

Copyright is owned by the Author of the thesis. Permission is given for a copy to be downloaded by an individual for the purpose of research and private study only. The thesis may not be reproduced elsewhere without the permission of the Author.

Investigation of the Biosynthesis of Exopolysaccharides

within the Biofilm Matrix of Pseudomonas aeruginosa

and Pseudomonas syringae pv. actinidiea

A thesis presented in partial fulfilment of the requirements for degree

of

Doctor of Philosophy

In

Microbiology and Genetics

At Massey University, Manawatu, New Zealand

Shirin Ghods

2017

توانا بود هر که دانا بود ز دانش دل بیر برنا بود " شاهنامه، فردس" Capable is he who is wise Happiness from wisdom will arise "The Shahnameh, Ferdowsí"

ABSTRACT

Polysaccharides are highly abundant natural biopolymers, which have biologically significant structural functions in living organisms. Various polysaccharides, with specific physicochemical properties, contribute to biofilm formation; defined as cell aggregations surrounded by extracellular polymeric substances. They are also important in the context of bacterial pathogenesis, while some have been harnessed for industrial and biomedical applications due to their unique chemical compositions and properties. In present study, we aimed at studying biofilm formation by *Pseudomonas aeruginosa* and *P. syringae* pv. *actinidiae*, respectively known as human and plant pathogens. In this context we focused on the production of exopolysaccharides, which predominantly constitute the biofilm matrix of these pathogenic bacteria.

Here, we uncovered that the polysaccharide isolated from *P. syringae* pv. *actinidiae* biofilm mainly consists of rhamnose, fucose and glucose and it was cautiously introduced as a novel polysaccharide. In the context of disease control, and developing a management program, we provided some evidences for the effectiveness of chlorine dioxide and kasugamycin in the control of the bacteria living in both biofilm and planktonic modes.

Furthermore, we investigated alginate biosynthesis as major polysaccharide contributing to mucoid biofilm formation by *P. aeruginosa*. We generated various mutants producing a variety of alginates with different chemical compositions. Also, this enabled us to analyse functional relationships of protein subunits involved in multiple steps of alginate biosynthesis including alginate polymerization, modification and secretion. We present evidence that while alginate unravelled that while alginate is polymerised and translocated across the membrane by a multiprotein complex, acetylation and epimerisation events positively and negatively correlated with the polymerization of the alginate or molecular mass, respectively. Analysis of the biofilms showed that biofilm architecture and cell-to-cell interactions were differently impacted by various compositions of the alginate polymerization upon binding to c-di-GMP as well as assigning functional roles to Alg8 and Alg44 including their subcellular localization and distribution.

Here, we also used current knowledge of the alginate biosynthesis pathway to assess the production of alginate from biotechnologically accepted heterologous hosts including

Escherichia coli and *Bacillus megaterium* strains. Primarily, we evaluated the production and functionality of the minimal protein requirements in nonpathogenic heterologous hosts, required for producing alginate precursor, and proceeding into polymerization and secretion steps.

Overall, we concluded that polysaccharides play a major role in the formation of bacterial biofilms while chemical composition is a key determinant for biofilm architecture and development. This contribution to understanding the biosynthesis of bacterial polysaccharides and their properties could provide the necessary knowledge not only for developing novel therapeutics, but also for harnessing such biopolymers for various industrial applications and production via biotechnological procedures.

ACKNOWLEDGMENTS

To my supervisor Prof. Bernd H. A. Rehm, thank you very much for taking me as a doctorate student. Thank you for your encouragement, patience, wisdom and support throughout this experience and I wish all the best for you.

I wish to gratefully acknowledge Massey University Doctoral Scholarship and the Institute of Fundamental Sciences (IFS) for financial support and research facilities that have allowed me to complete this study. I would like to extend my sincere gratitude to the following people for all their help: Dr. Ian M. Sims (Victoria University of Wellington), Dr. Ian Donati (University of Trieste), Dr. Adrian Turner (University of Auckland), Dr. Lynne Howell (University of Toronto), Dr. Dennis E. Ohman (Virginia Commonwealth University), Dr. Iain D. Hay (Monash University), Dr. M. S. Savoian, Dr. Patrick Edwards, Dr. Martin A. K. Williams, Dr. Bradley W. Mansel, Dr. Jasna Rakonjac, Mr. David Lun and Mr. Trev Loo from Massey University who have supported me in different ways. Thank you to all the past and present members of IFS and the Rehm workgroup, who helped, guided and supported me technically and emotionally over the past few years. Also I would like to give my great thanks to all my great friends in my workplace who made it easier to finish this study, giving me more happiness. Patricia, Karin, Jason, Shuxiong, Yaji, Majela, Natalie and Jinping; I really appreciate you all. I am also very thankful to Ann, Cynthia, Colleen and Fiona for their help and support at all stages of this PhD program and many thanks to Paul and Geraldine for their significant effort with all ordering consumable items and suchlike. And also I am very thankful to the very nice people who are working in International Student Support office giving me lots of help at some stages of my PhD program.

Very special thanks and appreciation to my beloved husband, Fata, who is my most enthusiastic cheerleader, my amazing buddy and the best colleague in my professional life. It has been an absolute privilege to work alongside you over these past few years. I am forever grateful to you for all support, Fata. Thank you to all my previous supervisors in Iran, who changed my life by encouraging and supporting me in the past and present, and to my parents, Mr. Seifollah Ghods and Mrs. Manzar Nazemi, and my lovely sister and my great brother-in-low, Shima and Abbas azizam, for all the love and support. Finally, I would like to send my deepest gratitude to all Kiwis that let me have a very nice life experience in New Zealand.

PREFACE

Below lists the publication status of all chapters in this thesis.

Chapter I

General introduction

This chapter was written as an introductory chapter for this thesis by Shirin Ghods

Chapter II

<u>Shirin Ghods</u>, Ian M. Sims, M. Fata Moradali, Bernd H. A. Rehm. Bactericidal Compounds Controlling Growth of the Plant Pathogen *Pseudomonas syringae* pv. *actinidiae*, Which Forms Biofilms Composed of a Novel Exopolysaccharide. (Applied and environmental microbiology 81.12 (2015): 4026-4036)

This article was written by Shirin Ghods and reviewed by all other authors. The concept was conceived by Shirin Ghods and Bernd H. A. Rehm. Experimental design was performed by Shirin Ghods with the advice of Bernd H. A. Rehm. All experiments were performed by Shirin Ghods with the exception of some compositional analysis were planned and performed with the guidance and involvement of Ian M. Sims.

Chapter III

<u>Shirin Ghods</u>, M. Fata Moradali, Ivan Donati, Ian M. Sims, Bernd H. A. Rehm. Interplay of alginate polymerisation and modifications in *Pseudomonas aeruginosa* and their impact on biofilm formation (co-published in mBio 6 (3) (2015):e00453-15) (see Appendix)

This chapter was written by Shirin Ghods and reviewed by Bernd H.A. Rehm. The concept was conceived by Shirin Ghods and Bernd H. A. Rehm. Generation of some mutants and production of various alginates was performed by Shirin Ghods. Raw data of compositional analysis of various alginates were provided by Ivan Donati and Ian M. Sims. Interpretation of physicochemical properties of alginates was performed by Shirin Ghods and Fata Moradali and then approved by Bernd H.A Rehm. Setting up and analysis of biofilms results was performed by Shirin Ghods.

Chapter IV

M. Fata Moradali, <u>Shirin Ghods</u>, Bernd H. A. Rehm. Activation Mechanism and Cellular Localization of Membrane-Anchored Alginate Polymerase in *Pseudomonas aeruginosa*. (Applied and Environmental Microbiology 83.9 (2017): e03499-16)

This article was written by Fata Moradali and Shirin Ghods and reviewed by Bernd H. A. Rehm. The concept was conceived by Fata Moradali, Shirin Ghods and Bernd H. A. Rehm. Generation of double-gene knockout mutants, complementation, biofilm assessment, alginate quantification, and imaging was performed by Fata Moradali and Shirin Ghods. Manuscript was mainly drafted by Fata Moradali and Shirin Ghods. Menuscript was mainly drafted by Fata Moradali and Shirin Ghods. A. Rehm.

Chapter V

<u>Shirin Ghods</u>, Bernd H. A. Rehm. Preliminary assessment of the establishment of the alginate biosynthesis pathway in non-pathogenic heterologous hosts (Drafted manuscript, 2017)

This manuscript was written by Shirin Ghods and reviewed by Bernd H. A. Rehm. The concept was conceived by Shirin Ghods and Bernd H. A. Rehm. All Experimental design was performed by Shirin Ghods with the advice of Bernd H. A. Rehm.

This is to certify that above mentioned work was conducted by Shirin Ghods.

Signature Date

Rulle

Prof. Bernd H.A. Rehm

Signature Date 2/6/2017-

Shirin Chods

Shirin Ghods

TABLE OF CONTENTS

Abstract	i
Acknowledgements	ii
Preface	i
Table of content	vi
List of figures	viii
List of tables	xiii
Abbreviations	xiv

Chapter I

General introduction	1
Thesis aims	11
Thesis findings	11

Chapter II

Bactericidal Compounds Controlling Growth of the Plant Pathogen <i>Pseudomonas</i> syringae pv. actinidiae, Which Forms Biofilms Composed of a Novel	
Abstract	14
Introduction	15
Material and Methods	16
Results	23
Discussion	
Acknowledgements	
SupplementalFigures and tables	40

ChapterIII

Interplay of alginate polymerisation and modifications in <i>Pseudomon</i>	nas aeruginosa
and their impact on biofilm formation	
Abstract	

Introduction	
Materials and Methods	
Results	55
Discussion	67
Acknowledgements	69

Chapter IV

Activation Mechanism and Cellular Localization of Membrane-Anchored Alginate	
Polymerase in Pseudomonas aeruginosa	71
Abstract	72
Importance	73
Introduction	73
Materials and Methods	75
Results	81
Discussion	94
Acknowledgements	
Supplemental Materials	99

Chapter V

Preliminary assessment of the establishment of the alginate biosynthesis pathway in	
non-pathogenic heterologous hosts	
Abstract	
Introduction	
Materials and Methods	
Results	
Discussion	
Acknowledgements	
Supplementary Materials	
Final Discussion and Outlook	
References	
Appendix	

LIST OF FIGURES

Chapter I

Chapter II

Fig. 1. CLSM images of *Psa* NZ V-13 biofilm architecture in the flow cells system....24 Fig. 2. Assessment of EPS yield by exposing *Psa* NZ V-13 with different concentrations Fig. 3. Analysis of constituent sugar weight ratios and total sugar dry weight of EPS from Psa NZ V-13 when cultivated at different concentrations of NaCl (mM) on solid Fig. 5. Proposed repeat unit structures of the polysaccharide identified through EPS Fig. 6. Live and dead cell ratios of Psa NZ V-13 in biofilms treated with different concentrations of chlorine dioxide and kasugamycin grown in flow cells system......31 Fig. 7. CLSM images of Psa NZ V-13 biofilm treated with different concentrations of Fig. 8. CLSM images of *Psa* NZ V-13 biofilms treated with different concentrations of Fig. 9. The effect of different concentrations of kasugamycin on *Psa* NZ V-13 in SSA Fig. 10. Assessment of bacteriostatic effect of kasugamycin on Psa NZ V-13 grown in planktonic mode and *E. coli* JM101 applied as positive control at 600 nm......35 Fig. 11. Assessment of bactericidal effect of kasugamycin on Psa NZ V-13 in planktonic Fig. S1. SDS- PAGE (8% acrylamide) of EPS stained with Coomassie Brilliant Blue R-250 (left) and silver-stained SDS-PAGE (8% acrylamide) of EPS (right)......40 Fig. S2. GC/MS chromatogram performed on EPS sample isolated from Psa NZ V-13......41 Fig. S3. ¹H-NMR spectrum of the EPS dissolved in D₂O recorded at 60°C (500MHz).42

Fig. S4. ¹³ C -NMR spectrum of	the EPS	dissolved	in D_2O	recorded	at 60°C
(500MHz)					42
Fig. S5. HSQC spectrum of the Psa	NZ V-13 -	EPS dissol	ved in D ₂	O recorde	d at 60°C
(500MHz)					43
Fig. S6. ¹ H- ¹³ C-HSQC spectrum of t	he ring sug	ar			43
Fig. S7. ¹ H- ¹ H COSY NMR spect	rum of the	Psa NZ V	7-13 -EPS	dissolved	d in D ₂ O
recorded at 60°C (500MHz)					44
Fig. S8. ¹ H- ¹ H COSY spectrum of the	he <i>Psa</i> NZ	V-13 -EPS	dissolved	in D ₂ O re	corded at
60°C (500MHz)					44

Chapter III

Fig. 1. Correlation between alginate polymerization and modifications
Fig. 2. Viscoelastic property of alginates was impacted by molecular weight and
modifications
Fig. 3. Biofilm architecture of mutants producing acetylated and nonacetylated
alginates62
Fig. 4. Biofilm architecture of mutants producing epimerized and nonepimerized
alginates
Fig. 5. Biofilm architecture of mutant-producing nonepimerized and nonacetylated
alginates and the wild type
Fig. 6. Biofilm architecture of a mutant producing a high mannuronate molar fraction and
M-block

Chapter IV

Fig. S4. Correlation of dry cell mass (CDM) and total alginate yield produced by PDO300 Δ mucR Δ alg8transformants harboring various plasmids containing respective site-specific mutagenesis variants of alg8 with (+) and without (-) the rocR gene......102 Fig. S5. Proposed schematic representation of mutual and combinational effects of pointmutation of Alg8 residues including H323, T457 and E460 (red letters in wild-type (wt) column) and c-di-GMP levels (orange stars) (impacted by RocR and/or MucR) on activation of alginate polymerization......103 Fig. S6. Correlation of dry cell mass (CDM) and total alginate yield produced by PDO300 $\Delta alg44$ transformants harboring various plasmids containing respective sitespecific mutagenesis variants of *alg44* gene......104 Fig. S7. Disulfide bond formation in Alg44 and impact on dimerization/protein-protein Fig. S8. Assessment of heterologous production of Alg44 using immunoblotting and anti-Fig. S9. His-affinity chromatography purification of Alg44 produced by homologous P. Fig. S10. Gel filtration chromatogram showing purification of the Alg44 dimer.....108 Fig. S11. Immunoblot analysis (lanes 1 and 2) showed that treatment of the sample with n-Dodecyl β -D-maltoside (DDM) during purification of Alg44 resulted in reduction of Fig. S12. Loops A and B of Alg8 are highly conserved among alginate-producing bacteria and others with Alg8 homologous counterparts.....110

Chapter V

Fig. 1. Schematic enzymatic pathway leading to alginate precursor product	ion133
Fig. 2. Schematic minimal requirements for establishing alginate biosynth	nesis pathway
in heterlogous hosts	
Fig. 3. Two-plasmid system for tailor-made production of alginate polysa	ccharide in E.
<i>coli</i> strains	

Fig. 4. Two-plasmid system for tailor-made production of alginate polysaccharide in <i>B</i> .
megaterium
Fig. 5. Western blot analysis to assess production of AlgA protein (55.7 kDa) in
heterologous host
Fig. 6. Western blot analysis to assess production of AlgD protein (50.5 kDa) in
heterologous host
Fig. 7. Western blot analysis to assess production of AlgC protein (55.5 kDa) in
heterologous host
Fig. 8. Recombinant production and purification of AlgD
Fig. 9. In vitro enzymatic assessment of 10His-AlgD. 138
Fig. 10. HPLC based-verification of in vitro activity of 10His-AlgD and GDP-
mannuronic acid production
Fig. 11. High resolution mass spectrum of GDP-mannuronic acid collected from HPLC
fractionation followed by desalting using solid-phase column141
Fig. 12. Enzymatic assessment of AlgD activity in whole cell lysate of <i>E</i> . <i>coli</i> BL21 (DE3)
(pET-14b::10His- <i>algD</i>)142
Fig. 13. Enzymatic assessment of AlgD activity in whole cell lysate of E. coli
ClearColi®BL21 (DE3) (pMCS69:: <i>algA</i> :: <i>algD</i> :: <i>mucR</i> :: <i>algJ</i> and pET-
14b:: <i>alg8::alg44</i>)
Fig. 14. Enzymatic assessment of AlgD activity in whole cell lysate of <i>E. coli</i> Rosetta 2
(DE3) (pMCS69:: <i>algA</i> :: <i>algC</i> :: <i>algD</i> :: <i>mucR</i> :: <i>algJ</i> and pET-14b:: <i>alg8</i> :: <i>alg44</i>)144
Fig. 15. Enzymatic assessment of AlgD activity in whole cell lysate of <i>E. coli</i> Origami B
(DE3) (pMCS69:: <i>algA</i> :: <i>algC</i> :: <i>algD</i> :: <i>mucR</i> :: <i>algJ</i> and pET-14b:: <i>alg8</i> :: <i>alg44</i>)145
Fig. 16. Enzymatic assessment of AlgD activity in whole cell lysate of <i>B. megaterium</i>
YYBm1 (pMCS69:: <i>algA</i> :: <i>algC</i> :: <i>algD</i> :: <i>mucR</i> :: <i>algJ</i> and pET-14b:: <i>alg8</i> :: <i>alg44</i>)146
Fig. 17. Assessment of Alg8 production by immunoblotting of envelope fraction of
ClearColi®BL21 (DE3) harbouring pMCS69::algA::algC::algD::mucR::algJ and pET-
14b:: <i>alg8</i> -6His:: <i>alg44</i>
Fig. 18. Assessment of Alg8 production by immunoblotting of envelope and inner
membrane fractions of <i>E. coli</i> SHuffle with pKNT25:: <i>alg8</i> -6His148
Fig. 19. Assessment of Alg8 production by immunoblotting of envelope fractions of
<i>E.coli</i> BL21 Star (DE3) One Shot (pETDuet-1:: <i>alg8::alg44</i> -12His)149
<i>E.coli</i> BL21 Star (DE3) One Shot (pETDuet-1:: <i>alg8::alg44</i> -12His)149 Fig. 20. Assessment of Alg8 production by immunoblotting of envelope and inner

Fig. S1. The map of made constructs applied in this study	155
Fig. S2. ELISA assay standard curve created based on various concentration	ns of purified
<i>P. aeruginosa</i> PDO300 alginate (4, 2, 1, 0.5 and 0.1 μg/ml)	158

LIST OF TABLES

Chapter I

Table	1.	The	subunits	constituting	alginate	polymerization/secretion	multiprotein
comple	ex a	nd the	eir propose	ed localization	n and fund	ction	9

Chapter II

Table 1. Sugar composition of EPS isolated from <i>Psa</i> NZ V-1	27
Table 2. Glycosyl linkage analysis of the EPS composition isolated from P	sa NZ V-
13	29
Table S1. ¹ H-NMR and ¹³ C-NMR of the EPS composition	45

Chapter III

Table 1. Strains and plasmids applied in this study	51
Table 2. Composition and molecular mass analyses of alginate produced by different	nt
mutants	59
Table 3. Compactness and dead/live ratio calculated for analysed biofilms	57

Chapter IV

Table 1. Strains, plasmids and primers applied in this study	111
Table S1. Composition of alginates produced by different	118
Table S2. Composition of alginates produced by various P. aeruginosa	strains and
impacted by Alg44 variants	

Chapter V

Table 1. Summarizes the results from SDS-PAGE and immunoblotting analyst	ses of
assessing protein production and localization in various heterologous hosts	150
Table S1. Strains applied in this study	159
Table S2. Plasmids applied in this study	160
Table S3. Made transformants applied in this study	163

ABBREVIATIONS

Psa	Pseudomonas syringae pv. Actinidiae
EPS	Extracellular polymeric substances
LB	Luria Bertani
°C	Degree Celsius
mM	Millimolar
pН	Potential hydrogen
μg	Micro gram
μl	Micro litre
μg ml ⁻¹	Micro gram/millilitre
Nm	Nano metre
Mm	Micro metre
Ppm	Part per million
MIC	Minimal inhibitory concentration
OD	Optical density
Н	Hour
Min	Minute
CFU	Colony forming units
3D	Three-dimensional
CDM	Cell dry mass
GC-MS	Gas chromatograph mass spectrometer
HPAEC	High-performance anion-exchange chromatography
DMSO	Dimethylsulfoxide
HSOC	Heteronuclear single quantum coherence
TOCSY	Total correation spectroscopy
COSY	Correlation spectroscopy
NMR	Nuclear magnetic resonance spectroscopy
SSA	Solid surfaces attachment
Ap	Ampicillin
Gm	Gentamycin
Cm	Chloramphenicol
Tet	Tetracvcline
Kan	Kanamycin
BSA	Bovine serum albumin
Cb	Carbenicillin
Δ Delta	Deleted
DMSO	Dimethyl sulfoxide
D ₂ O	Deuterium oxide
DNA	Deoxyribonucleic acid
DNAase	Deoxyribonuclease
RNAase	Ribonuclease
dNTPs	Deoxyribonucleotide triphosphates
EtOH	Ethanol
EDTA	Ethylenediaminetetraacetic acid
G	Gravity/gram
GTP	Guanosine triphosphate
HEPES	4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid
HRP	Horse radish peroxidase
IPTG	Isopropyl â-D-1-thiogalactopyranoside
kDa	Kilodaltons
Λ	Lambda (wavelength or type of phage)
	(

GFP	Green fluorescent protein
ORF	Open reading frame
PCR	Polymerase chain reaction
PIA	Pseudomonas isolation agar
PPI	Protein-protein interaction
SD	Standard deviation
SDS-PAGE	Sodium dodecyl sulfate gel electrophoresis
TBE	Tris-Borate-EDTA buffer
TE	Tris-EDTA buffer
Tm	Primer melting temperature
Tris	Tris(hydroxymethyl)aminomethane
vol/vol	Volume per volume
wt/vol	Weight per volume
X-Gal	5-bromo-4-chloro-3-indolyl-beta-D-galactopyranoside
ELISA	enzyme-linked immunosorbent assay
М	1,4-linked β -D-mannuronic acid
G	C5 epimer α-L-guluronic acid
GG-blocks	C5 epimer α-L-guluronic acid residues
PMI	Phosphomannose isomerase
GMP/GDP-MP	Guanosine diphosphate (GDP)-mannose pyrophosphorylase
PMM	Phosphomannomutase
GMD	GDP-mannose 4, 6-dehydrogenase
KEGG	Kyoto encyclopedia of genes and genomes
His	Histidine
DTT	Dithiothreitol
NAD	Nicotinamide adenine dinucleotide
NADH	Nicotinamide adenine dinucleotide - hydrogen
PGC	Porous graphitic carbon
Q-TOF	Quadrupole time of flight
SPE	Solid extraction column
MS	Mass spectrometry
OPD	O-Phenylenediamine dihydrochloride
TCA	Tricarboxylic acid
T0	Zero Time
HRP	Horseradish peroxidase