.

In principle, there is no reason to believe that the ordinary assumptions made for
classical (Cauchy) continuum models are suitable for models describing objects
that are so different from the phenomenology originally motivating them. Indeed,
very often generalized continuum models are called for, and in particular higher
gradient theories (see e.g. [12, 6, 16, 41, 17, 34]) are being successfully employed
in a number of cases for the homogenization of systems with complex geometry
at the micro-scale ([2, 8, 35, 37, 39]). In the present paper we address this kind of
question for Euler’s beam model (also known as Elastica), which is the elementary
constituent for a large class of complex fibrous systems, including the promising
case of pantographic sheets (see [44, 22, 10, 15] for theoretical and numerical
results and [46] for experimental ones in this direction). Specifically, we want to
provide a rigorous justification for the discrete approximation by Heinrich Hencky
(1885-1951) [24] of Euler’s beam model in large deformation, which is becoming
increasingly topical in today’s research in structural and computational mechanics
([20, 21, 1]) and metamaterials ([28]). In particular, we address here the ideal case
in which the beam is perfectly inextensible, while future investigation will be
devoted to the more general extensible case.

2. Convergence of measure functionals

Before setting the mechanical problem we are interested in, we need to recall some
(well known) mathematical tools for describing the placement and the energy of
the discrete beam model and define a suitable convergence for the sequence of the
discrete energy functionals.
Let (C[0, 1])d be the space of vector valued continuous functions on [0, 1] endowed
with the uniform norm ‖ϕ‖∞ := sup{‖ϕ(t)‖ : t ∈ [0, 1]} and (M[0, 1])d the set of
vector valued bounded measures on [0, 1] endowed with the norm

‖µ‖M := sup{〈µ, ϕ〉 : ϕ ∈ (C[0, 1])d, ‖ϕ‖∞ = 1}

where 〈., .〉 stands for the duality bracket between (M[0, 1])d and (C[0, 1])d. Recall
that if a sequence of vector valued bounded measures (µn) satisfies supn ‖µn‖M <
+∞ then there exists a vector valued bounded measure µ and a subsequence (µnk

)
which converges to µ with respect to the weak∗−topology of (M([0, 1])d i.e.

lim
k→∞
〈µnk

, ϕ〉 = 〈µ, ϕ〉

for every ϕ ∈ (C([0, 1])d.
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Let (Fn) and F be functionals on (M[0, 1])d with values in R ∪ {+∞}. We say
that Fn Γ− converges to F if the following holds ([7]):

(i) Upper bound inequality. For every µ ∈ (M([0, 1])d, there exists a sequence
(µn) in (M[0, 1])d weak∗− converging to µ for which

lim sup
n→∞

Fn(µn) ≤ F (µ).

(ii) Lower bound inequality. For every µ ∈ (M[0, 1])d and every sequence (µn)
in (M[0, 1])d) weak∗−converging to µ,

lim inf
n→∞

Fn(µn) ≥ F (µ).

Such a Γ-convergence result is efficient when the following property of the sequence
(Fn) holds:

(iii) Relative compactness. For every sequence (µn) in (M[0, 1])d

sup
n
Fn(µn) < +∞ =⇒ sup

n
‖µn‖M < +∞.

Informally speaking, relative compactness ensures that controlling the deformation
energy is enough to control the norm of the measure employed for the description
of the current configuration of the discrete model.

3. Micro-model for non-linear beams

3.1. Discrete configurations and operators. Let δt denote the Dirac measure
at the point t ∈ [0, 1]. The reference configuration of the discrete micro-system
is constituted by n + 1 nodes placed at the points i

n
, i = 0, . . . , n. Therefore it

can be identified with the positive Radon measure 1
n

placed at the points i
n

where
i = 0, 1, ..., n. Therefore, it will be described by the positive Radon measure on
[0, 1]

νn :=
1

n

n∑
i=0

δ i
n

(1)

We assume that the reference (unstressed) configuration of the beam is straight,
has unitary length and lays parallel to e1, i.e. the first vector of the canonical
base of Rd. The current configuration of the beam can be described by a vector
bounded measure µ on [0, 1] of the form µ(dt) := u(t)νn(dt) where the placement
function u : [0, 1]→ Rd is defined νn-almost everywhere i.e. at the points i

n
where

i = 0, 1, . . . , n (see Fig. 1 for a graphical representation of the discrete model).
In what follows, we will use the following notations.

ν+
n :=

1

n

n−1∑
i=0

δ i
n

ν−n :=
1

n

n∑
i=1

δ i
n

νn :=
1

n

n−1∑
i=1

δ i
n

(2)

D+
n u(t) := n

(
u(t+ 1

n
)− u(t)

)
D−n u(t) := n

(
u(t)− u(t− 1

n
)
)

(3)
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Figure 1. Graphical representation of Hencky discrete model con-
sisting of inextensible bars and rotational springs. In the graph
θi := θn(u)( i

n
).

D2
nu := n(D+

n u−D−n u) (4)

Note that, if u is a placement function, D+
n u is defined ν+

n−almost everywhere,
D−n u is defined ν−n−almost everywhere and D2

nu is defined νn−almost everywhere.

3.2. Left hand side clamped inextensible beam. A placement function u is
said to be admissible for a left hand side clamped beam if the following condition
holds:

u(0) = 0 and D+
n u(0) = e1 (5)

It is said to be admissible for an inextensible beam if the following condition holds:
‖u( i+1

n
)− u( i

n
)‖ = 1

n
for i = 0, 1, ..., n− 1. This condition can be written

‖D+
n u‖ = 1 ν+

n − almost everywhere (6)

3.3. Deformation energy associated with three points interactions. At
each node i

n
, for i = 1, . . . , n− 1, a rotational spring is placed, whose deformation

energy depends on the angle θn(u)( i
n
) ∈ (−π,+π) formed by the vectors u( i+1

n
)−

u( i
n
) and u( i

n
) − u( i−1

n
). This energy must vanish when the angle is zero. We

assume, following [14, 45], that this energy is proportional to 1 − cos(θn(u)( i
n
)).

Hence, when the discrete system is in the configuration described by the bounded
measure µ(dt) = u(t)νn(dt), its energy is given by

E3
n(µ) :=

1

n

n−1∑
i=1

n2(1−cos θn(u)( i
n
)) where cos θn(u)( i

n
) =

D+
n u( i

n
) ·D−n u( i

n
)

‖D+
n u( i

n
)‖‖D−n u( i

n
)‖
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or equivalently

E3
n(µ) =

1

2

∫ ∥∥∥∥n( D+
n u(t)

‖D+
n u(t)‖

− D−n u(t)

‖D−n u(t)‖

)∥∥∥∥2

νn(dt)

The above energy is well defined if the placement function u is such that D+
n u 6=

0 ν+
n−almost everywhere. This is clearly the case when u is admissible for an

inextensible beam. In this case, the discrete energy has the reduced form

E3
n(µ) =

1

2

∫
‖D2

nu(t)‖2 νn(dt) (7)

4. From micro to macro model - Γ-convergence result.

This section is devoted to left hand side clamped inextensible beam.

4.1. Functionals associated to the micro model. Let Mn denote the set of
those vector bounded measures of the form µ(dt) = u(t)νn(dt) ∈ (M[0, 1])d and
such that

u(0) = 0 and D+
n u(0) = e1 and ‖D+

n u‖ = 1 ν+
n − almost everywhere (8)

The total energy functional (associated to the discrete model) is given by

En(µ) :=

{
1
2

∫
‖D2

nu(t)‖2 νn(dt) if µ(dt) = u(t)νn(dt) ∈Mn

+∞ otherwise
(9)

4.2. Functional associated to the macro model. Let H2(0, 1) denote the
usual Sobolev space. Relying on well-known embedding theorems, any function
u ∈ H2(0, 1) will be considered as a C1[0, 1]-function. Let M be the set of
those vector bounded measures of the form µ(dt) = u(t)dt ∈ (M[0, 1])d with
u ∈ (H2((0, 1))d and such that

u(0) = 0 and u′(0) = e1 and ‖u′(t)‖ = 1 for every t ∈ [0, 1] (10)

The total energy functional (associated to the continuous model) is given by

E(µ) :=

{
1
2

∫ 1

0
‖u′′(t)‖2 dt if µ(dt) = u(t)dt ∈M

+∞ otherwise
(11)

4.3. Γ−convergence result. Our main result is the following :

Theorem 4.1. The sequence (En) satisfies the relative compactness property and
Γ-converges to the functional E.

If we compare Theorem 4.1 with the results proved in [3], the difficulty relies on
the fact that the beam is inextensible, which corresponds to a nonlinear constraint.
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5. Proof of the main result

5.1. Approximation of a sequence with bounded energy. Let (µn) be a
sequence in (M(0, 1])d with bounded energy. This means that there exists some
positive real number M such that

µn(dt) = un(t)νn(dt) ∈Mn and

∫
‖D2

nun(t)‖2 νn(dt) ≤M. (12)

for every integer n. Let us define the sequence (µn) by setting µn(dt) = un(t)dt,
with ūn piecewise C2 in (0, 1) satisfying:

un(0) = 0 , u′n(0) = e1

u′′n(t) = D2un( i
n
) as soon as t ∈ ( i

n
− 1

2n
, i

n
+ 1

2n
).

Notice that un ∈ (H2(0, 1))d but in general un /∈ M because ‖u′n(t)‖ is not nec-
essarily equal to 1. The following result will be used to establish the lower bound
inequality.

Lemma 5.1. Let (µn) be a sequence in (M(0, 1])d with bounded energy. Then,
the sequence (un) defined above is bounded with respect to the usual H2−norm and
satisfies the following properties.∫ 1

0

‖u′′n(t)‖2 dt =

∫
‖D2

nun(t)‖2 νn(dt) for every n, (13)

lim
n→∞

‖u′n(t)‖ = 1 for every t ∈ [0, 1], (14)

µn − µn converges to 0 with respect to the weak∗topology. (15)

Proof. One has un(0) = 0, u′n(0) = e1 and∫ 1

0

‖u′′n(t)‖2 dt =
n−1∑
i=1

∫ i
n

+ 1
2n

i
n
− 1

2n

‖u′′n(t)‖2dt =

∫
‖D2

nun(t)‖2νn(dt) ≤M

which implies that the sequence (un) is bounded with respect to the usual H2−
norm. Hence, the two sequences (u′n) and (un) are equicontinuous on [0, 1] and
uniformly bounded on [0, 1]. More precisely, for any s, t ∈ [0, 1],

‖u′n(t)− u′n(s)‖ ≤
√
M
√
|t− s| and ‖u′n(t)‖ ≤ 1 +

√
M (16)

‖un(t)− un(s)‖ ≤ (1 +
√
M)|t− s| and ‖un(t)‖ ≤ 1 +

√
M (17)

On the other hand, a first computation gives that for any i = 1, ..., n− 1,

u′n( i
n

+ 1
2n

) = e1 +

∫ i
n

+ 1
2n

0

u′′n(t) dt = e1 +
1

n

i∑
k=1

D2
nun( k

n
) = D+

n un( i
n
)

6



Since ‖D+
n un‖ = 1 ν+

n−almost everywhere and the sequence (u′n) is equicontinuous
on [0, 1], we obtain (15). A second computation gives un(1) = un(1) and

un( i
n
) = i

n
e1 +

∫ i
n

0

( i
n
− s)u′′n(s)ds

= i
n
e1 +

1

n

i−1∑
k=1

(
n

∫ k
n

+ 1
2n

k
n
− 1

2n

( i
n
− s) ds

)
D2

nun( k
n
)+

(∫ i
n

i
n
− 1

2n

( i
n
− s) ds

)
D2

nun( i
n
)

= i
n
e1 +

1

n

i−1∑
k=1

(
i−k
n

)
D2

nun( k
n
) +

1

8n2
D2

nun( i
n
)

= un( i
n
) +

1

8n2
D2

nun( i
n
)

for every i = 1, ..., n− 1. As a consequence, the inequality ‖un − un‖ ≤
√
M

8n
holds

νn−almost everywhere. Let ϕ ∈ C([0, 1])2. A third computation gives

|〈µn − µn, ϕ〉| =

∣∣∣∣∣
n∑

i=1

∫ i
n

i−1
n

(
ϕ(t) · un(t)− ϕ( i

n
) · un( i

n
)
)
dt

∣∣∣∣∣
≤

n∑
i=1

∫ i
n

i−1
n

‖ϕ(t)‖‖un(t)− un( i
n
)‖ dt+

n∑
i=1

∫ i
n

i−1
n

‖ϕ(t)− ϕ( i
n
)‖‖un( i

n
)‖ dt

+

∫
‖ϕ(t)‖‖un(t)− un(t)‖νn(dt)

≤ 1 +
√
M

n

∫ 1

0

‖ϕ(t)‖ dt+ (1 +
√
M)

n∑
i=1

∫ i
n

i−1
n

‖ϕ(t)− ϕ( i
n
)‖ dt

+

√
M

8n

∫
‖ϕ(t)‖νn(dt)

Since

lim
n→∞

n∑
i=1

∫ i
n

i−1
n

‖ϕ(t)− ϕ( i
n
)‖ dt = 0 and lim

n→∞

∫
‖ϕ(t)‖ νn(dt) =

∫ 1

0

‖ϕ(t)‖ dt

we conclude that the sequence (µn − µn) converges to 0 with respect to the
weak∗−topology of (M[0, 1])d. The proof is complete. �

5.2. The Proof of Theorem 4.1. We divide this proof in three steps.

Step 1. (Relative compactness). Let µ(dt) := u(t)νn(dt) ∈ Mn. Since ‖u(0)‖ = 0
and ‖D+

n u‖ = 1 ν+
n− almost everywhere, one has ‖u‖ ≤ 1 νn−almost everywhere,

hence

‖µ‖M =

∫
‖u(t)‖ νn(dt) ≤ 1.
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Step 2. (Upper bound inequality). Let µ(dt) := u(t)dt ∈M. Since u ∈ (C1[0, 1])d,
we define µn(dt) = un(t)νn(dt) by setting

un(0) = 0 and un( i
n
) =

1

n

i−1∑
k=0

u′( k
n
) (for i = 1, ..., n)

Note that D+
n un( i

n
) = u′( i

n
). Then D+

n un(0) = e1 and ‖D+
n un‖ = 1 ν+

n -almost
everywhere. Hence one has µn ∈Mn and

D2
nun( i

n
) = n

(
D+

n un( i
n
)−D+

n un( i−1
n

)
)

= n
(
u′( i

n
)− u′( i−1

n
)
)

= n

∫ i
n

i−1
n

u′′(t) dt

then, using Jensen inequality we obtain

lim sup
n→∞

∫
‖D2

nun‖2dνn = lim sup
n→∞

1

n

n−1∑
k=1

∥∥∥∥∥n
∫ i

n

i−1
n

u′′(t) dt

∥∥∥∥∥
2

≤
∫ 1

0

‖u′′(t)‖2 dt.

Let ϕ ∈ (C[0, 1])d. Since u′ is continuous on [0, 1] we obtain

lim
n→∞
〈µn, ϕ〉 := lim

n→∞

∫
ϕ(t) · un(t) νn(dt)

= lim
n→∞

1

n

n∑
i=1

ϕ( i
n
)·
(

1

n

i−1∑
k=0

u′( k
n
)

)

= lim
n→∞

1

n

n∑
i=1

ϕ( i
n
)·
(
u( i

n
) +

i−1∑
k=0

∫ k+1
n

k
n

(
u′( k

n
)− u′(t)

)
dt

)
= lim

n→∞

∫
ϕ(t) · u(t)νn(dt)

Hence, Riemann’s Theorem implies that the sequence (µn) converges to µ with
respect to the weak∗−topology of (M[0, 1])d.

Step 3. (Lower bound inequality). Let µ, µn ∈ (M[0, 1])d such that (µn) converges
to µ with respect to the weak∗−topology of (M[0, 1])d. Without loss of generality
we may assume that µn(dt) = un(t)νn(dt) ∈ Mn and there exists a nonegative
real number M such that for every n∫

‖D2
nun(t)‖2νn(dt) ≤M.

Let (µn) be the sequence of measures defined in subsection 5.1. By Lemma 5.1,
this sequence converges to µ with respect to the weak∗−topology of (M[0, 1])d.
Since µn(dt) = un(t)dt and the sequence (un) is bounded with respect to the usual
H2−norm, there exists u ∈ (H2(0, 1])d such that µ(dt) = u(t)dt and

lim inf
n→∞

∫
‖D2

nun(t)‖2νn(dt) = lim inf
n→∞

∫ 1

0

‖u′′n(t)‖2dt ≥
∫ 1

0

‖u′′(t)‖2dt
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Since the space H2(0, 1) is compactly embedded on C1[0, 1], the sequence (u′n)
converges to (u′) with respect to the uniform norm over [0, 1]. Hence, using Lemma
5.1, We obtain

‖u′(t)‖ = 1 for every t ∈ [0, 1]

then u ∈M. The proof is complete.

6. Conclusions

We proved a Γ-convergence result for a Hencky-type discretization of an inex-
tensible Euler beam in large deformation regime. Future investigations should
generalize the result (in a suitable form) for extensible beam models; moreover, it
will be interesting to extend the convergence argument to Generalized Beam Mod-
els ([32, 31, 30, 25]) and also to the dynamics of the dicrete system, which should
of course take into account the possibility of various kinds of dynamic instabilities
([43, 27, 26]). Finally, it has to be remarked that Hencky-type discretization for
Elastica has proven to be very effective, and is in fact used by several compu-
tational software packages (as for instance by MATLABr). The present result
gives a sound mathematical argument which this kind of numerical evidence can
be based on.
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