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Résumé – Ces dernières années, l’Analyse en Composantes Indépendantes (ICA) a été utilisée avec succès pour
détecter l’activité cérébrale lors d’expériences d’Imagerie par Résonance Magnétique fonctionnelle (IRMf). Depuis, la
précision des résultats obtenus a été étudiée en utilisant comme critères la localisation des zones d’activités, ou leur
évolution temporelle, à la fois sur des données simulées et réelles. D’autres travaux récents ont démontré l’importance
de la distribution spatiale de l’intensité de l’activité à l’intérieur d’une région d’intérêt de grande taille. Nous
présentons dans cet article des résultats prouvant que ICA peut estimer avec précision ces « figures d’activité
distribuée », en examinant des données IRMf simulées et réelles.

Abstract – In the last few years, Independent Component Analysis (ICA) has proven to be useful in detecting brain activation in
functional Magnetic Resonance Imaging (fMRI) experiments. Since then, its accuracy has been studied both in terms of the location o f
the detected activation kernels, and of the temporal behaviors, on both simulated datasets and real experiments with simple
paradigms. Recently, the relevance of a new kind of information, the spatial distribution of the magnitude of activation in large
« distributed patterns », has been demonstrated. In this paper, we first present a new way to create simulated fMRI datasets
containing such distributed patterns of activation ; we then show that ICA algorithms can accurately estimate these patterns, both
on simulated datasets and on real data from the original study.

1. Introduction
Functional Magnetic Resonance Imaging (fMRI) is a tool

that measures changes in the blood oxygenation level across
time. Traditional data analysis methods are strongly model-
driven [1]. They are suitable for numerous experimental
designs in which the paradigm is thought to give a strong
basis for hypothesis testing. But these methods lack the
capability to detect the unpredictable (« what if something
happens in the brain that does not follow the temporal
evolution dictated by the task ? »). This has led researchers to
investigate the use of data-driven analysis methods, such as
Independent Component Analysis (ICA). Since its initial
application [2], the circumstances in which ICA succeeds at
detecting and estimating fMRI activation, and the robustness
of these results, have been studied by various groups [3], [4].
In this paper, we study the performances of ICA algorithms
to estimate « distributed patterns of activation », which were
first described in [5]. After detailing the model used to apply
ICA on fMRI datasets, we describe the characteristics of the
datasets used in this study, and then present the results,
comparing them with the standard model-based approach.

2. ICA model for fMRI data analysis
Four-dimensional (3D in space + time) fMRI datasets can

be represented as a 2D matrix X, of size TxV, where T is the
number of time-points and V the number of voxels included
in the analysis. Hence, each row Xi contains the intensity
values of all voxels of the brain at time point i. When

applied in the spatial domain, ICA decomposes the Xi as a
linear combination of N statistically independent spatial
maps. The problem is therefore to estimate a linear model
X=MC, where C is an NxV matrix (each of its rows
representing a spatial map) and M is a TxN “mixing” matrix
(each of its columns containing the time-course of its
associated map). We used two algorithms, widely described
in the literature, namely Infomax [6], which minimizes the
mutual information between spatial maps, and FastICA [7],
which maximizes the negentropy. Principal Components
Analysis (PCA) is used as an initialization step (whitening)
and to reduce the dimensionality of the problem from T to
N, by keeping only the first N principal components.

3. Data

3.1 Simulation model
We introduce a new way to simulate fMRI datasets, so

that the simulated datasets contain « distributed patterns of
activation ». We first acquired a null dataset: a set of EPIs
(echo-planar images) while the subject had no task to
perform. We then added some activation to this dataset in
several steps. We first chose the anatomical region onto
which activation would be super-imposed: this was done by
acquiring an auxiliary functional time-series during which the
same subject was presented with a flashing checkerboard in
an on/off paradigm. This set of images was co-registered with
the null dataset and the visual cortex was identified by using
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a standard General Linear Model (GLM); it represented
approximately one tenth of the brain voxels present in the
volume. This ensured that the simulated activation would be
added in an anatomically correct region (gray matter).
Secondly, a unique boxcar time-course was added to all
voxels contained in this region. The original aspect of this
method was that the magnitude of activation randomly varied
from voxel to voxel, between 0.5% and 3.5% of signal
change from the baseline level, thus creating a “distributed
pattern of activation”. One hundred simulated datasets were
generated with different randomly generated patterns, for each
of which the true pattern of activation was recorded to allow
for evaluation later on.

3.2 Real experiment
We then used real data from an experiment described in

[5]: the authors measured with fMRI the brain activation
from six subjects viewing pictures of faces, cats, five
categories of man-made objects (bottles, shoes, scissors,
chairs, houses) and control non-sense images (scrambled).
Twelve time-series were recorded for each subject. Each time-
series was designed with eight 24 second stimulus blocks
(one for each category), separated by 12 second intervals of
rest. The object-selective cortex was defined by the voxels
whose responses differed significantly by category. Patterns
of response were examined within the ventral temporal object
selective cortex. In order to examine the consistency of the
spatial patterns, the data was split into two sets whether the
time-series were odd or even numbered (thus constituting a
training dataset and a test dataset). In the original analysis, a
GLM defined by sixteen predictors (each of them modeling
the response to a given category relative to rest, for each set,
odd or even) was used to determine the pattern of response to
each category: the sixteen resulting _ maps weighing each
predictor were used as an estimate of the strength of the
category-specific patterns of response.

4. Data analysis
All datasets were motion corrected using AIR [8]. When

data chunks from several time-series were concatenated (as
explained later), a linear detrending and an adjustment of the
mean of each time series was conducted, to avoid baseline
jumps. Then ICA was applied on intracranial voxels, selected
with a brain extraction algorithm described in [9], after a
whitening and dimensionality reduction step executed with
PCA.

The selection of the component of interest for a given
experimental condition was done in several steps: 1. building
a reference function (which is on for the trials of the
condition of interest, off otherwise); 2. ranking the
components according to the correlation coefficient of their
time-course with this reference function; 3. selecting the
highest one. Although this selection process did require
information about the experimental paradigm, the estimation
of the model was fully data-driven. This post-hoc sorting of
the components was carefully validated before being applied
on all datasets, by verifying that it agreed on numerous and

various datasets with a visual assessment of all component
maps and their associated time-course.

The accuracy of the estimation of distributed patterns of
activation was evaluated by computing Pearson correlation
coefficients between pairs of patterns : a pattern known a
priori (the true recorded pattern for the simulations, or the
pattern estimated on the training dataset for the real data), and
a pattern estimated from the test dataset

When processing real data, we compared patterns
estimated in two experimental conditions : this produced two
estimates (from the test and training datasets) for each of the
two categories. Category-specific patterns estimated from the
test dataset were compared to the ones estimated on the
training dataset in the following way: for each pair of
categories (A, B), four correlations scores were computed
between the four available patterns: Atraining, Atest, Btraining and
Btest. If the within-category correlation was larger than the
between-category correlation the comparison was counted as
correct identification, thus proving the consistency of the
spatial distribution of the magnitude of activation for a given
condition.

Two ICA algorithms were used : Infomax, as
implemented in the code available at
http://www.cnl.salk.edu/~enghoff/  , and FastICA, as
implemented in the FSL package (Melodic :
http://www.fmrib.ox.ac.uk/fsl/melodic2/  ).

All the results were compared with the ones produced
when using a standard GLM, where the category-specific
patterns were estimated with the weight coefficients (_ maps)
of the corresponding predictor in the regression.

5. Results and discussion

5.1 Simulations
The averaged correlation scores across all one hundred

simulated datasets are shown in Table 1. The results were
good overall : all scores were greater than 0.79. The very low
standard errors show the robustness of the estimation to the
shape of the pattern. Among the two algorithms tested,
Infomax performed better than FastICA in all cases. In most
cases, ICA algorithms outperformed the GLM. We believe
this is due to the fact that ICA does not rely on any
assumption as to the shape of the hemodynamic response,
and that it allows a better implicit modeling of noise
sources : indeed, among the N components estimated, only
one contains « activation », whereas the N-1 others contain
information about other sources, which can be related to the
motion of the subject’s head (even after motion correction),
or to sources of instrumental noise (EPI ghosting, scanner
drifts etc.)

The influence of dimensionality reduction was studied by
modifying the number of independent components N to be
estimated, which was done classically by keeping the N first
principal components in a pre-processing step. The choice of
the number of components presents a problem for the
researcher who uses ICA to analyze fMRI data since no
standard way to make this choice exists. A general rule of



thumb which emerged from the literature is to choose N
between one quarter and one third of the number of time
points T . Recently, a maximum-likelihood criterion was
proposed to estimate the number of sources actually present
in an fMRI dataset [10]. This criterion suggested to use N =
30 components for all our simulated datasets, which
coincides with the empirical rule mentioned above, since we
had T=104. For both algorithms, the correlation scores at
N=30 are lower than at N=75 or N=104 (the difference being
statistically significant at p=0.07 for Infomax, and
p=0.00006 for FastICA, when a one-sided paired t-test was
performed). This suggests that for this particular purpose,
estimating spatially distributed patterns of activation and
evaluating this estimation with a spatial correlation analysis,
a too strong dimensionality reduction performed with PCA
can harm the estimation.

TABLE 1 : Mean spatial correlation scores (± standard
error), between patterns estimated with 1. ICA (for different

amounts of dimensionality reduction) and 2. the GLM.

Dimension. reduction FastICA Infomax

10 components 0.7971±7.10-4 0.8465±5.10-4

30 components 0.8153±6.10-4 0.8654±5.10-4

50 components 0.8177±6.10-4 0.8662±5.10-4

75 components 0.8187±6.10-4 0.8664±5.10-4

None (104 components) 0.8495±5.10-4 0.8665±5.10-4

GLM 0.8036±7.10-4

While it is intuitive that performing dimensionality
reduction with PCA might throw away some meaningful data
(since fMRI activation signals are usually very small
compared to the noise level, they are not expected to always
be represented in the first principal components), this practice
has become standard in the fMRI field, for different types of
reasons: practical ones, like result sorting (there is still no
standard way to select “meaningful” components); and
theoretical ones, since applying PCA results in whitened
data, which eases the convergence of ICA algorithms   [  11  ]  .
But this experiment shows that using PCA for
dimensionality reduction might actually be harmful,
suggesting that other alternatives should be studied.

5.2 Real data
We first applied ICA separately on each original functional

time-series, which contains one block of trials for each of the
eight categories. None of the components showed a time
course with a high correlation score with any of the category-
specific reference functions. But one unique consistently task-
related component was detected: its time course showed
activation period for the task, without any distinction

between categories. This map thus describes the mean
response across categories. ICA seems to lack sensitivity to
distinguish responses across categories. When several original
time-series were concatenated (regardless of the number of
time-series) into a single ICA analysis, the results were
similar. This was to be expected since the original analysis
conducted in [5] showed that the patterns of activation
associated with each category are highly overlapping. These
patterns are thus strongly statistically dependent, which
explains why they are not separated by ICA when all were
present in a single dataset.

We therefore re-organized the data in a manner that would
gather trials from one category in a unique dataset. The time-
series were rearranged by concatenating the blocks of images
corresponding to the same category (24 seconds of task + the
following 12s of rest). This was done separately for the
training and the test data-sets (odd- and even-numbered  time-
series), thus creating sixteen new composite time-series (two
for each of the eight categories), each containing six blocks of
stimulus of a unique category. For each of these, ICA
retrieved one CTR component. We were then able to compute
the pairwise correlation scores within- and between-category
(shown on Figure 1), and the identification accuracy rate
(shown on Table 2). In both cases, we compared our results
obtained with ICA to the ones originally published in [5],
where the distributed patterns were estimated with a GLM
analysis.

The results presented in Figure 1 show that, when
estimated with ICA, within-category correlation scores
between patterns are in most cases higher than between-
category scores. This is confirmed by the computation of
category identification presented in Table 2, which are above
chance (50 %) in all but one case. This first reinforces the fact
that the information contained in the spatial distribution of
the magnitude of activation within a region of interest is
relevant to brain mapping. This shows too that ICA
algorithms are suitable to estimate these patterns, and that
they are robust to complex data manipulation (as the re-
organization of the functional time-series). As with the
simulated data, the Infomax algorithm outperfomed FastICA
in all cases, significantly in this case : whereas the results
from Infomax compares to the original results with the GLM,
FastICA produces lower accuracy.

The influence of dimensionality reduction on the analysis
of real data was unclear because of the reorganization of the
data. Indeed, when the numbers of chosen components
increased, it coincided with the appearance of transiently task-
related components which spread the information contained
in the distributed patterns into several components. When the
number of components was small, the spatial correlation
scores globally decreased. The results presented were for a
“classically” chosen: N=30 components.



FIGURE 1 : Mean (across subjects) correlation scores (±
standard error) for all pairs of categories, in all ventral

temporal object selective cortex.

TABLE 2 : Identification accuracy of categories on the test
dataset for the GLM (results from [5]) and ICA algorithms.

Category GLM FastICA Infomax
Face 100 % 79 % 100 %

House 100 % 90 % 100 %
Cats 98 % 71 % 88 %

Bottles 90 % 79 % 95 %
Scissors 92 % 57 % 83 %
Shoes 92 % 62 % 95 %
Chairs 96 % 43 % 93 %

Scramble 100 % 64 % 83 %

6. Conclusion
We showed in this study that ICA algorithms are able to

estimate accurately spatially distributed patterns of activation
measured by fMRI in both simulated and real data and that
they outperform traditional model-based analysis methods on
our simulated datasets. This confirms the usefuleness of ICA
algorithms for fMRI data analysis. However, this study
pointed out two weaknesses of these blind source separation
methods, which will define directions of future work : the
dimensionality reduction method using PCA was shown to
be sub-optimal ; and these algorithms cannot separated
strongly overlapping patterns of activation.
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