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ABSTRACT 

Polysaccharides are highly abundant natural biopolymers, which have biologically 

significant structural functions in living organisms. Various polysaccharides, with 

specific physicochemical properties, contribute to biofilm formation; defined as cell 

aggregations surrounded by extracellular polymeric substances. They are also important 

in the context of bacterial pathogenesis, while some have been harnessed for industrial 

and biomedical applications due to their unique chemical compositions and properties. 

In present study, we aimed at studying biofilm formation by Pseudomonas aeruginosa 

and P. syringae pv. actinidiae,  respectively known as human and plant pathogens. In this 

context we focused on the production of exopolysaccharides, which predominantly 

constitute the biofilm matrix of these pathogenic bacteria.   

Here, we uncovered that the polysaccharide isolated from P. syringae pv. actinidiae 

biofilm mainly consists of rhamnose, fucose and glucose and it was cautiously introduced 

as a novel polysaccharide. In the context of disease control, and developing a management 

program, we provided some evidences for the effectiveness of chlorine dioxide and 

kasugamycin in the control of the bacteria living in both biofilm and planktonic modes.   

Furthermore, we investigated alginate biosynthesis as major polysaccharide contributing 

to mucoid biofilm formation by P. aeruginosa. We generated various mutants producing 

a variety of alginates with different chemical compositions. Also, this enabled us to 

analyse functional relationships of protein subunits involved in multiple steps of alginate 

biosynthesis including alginate polymerization, modification and secretion. We present 

evidence that while alginate unravelled that while alginate is polymerised and 

translocated across the membrane by a multiprotein complex, acetylation and 

epimerisation events positively and negatively correlated with the polymerization of the 

alginate or molecular mass, respectively. Analysis of the biofilms showed that biofilm 

architecture and cell-to-cell interactions were differently impacted by various 

compositions of the alginates. Also, this study provided insights into the c-di-GMP 

mediated activation of alginate polymerization upon binding to c-di-GMP as well as 

assigning functional roles to Alg8 and Alg44 including their subcellular localization and 

distribution.  

Here, we also used current knowledge of the alginate biosynthesis pathway to assess the 

production of alginate from biotechnologically accepted heterologous hosts including 
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Escherichia coli and Bacillus megaterium strains. Primarily, we evaluated the production 

and functionality of the minimal protein requirements in nonpathogenic heterologous 

hosts, required for producing alginate precursor, and proceeding into polymerization and 

secretion steps.   

Overall, we concluded that polysaccharides play a major role in the formation of bacterial 

biofilms while chemical composition is a key determinant for biofilm architecture and 

development. This contribution to understanding the biosynthesis of bacterial 

polysaccharides and their properties could provide the necessary knowledge not only for 

developing novel therapeutics, but also for harnessing such biopolymers for various 

industrial applications and production via biotechnological procedures.  
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