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DISSERTATION ABSTRACT

Philip Alden Johnson-Freyd

Doctor of Philosophy

Department of Computer and Information Science

December 2017

Title: Properties of Sequent-Calculus-Based Languages

Programmers don’t just have to write programs, they are have to reason

about them. Programming languages aren’t just tools for instructing computers

what to do, they are tools for reasoning. And, it isn’t just programmers who reason

about programs: compilers and other tools reason similarly as they transform

from one language into another one, or as they optimize an inefficient program

into a better one. Languages, both surface languages and intermediate ones, need

therefore to be both efficiently implementable and to support effective logical

reasoning. However, these goals often seem to be in conflict.

This dissertation studies programming language calculi inspired by the

Curry-Howard correspondence, relating programming languages to proof systems.

Our focus is on calculi corresponding logically to classical sequent calculus and

connected computationally to abstract machines. We prove that these calculi have

desirable properties to help bridge the gap between reasoning and implementation.

Firstly, we explore a persistent conflict between extensionality and effects

for lazy functional programs that manifests in a loss of confluence. Building on

prior work, we develop a new rewriting theory for lazy functions and control which
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we first prove corresponds to the desired equational theory and then prove, by

way of reductions into a smaller system, to be confluent. Next, we turn to the

inconsistency between weak-head normalization and extensionality. Using ideas

from our study of confluence, we develop a new operational semantics and series

of abstract machines for head reduction which show us how to retain weak-head

reduction’s ease of implementation.

After demonstrating the limitations of the above approach for call-by-value

or types other than functions, we turn to typed calculi, showing how a type system

can be used not only for mixing different kinds of data, but also different evaluation

strategies in a single program. Building on variations of the reducibility candidates

method such as biorthogonality and symmetric candidates, we present a uniform

proof of strong normalization for our mixed-strategy system which works so long as

all the strategies used satisfy criteria we isolate.

This dissertation includes previously published co-authored material.
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CHAPTER I

INTRODUCTION

Despina. Salvete, amabiles /

Buonae puellae!

Fiordiligi e Dorabella. Parla un

linguaggio / Che non sappiamo.

Despina. Come comandano /

Dunque parliamo: / So il greco e

l’arabo, / So il turco e il vandalo; /

Lo svevo e il tartaro / So ancor

parlar.

Lorenzo Da Ponte and Wolfgang

Amadeus Mozart, Cos̀ı fan tutte

The design of programming languages began even before the invention of

the computer. Church’s untyped λ-calculus was first conceived for the purpose of

organizing logic (Church (1932)). Later, it was shown to be a universal model of

computation (Church (1936)), equivalent to the Turing machine (Turing (1937)).

Very many programming languages have been developed since, however, the

connection between logic and computation remains.

Programming languages should be easy to write, but also easy to reason

about. Moreover they should be effectively implementable: we need to be able

to efficiently run programs as implemented, and to transform them into more

efficient programs. To do these things we need to prove properties about programs

and about programming languages. In many instances it is easier not to directly
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work with the surface languages users write, but rather to transform these

into intermediate languages more amenable to formal analysis. Even when full

languages are impractical or do not satisfy all the properties of interest, it may

be desirable to study smaller core calculi which do satisfy those properties.

This dissertation is situated at this intersection of computation and logic.

We design and prove properties about a series of calculi of interest in the design

of intermediate languages. These calculi, following Curien and Herbelin (2000),

are inspired by a formal connection to logic and in particular the proof theoretic

idea of sequent calculus, which helps guide us along the path of good design

choices. However, our calculi are in each case motivated by concrete computational

questions.

Overview

Roughly the first half of this dissertation–namely Chapters II, III, IV, and V–

are focused on untyped systems. Of these, Chapters II and III are, when taken

together, largely self contained. They are an expansion of material previously

published as Johnson-Freyd, Downen, and Ariola (2017) which I developed in

collaboration with Paul Downen and Zena M. Ariola. Some additional material

from that publication is also used in the first part of Chapter V. Although sharing

insights, Chapter IV can be understood without Chapter III. It incorporates

previous published material which I wrote with Paul Downen and Zena M. Ariola

(Johnson-Freyd, Downen, and Ariola (2015)).

The latter parts of this dissertation, namely Chapters V and VI concern

typed systems. The model in Chapter VI derives, with major modifications, from

an appendix to Downen, Johnson-Freyd, and Ariola (2015), which I developed
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in collaboration with Paul Downen and Zena M. Ariola. That chapter also

incorporates some subsequent ideas and improvements I developed in later

collaboration with Paul Downen.

In more detail, this dissertation can be broken into four main problem areas.

– In Chapter III we study the problem of rewriting effectful functional programs

in a way which respects the equational property that programs which behave

the same are the same. The particular problem we study is that of confluence:

how can we be assured that the order at which we apply rewrite rules does

not matter? This problem is of potential practical relevance to the designers

of compilers who may want to use rewriting as a tool for optimization, and

for whom then confluence (even of a subset of the rewriting rules) can be a

big win.

– In Chapter IV we apply the insights from our study of confluence and

rewriting to the problem of how even to run lazy functions in a way

that at least respects extensionality. As such, we address a contradiction

between the way lazy functional programs are usually evaluated (weak head

normalization) and the prevailing equational theory for these programs (which

incorporates extensionality). Our solution is a form of head normalization

tailored for efficiency and which avoids looking under lambdas.

– In Chapter V we reconsider the solutions given in the early chapters, and

show that, while they are well suited to lazy functions, they break down

with other data types and evaluation strategies, including the more common

call-by-value approach used by most popular languages. Consequently, we
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introduce new typed calculi allowing us not only to choose strategies other

than call-by-name, but also to even mix strategies in one program.

– Finally, in Chapter VI we take advantage of the introduction of the typed

system to prove a property which could not be shown for the untyped calculi:

namely, strong normalization. That is, every reduction path for our calculus

eventually terminates. Again, this is a property which may reassure compiler

writers: a compiler is free to apply the reduction rules from the theory and

still be assured that compilation will complete in finite time.

Before developing these contributions, however, we will investigate in detail

the nature of lazy functions in Chapter II, motivating the sequent calculus based

languages we use.

First though, as the remainder of this introduction, we give a brief

introductory tutorial on some of the ideas from programming languages and logic

which inform our designs.

λ-Calculus and Programming

v ∈ Terms ::= x | λx.v | v v

λx.v =α λy.(v{y/x}) y 6∈ FV (v)

(λx.v) v′ =β v{v′/x}
λx.v x =η v x 6∈ FV (v)

FIGURE 1. Syntax and Equational Theory of Untyped λ-calculus

The untyped λ-calculus is among the oldest and simplest programming

languages. Its grammar, in Fig. 1, is given by a single syntactic sort and just three

productions, x a variable, v v′ a function application, and λx.v defines a function

4



by abstracting over the variable x. The most basic equation, α equivalence, tells us

that we are permitted to freely rename local variables. By contrast, the β axiom

tells us the meaning of λ-abstraction in terms of how a function behaves when

given an argument. The notation v{v′/x} refers to capture avoiding substitution

which simply means replacing all free appearances of the variable x in v for the

term v′, but doing so in a way which respects α-equivalence (Church (1932)).

Finally, η-equivalence tells us that a function which does nothing other than

delegate to another function is equivalent to the function it delegates to. Implicitly,

the equational theory this defines is the least congruence (an equivalence relation

also applied inside terms) closed under the rules.

An equational theory tells us when two programs are the same, but in itself

the equational theory doesn’t tell us how to run programs. To do that we need to,

at the very least, orient the equations to produce a reduction theory

(λx.v) v′ → v{v′/x}

λx.v x→ v x 6∈ FV (v).

Here, we again allow reductions to occur inside of terms, and we adopt the practice

which we will maintain throughout this dissertation of considering programs up to

α-equivalence across all calculi. This reduction theory has desirable properties.

First among them is that it is confluent, meaning that its reflexive transitive

closure, written →→, has the diamond property: if v, v1, v2 are terms such that

v→→ v1 and v→→ v2 then there must exist a v3 such that v1→→ v3 and v2→→ v3.

v v1

v2 v3

5



Even a reduction theory though does not provide enough information to implement

a complete language. To do that, we need a rule to pick which reduction to perform

each chance we get. For instance, the top-leftmost redex.

The λ-calculus is lazy, which we usually refer to as call-by-name. That is,

when we can β reduce with any term. Many languages however are based instead

on call-by-value where the β law only applies when the argument to a function is

a value and done computing. We will explore this issue in much more depth in

Section 4.4.

The λ-calculus is a complete language, allowing us to represent all computable

functions on numbers. Related to this fact is that the λ-calculus must include

programs which can not be reduced to a normal form (a term for which there

are no more reductions). An example of such a non-normalizing term is Ω =

(λx.x x)(λx.x x) since

(λx.x x)(λx.x x)→ (x x){(λx.x x)/x} = (λx.x x)(λx.x x)

Closely tied to this fact is the reason the untyped λ-calculus is unsuitable for

Church’s goal of an organizing tool for logic. In the original design, λ calculus

would be extended with constants for forming propositions (thought of as λ-terms)

out of other λ-terms and then λ terms would be interpreted as truth value For

instance, we might allow a constant ¬ such that ¬(v) is a term whenever v is where

¬(v) is true exactly when v is not. However, this allows paradoxical terms (Kleene

and Rosser (1935)).

P = (λx.¬(x x))(λx.¬(x x))

6



we can see that

P = (λx.¬(x x))(λx.¬(x x))

=β ¬((λx.¬(x x))(λx.¬(x x)))

= ¬(P )

which is clearly a contradiction.

Types

A,B ∈ Types ::= A→ B | a

(x : A) ∈ Γ

Γ ` x : A

Γ, x : A ` v : B

Γ ` λx.v : A→ B

Γ ` v : A→ B Γ ` v′ : A
Γ ` v v′ : B

FIGURE 2. Assignment of Simple Types for the λ-Calculus

In order to avoid these problems, Church (1940) introduced the simply

typed λ-calculus, which we present in Fig. 2. Here, we have an inductively defined

inference system delineating what terms are well-typed with base type a and

function types of the form A → B. The judgment Γ ` v : A says that v has type A

under the assumption Γ. Typing resolves the non-termination problem: β reduction

always terminates, and so dubious cases like the paradox above are eliminated. As

such, the simply typed lambda calculus can be used as an organizing tool for logic,

as has become standard in the HOL family of proof assistants (Gordon (2000)).
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However, the simply typed λ-calculus is connected to logic in another way.

Forgetting the terms, and looking only at the types, we can interpret Γ ` v : A

as saying A is true assuming Γ and then interpret the function type constructor →

as logical implication. Then, the rules of the simply typed λ-calculus are exactly

the rules of the proof system known as intuitionistic natural deduction (Howard

(1980)). The correspondence between typed calculi and proof systems motivates the

approach taken in this dissertation.

Sequent Logic

In the years of 1934 and 1935 Gerhard Gentzen published his

“Untersuchungen ber das logische Schließen” (Gentzen (1935)). Gentzen described

the system of natural deduction for both classical and intuitionistic predicate logics.

Natural deduction was as “close as possible to actual reasoning”. Further, Gentzen

posited his ‘Hauptsatz’1 that every proof in natural deduction could be reduced to

a normal form. Although he did not present the details, Gentzen claimed a direct

proof of this fact for intuitionistic natural deduction, but could not determine a

way to reduce classical proofs making use of the law of the excluded middle. For

this he introduced a new system called sequent calculus and showed the equivalence

of classical and intuitionistic sequent calculi to natural deduction as well as to a

“Hilbert style” system. For sequent calculus, even in the classical case, Gentzen was

able to show his Hauptsatz in the form of “cut elimination.” It is hard to overstate

the significance of this result: the ‘Hauptsatz’ is the principle theorem in proof

theory. It implies, among other things, that these logics are internally consistent in

that they are unable to prove the proposition false.

1“Main Theorem.”
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The fundamental judgment of sequent calculus is written

Γ ` ∆

where Γ (the assumptions) and ∆ (the conclusions) are sets of logical formulae.

The intuitive interpretation of a sequent is that “if every formula in Γ is true then

at least one formula in ∆ is true.”

The simplest rule of sequent calculus is the axiom, which says that any

formula entails itself.

Γ, P ` P,∆

The ability to work with lemmas is fundamental to mathematics. In sequent

calculus, lemmas are supported by way of the cut rule.

Γ ` P,∆ Γ, P ` ∆

Γ ` ∆

To define logical connectives in the sequent calculus we must do two things:

describe how to prove a sequent which has that connective in its conclusion, and,

describe how to prove a sequent which has that connective as an assumption.

The propositional connective we are most interested in is implication. We

should be able to prove P → Q if we can prove Q under the assumption P . The
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right introduction rule for implication encodes this view.

Γ, P ` Q,∆

Γ ` P → Q,∆

On the other hand, the left introduction rule for implication must show us how to

prove a sequent of the form Γ, P → Q ` ∆. Thinking through this, we know that

something in ∆ holds under the assumption of P → Q if something in ∆ holds

under the assumption Q and if either P or ∆ holds. Equivalently, we can think of a

left rule as a rule for refutation. We can refute P → Q if we can prove P and refute

Q, since, classically ¬(P → Q) ≡ ¬(¬P ∨Q) ≡ P ∧ ¬Q.

Γ, Q ` ∆ Γ ` P,∆

Γ, P → Q ` ∆

We have given a short semantic justification for the introduction rules for

implication, but one still might wonder how can we be sure they are correct? First,

we observe that the axiom is derivable for the formula P → Q assuming it holds at

each of P and Q.

Γ, Q, P ` Q,∆ Γ, P ` P,Q,∆

Γ, P → Q,P ` Q,∆

Γ, P → Q ` P → Q,∆

The cut rule is also derivable. The ability to remove cuts, cut elimination, is

the primary correctness property for sequent calculus. Suppose we have a proof
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that ends in a right introduction of P → Q and another proof that ends in a

left introduction of the same formula. A cut between these two proofs can be

eliminated in so far as it can be reduced to a proof that only makes use of cut at

structurally smaller formulae.

Γ, P ` Q,∆

Γ ` P → Q,∆

Γ, Q ` ∆ Γ ` P,∆

Γ, P → Q ` ∆

Γ ` ∆

⇓

Γ ` P,∆
Γ, P ` Q,∆ Γ, Q ` ∆

Γ, P ` ∆

Γ ` ∆

The cut elimination procedure works to eliminate all cuts from our proofs. The

existence of cut elimination means that if something is provable, it is provable

without the use of cuts. This property ensures the consistency of the logic: what

can be shown about a connective is exactly what can be shown by the introduction

rules. Observe however that cut elimination is inherently nondeterministic. For

example, we could give an alternative derivation of cut for implication.

Γ ` P,∆ Γ, P ` Q,∆

Γ ` Q,∆
Γ, Q ` ∆

Γ ` ∆
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In addition to the introduction rules for connectives, there are the structural rules.

We should not have to care about the order of assumptions and conclusions in our

sequent, and thus Gentzen gives his rules of exchange.

Γ, P,Q,Γ′ ` ∆

Γ, Q, P,Γ′ ` ∆

Γ ` ∆, P,Q,∆′

Γ ` ∆, Q, P,∆′

The weakening rules state that if a sequent is provable, the same sequent is

provable with any number of extra assumptions and conclusions.

Γ ` ∆

Γ,Γ′ ` ∆

Γ ` ∆

Γ ` ∆,∆′

While the rules of contraction state that two assumptions (conclusions) of the same

formula can be shared.

Γ, P, P ` ∆

Γ, P ` ∆

Γ ` P, P,∆

Γ ` P,∆

Uses of the structural rules are often kept implicit. In particular, because we treat

Γ and ∆ as sets rather than purely formal sequences of formulae, exchange and

contraction are completely automatic.

Unlike the single conclusion natural deduction, which is by nature

intuitionistic, sequent calculus with multiple conclusions corresponds to classical

logic. This can be seen in the derivation of Peirce’s law–((P → Q) → P ) → P–

a statement, which when added as an axiom, has the consequence of turning
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intuitionistic logic into classical logic.

P ` P

P ` P,Q

` P → Q,P

(P → Q)→ P ` P

` ((P → Q)→ P )→ P

13



CHAPTER II

FUNCTIONS AS PATTERN MATCHING

This largely expository chapter incorporates material derived from (Johnson-

Freyd et al. (2017)) of which I was the primary author. I would like to thank my

coauthors Paul Downen and Zena M. Ariola for their assistance in writing that

publication.

Locating Redexes

In order to ever actually run a λ-calculus program we have to rewrite it in a

specific order. For example, we can only apply the β rule at the top of a program

to rewrite v v′ into a simpler term if v is already a λ-abstraction. Otherwise, we

must first rewrite inside v. Indeed, we can never rewrite that top level application

until after v has been rewritten into a λ-abstraction.

Thus, in order to actually implement λ-calculus, it is valuable to identify

where we have to rewrite first. The notion of evaluation contexts captures this

content (Felleisen and Hieb (1992)), drawing out the top-most left-most possible

redex in a program. The idea is to simply define a syntax for the contexts around

this redex.

E ∈ Evaluation Contexts ::= � || E v

Here the box, �, is the “hole” where a possible redex may occur. We can then use

the filling notation E[v], which just means E but with v in place of the box, to give

an alternative presentation of the β-rule:

E[(λx.v) v′] =β E[v{v′/x}]
14



Abstract Machines

Alternatively, instead of using evaluation contexts, which are syntax for

ordinary terms with holes in them, we could switch to an “abstract machine”

which stores an evaluation context as a data structure we call a co-term (Krivine

(2007)). A complete program is then represented as a command consisting of a

term, together with a co-term encoding the context around it.

e ∈ Co-terms ::= tp || v · e

c ∈ Command ::= 〈v||e〉

The co-term tp here represents the top-level (empty) context, while v · e could be

thought of as a call-stack containing the argument v together with the rest of the

call-stack e. In order to compute with this we need a recast β-rule

〈λx.v||v′ · e〉 =β v{v′/x}.

However the β-rule alone is definitely not enough. We would also need a rule to

refocus (Danvy and Nielsen (2004)) a function application into a call-stack.

〈v v′||e〉 =reassoc 〈v||v′ · e〉

Together these rules, oriented as reductions, define the Krivine abstract machine for

reducing λ-terms to weak head normal form.

However, they alone don’t correspond to the λ-calculus in its full glory. For

one thing, even together, they only allow for applying the β-rule to the left-most

top-most redex.
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However, rewriting programs in this way suggests an interesting possibility. If

we look at the reassocation axiom, we see that its meaning has to do not with just

manipulating terms, but manipulating machine states. It tells us that the meaning

of a function application v v′ is to rewrite machine state by pushing v′ on to the

call-stack by extending the prior co-term with v′· and then using this new co-term

to evaluate v.

Naming the Call-Stack

Let us generalize this idea (Curien and Munch-Maccagnoni (2010); Munch-

Maccagnoni and Scherer (2015)). If co-terms are first class entities, why not give

them names? To do so, we only need to introduce a new class of co-variables

ranging over co-terms, written with Greek letters, and a new way of forming terms

out of commands, µα.c, together with a single equation

〈µα.c||e〉 =µ c{e/α}

This is analogous to the evaluation of the term let x = v in v′, where v is

substituted for each occurrence of x in v′. In fact, with µ, we don’t need function

application syntax at all anymore. We can just regard the syntax v v′ as syntactic

sugar for µα.〈v||v · α〉. We also don’t need the separate notion of a top-level context

tp, as it can be just another co-variable.

In addition to the output abstraction, it would make sense to include a dual

input abstraction µ̃x.c which defines a co-term by abstracting over the variable x.

The equational property associated with this rule then would be

〈v||µ̃x.c〉 =µ̃ c{v/x}.
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With µ̃ we can simplify our β-rule, such that only the µ and µ̃ rules do

substitution:

〈λx.v||v′ · e〉 =β 〈v′||µ̃x.〈v||e〉〉

which is clearly equivalent (assuming the Barendregt convention is obeyed).

However, we must be wary. Including both µ and µ̃ rules in a calculus will

destroy the equational theory. To see why, consider any two commands c1 and c2.

Then, we have

c1 =µ 〈µ .c1||µ̃ .c2〉 =µ̃ c2.

That is, the equational theory would collapse, relating every program to every other

program. To avoid this we will have to either leave out µ̃ or restrict one or both

of the rules in some way. We can do so by restricting what can be substituted to

only a subset of terms called “values” (which we will denote with a capital V )

and a subset of co-terms called “co-values” (denoted E). However, we have some

choice in what we take as (co-)values. If we take all terms to be values, and then

use a very restricted set of co-values as just co-variables and call-stacks made up of

hereditary (co-)values, we recover the call-by-name parameter passing technique.

If we take all co-terms to be co-values and restrict values down to just variables

and λ-abstractions, we get the call-by-value system. (Co-)variables only range

over (co-)values, and so we can regard both disciplines as answers to the question:

“what is a (co-)value?”

Thus the parametric calculus λ̄µµ̃ given in Fig. 3 only has λ-abstractions and

output abstractions as terms. Moreover, this calculus no longer has the limitation

that β can only be applied to the left-most top-most redex.
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c ∈ Command ::= 〈v||e〉
v ∈ Terms ::= x | λx.v | µα.c

e ∈ Co-Terms ::= α | v · e | µ̃x.c

〈µα.c||E〉 =µ c{E/α}
〈V ||µ̃x.c〉 =µ̃ c{v/x}
µα.〈v||α〉 =ηµ v

µ̃x.〈x||e〉 =ηµ̃ e

〈λx.v′||v · e〉 =β 〈v||µ̃x.〈v′||e〉〉

FIGURE 3. The parametric λ̄µµ̃-calculus

Jλx.vK = λx.JvK
Jv v′K = µα.〈v||v′ · α〉

JxK = x

FIGURE 4. Translation from λ-calculus to λ̄µµ̃

Adding output abstraction actually allows for writing more programs than

could be written in pure λ-calculus. The difference is that now there are extra

programs which don’t come from any λ-terms. For example, a term which “aborts”

by abstracting over the output and then ignoring it (assume α not free in v) is

µα.〈v||β〉.

Γ, x : A ` x : A | ∆ Γ | α : A ` α : A,∆

Γ ` v : A | ∆ Γ | e : A ` ∆

〈v||e〉 : (Γ ` ∆)

c : (Γ ` α : A,∆)

Γ ` µα.c : A | ∆
c : (Γ, x : A ` ∆)

Γ | µ̃x.c : A ` ∆

Γ | e : B ` ∆ Γ ` v : A | ∆
Γ | v · e : A→ B ` ∆

Γ, x : A ` v : B | ∆
Γ ` λx.v : A→ B | ∆

FIGURE 5. Simple types for λ̄µµ̃
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The difference becomes obvious if we consider a type assignment as we do in Fig. 5.

As we can see, our assignment corresponds to a sequent calculus instead of natural

deduction. In particular, it is a sequent calculus with both active judgments

(typing terms and co-terms) and non-active ones (typing commands), and a rule for

activation. Moreover, having multiple conclusions, it is a classical sequent calculus.

We can thus write closed terms which correspond to classical proofs, like the proof

of Pierce’s law (note, we drop extraneous premises to fit the proof on a page):

| α : P ` α : P

x : P ` x : P | | α : P ` α : P

〈x||α〉 : (x : P ` α : P )

x : P ` µ .〈x||α〉 : Q | α : P

` λx.µ .〈x||α〉 : P → Q | α : P

| (λx.µ .〈x||α〉) · α : (P → Q)→ P ` α : P f : (P → Q→ P ) ` f : (P → Q→ P ) |
〈f ||(λx.µ .〈x||α〉) · α〉 : (f : (P → Q→ P ) ` α : P )

f : (P → Q)→ P ` µα.〈f ||(λx.µ .〈x||α〉) · α〉 : P |
` λf.µα.〈f ||(λx.µ .〈x||α〉) · α〉 : ((P → Q)→ P )→ P |

The computational difference corresponding to classicality is that the system

λ̄µµ̃ has control effects. Programs such as the proof of Pierce’s law above have

jumps in them creating non-local control flow. This can actually be quite desirable

for writing efficient programs as it allows patterns such as the early exit from a

search procedure. Indeed, such jumping constructs were developed prior to the

computational interpretation of classical logic and included as a feature in some

λ-calculus based languages (e.g. Scheme’s call/cc).

Let us now reexamine what we have done.

The λ-calculus is one sided, emphasizing only one aspect of computation.

However, the calculus λ̄µµ̃ reveals computation’s two sided nature. Complete

programs are written as commands which are two sided entities, where the two
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sides represent two opposing forces of computation—the production (via terms)

and consumption (via co-terms) of information. These correspond in the type

system to the two sides of the cut rule from proof theory, and cuts are the only

place where computation can happen. For example, a λ-abstraction λx.v, as is

written in the λ-calculus, is a term that describes the necessary behavior for

creating a functional value, whereas a call stack v · e is a co-term that describes

the method for using a function. Additionally, we have generic abstractions which

allow each side to give a name to the other, regardless of their specific form. The

µ̃-abstraction µ̃x.c is a consumer which names its input x before running the

command c. Dually, the µ-abstraction µα.c is a producer which names the location

for its output α before running c. The typing judgment for terms corresponds to

the collection of proofs with an active formula on the right, and dually, co-terms

correspond to proofs with an active formula on the left. Readers unaccustomed

to the sequent calculus may find it helpful to think of co-terms as contexts in

the λ-calculus and the construct 〈v||e〉 as filling the hole in e with the term v. In

this view, µ̃x.c corresponds roughly to let x = � in c while v · e corresponds

to the context e[� v]. We can see that µ̃ allows us to build more complicated

compound contexts, beyond just the applicative contexts formed with the call

stack constructor (i.e. the · constructor). Similarly, µ-abstraction lets us build more

complicated compound terms beyond just λ. Indeed, the µ operator can be seen as

arising as a solution to the problem of how to encode elimination forms, and their

associated reduction equations, into an abstract machine language like λ̄µµ̃η

The µ-abstraction µα.c can also be read as call/cc(λα.c), and a co-variable

α is akin to a context of the form throw α �, which invokes a stored continuation.

However, we find the sequent calculus presentation instructive as it emphasizes
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symmetries, reducing the number of distinct concepts. In a λ-calculus presentation,

control operators often come across as exotic and are difficult to build an intuition

about. Here, µ-abstraction is simply understood as providing a name to an output

channel in a computation: it is no more complicated than µ̃-abstraction which

provides a name to an input.

Replacing Lambda

Even though the µ rule seems very different from the application rule they are

actually very similar, when seen side-by-side:

〈µα.c||E〉 = c{E/α}

〈λx.v||v′ · E〉 = 〈v{v′/x}||E〉

Note that they both inspect the context or co-term. Similar to the way a µ-term

corresponds to a let-term, the λ-abstraction corresponds to a term of the form

let (x, y) = v in v′, which decomposes v while naming its sub-parts. So in

contrast to the µ-term, the λ-abstraction decomposes the co-term instead of just

naming it. To emphasize this view we write a function as a special form of µ-

abstraction which pattern-matches on the context. The term µ[x · α.c] gives names

to both its argument x and the remainder of its context α in the command c.

Operationally, µ[x · α.c] can be thought of as waiting for a context v · E at which

point computation continues in c with v substituted in for x and E substituted

in for α. This view emphasizes that a function is given primarily by how it is

used rather than how it is defined; the call-stack formation operator · is the most

important aspect in the theory of functions (rather than lambda-abstraction).
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However, the two views of functions are equivalent. We can write the lambda

abstraction λx.v as µ[x · α.〈v||α〉] , given α not free in v. When written in this style

β is clearly just a form of pattern matching, only pattern matching on the calling

context.

c ∈ Command ::= 〈v||e〉
v ∈ Terms ::= xµ[x · α.c] | µα.c

e ∈ Co-Terms ::= α | v · e | µ̃x.c

〈µα.c||E〉 =µ c{E/α}
〈V ||µ̃x.c〉 =µ̃ c{V/x}
µα.〈v||α〉 =ηµ v

µ̃x.〈x||e〉 =ηµ̃ e

〈µ[x · α.c]||v · e〉 =β 〈v||µ̃x.〈µα.c||e〉〉
µ[x · α.〈f ||x · α〉] =η f

FIGURE 6. The parametric µµ̃→-calculus with η

The improved calculus µµ̃→ in Fig. 6 takes this view. The type system’s

connection to sequent calculus is improved too, as we can give new right-

introduction for an implication which erases activation,

c : (Γ, x : A ` α : B,∆

Γ ` µ[x · α.c] : A→ B | ∆

and so cleanly differentiates reversible and non-reversible rules in the style of

focusing (Andreoli (1992)).

What then about equations? We have already explored a β-rule which does

no substitution. With the alternative representation of functions this can instead be

given as:

〈µ[x · α.c]||v · e〉 =β 〈v||µ̃x.〈µα.c||e〉〉.
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But what about η? In the λ-calculus, η tells us that a function which merely

delegates to another function should be equal to the other function. This can be

written in a way that works in both call-by-name and call-by-value as f = λx.fx

for any variable f . We should take the same approach in the sequent calculus as a

general principle: a pattern match which immediately reconstructs its context to

call a variable is equal to that variable:

µ[x · α.〈f ||x · α〉] = f.

The system µµ̃→, and in particular its call-by-name version, will serve as the

main object of study for the next two chapters, as we try to see how to run its

programs. Afterwards, we will consider an extended version with additional data

types deriving from Downen and Ariola (2014).
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CHAPTER III

REASONING WITH LAZYNESS AND EXTENSIONALITY

This chapter is a revised and extended version of (Johnson-Freyd et al.

(2017)). I was the primary author of that publication and developed the calculi and

detailed proofs appearing here. Paul Downen introduced me to the reflection based

technique for showing confluence used in this chapter, while Zena M. Ariola checked

my work and found several minor errors in earlier versions of the equational

correspondence and reflection proofs. I would like to thank both of them for their

invaluable contributions to that publication.

The Challenge of Extensional Rewriting

Extensionality helps make syntactic theories less syntactic—objects that

behave the same are the same even though they appear to be different. This is

important because we should be able to use a program without knowing how it

was written, only how it behaves. We have seen how in the λ-calculus, extensional

reasoning is partially captured by the η-law, which says that functional delegation

is unobservable: λx.f x = f . It is essential to many proofs about functional

programs: for example, the well-known “state monad” only obeys the monad laws

if η holds (Marlow (2002)). The η-law is compelling because it gives the “maximal”

extensionality possible in the untyped λ-calculus: as shown by Böhm (1968), if we

attempt to equate any additional β-normal terms beyond β, η, and α, the theory

will collapse. Or, put another way, two λ-calculus programs are either the same

according to η or there are inputs on which they behave differently.
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An equational theory give us a definition of when two programs are the

same. But that is all it does. Equational theories don’t give us an algorithm to

run programs, nor do they provide much in the way of an algorithm to decide if

two programs are the same: just the conditions for when they are. From the point

of view of a compiler then, an equational theory provides a correctness criterion

for transformations, but it doesn’t tell us what transformations to make. For that,

we need to orient the equations into a reduction theory, giving a direction for how

to transform programs. With the pure λ-calculus this is easy: we can interpret η

as a contraction and β as a function call. Those two reductions give an approach

suitable for both running programs to completion and for rewriting programs to

become better ones.

Even a reduction theory though isn’t necessarily enough. What do we do

when multiple reduction rules are available? What if there is both a β and an η

Which one do we take? This question is particularly pertinent for a compiler: the

compiler will frequently have a choice of rewrites it can perform, how should it

decide which to take? One way we might be able to at least partially side step

that question is if we use a reduction theory which is confluent. That is, a theory

where the chosen order of reductions does not impact the result—all diverging

paths will eventually meet back up in the end. In a logic, confluence guarantees

consistency: programs which can’t be reduced any more are only equated if they

are syntactically identical, so we do not end up equating true to false. Confluence

also provides a good vehicle to conduct proofs establishing a standard reduction

path, thus demonstrating that the rewriting theory can be implemented in a

deterministic fashion. Indeed, the λ-calculus with the extensional η-law is confluent

(Barendregt (1984)) which is why all its nice properties hold.
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However, all is not well. The pure λ-calculus has these nice properties, but

they start to break down the moment additional features are added. In particular,

once the calculus is extended with control effects confluence is lost (David and

Py (2001)). Even worse, just adding extensional products with a surjectivity law

breaks confluence of the pure λ-calculus as well (Klop and de Vrijer (1989)).

Given these troublesome problems, we might be inclined to conclude that

confluence is too syntactic and low-level. After all, the consistency of a logic can

be demonstrated using alternative techniques (Klop and de Vrijer (1989)), and if

we are only interested in capturing program execution, we can focus directly on

an operational semantics instead of starting with such a flexible rewriting system.

These are sensible arguments, and indeed there are cases where more abstract

notions of confluence are needed, as in a calculus with cyclic structures (Ariola

and Blom (2002)). However, it might come as a surprise that extensionality creates

issues even when focusing on the pure λ-calculus alone without any extensions.

For example, continuation-passing style transformations hard-wire the evaluation

strategy of a language directly in the program itself. Naturally, we expect that

equivalent source programs continue to be equivalent after the transformation.

But under a known call-by-name continuation-passing style transformation due

to Plotkin (1975), β-equivalence is preserved while η-equivalence is violated.

Since these issues surrounding extensionality show up in multiple

disconnected places, we wonder if they act as the canary in a coal mine, signaling

that the pieces of the calculus do not quite fit perfectly together and that

we should question our basic assumptions. Indeed, both the efforts to solve

the confluence problem and the search for a sound continuation-passing style

transformation have made use of the same insight about the nature of lazy
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functions. The goal of this chapter is to clarify this alternative and fundamental

view of lazy functions incrementally, using the call-by-name sequent calculus and

its core lessons to derive the solution in a principled way. That is, we will come

up with a reduction theory for the untyped functional fragment of the call-by-

name µµ̃η-calculus. That reduction theory has to correspond to the equational

theory presented in the previous chapter, but since a reduction theory is a more

fine grained instrument than an equational theory we usually have some freedom

in exactly how we define it, and here we use that freedom for good in solving the

confluence problem and in bringing out the essence of lazy functions.

The central idea which in hindsight can be recognized in at least Danos,

Joinet, and Schellinx (1997), is that functions are co-data (Downen and Ariola

(2014); Zeilberger (2009)). They are not concretely constructed objects like tuples

in an ML-like language, but rather abstract objects that only respond to messages.

The co-data nature of functions suggests a shift in focus away from functions

themselves and toward the observations that use them. Those observations being

defined around the concretely constructed call-stacks in µµ̃→η .

Another benefit using the sequent calculus is that control is inherent in the

framework rather than being added as an afterthought. But what does control

have to do with functions? The two seem unrelated because we are accustomed to

associating control with operators like Scheme’s call/cc, and indeed if we assume

that control is just for expressing call/cc then there is little justification for using

it to explain functions. Instead, control should be seen as a way to give a name to

the call stack, similar to the way we name values (Curien and Munch-Maccagnoni

(2010)). Thus, much as we match on the structure of a tuple, functions are objects

that match on the structure of a call stack. Note that this view of functions as call-
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stack destructors is independent of the evaluation strategy. It is not tied to call-by-

name but is inherent to the primordial notion of a function itself, so it holds just as

well in a call-by-value setting (Zeilberger (2009)).

What, then, is the essence of a lazy function? The essential ingredient is

that lazy functions perform a lazy pattern match on their call stack, so functional

extensionality is captured by the surjectivity of the call stack as a pairing

construct. Indeed, this same insight has sprung up as the key linchpin to the

problems surrounding the implementation of the η-law. An alternative call-by-

name continuation-passing translation based on pairs arises from a polarized

translation of classical logic (Girard (1991); Lafont, Reus, and Streicher (1993)).

Moreover, at least as long as the pairs in the target are categorical products, that

is, surjective pairs, this translation validates the η-law (Fujita (2003); Hofmann

and Streicher (2002)). Surjective call stacks have also been used to establish an

extensional confluent rewriting system in two independently developed calculi: the

Λµ-calculus (Nakazawa and Nagai (2014)), which is interesting for its connections

with Böhm separability (Saurin (2010)) and delimited control (Herbelin and

Ghilezan (2008)); and the stack calculus, which can be seen as the dual to natural

deduction (Carraro, Ehrhard, and Salibra (2012)). It is surprising to see that these

different problem domains unveil the same key insight about lazy functions.

The main technical contribution of this chapter is in leveraging this view of

lazy functions to get confluence for our larger calculus and not just the kernel stack

calculus. Along the way we recast the existing proofs in new light and develop a

general method for lifting confluence from a kernel calculus to a larger system.

In the end, we have a satisfying solution to confluence in the λ-calculus

with both extensionality and classical control effects as well as a sound call-by-
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name continuation-passing style transformation. This immediately invites the

question: does the solution scale up to more realistic calculi with other structures,

like products and sums, found in programming languages? Unfortunately, the

answer is a frustrating “no.” The solution does not easily apply to programming

constructs like sum types, which involve decision points with multiple branches.

Worse, confluence appears to break down again when we combine both data and

co-data. However, since the use of surjective call stacks works so well for functions

in isolation, we see these roadblocks as prompts for a new avenue of study into

extensional rewriting systems for other programming structures.

An Extensional Call-By-Name Equational Theory

c ∈ Command ::= 〈v||e〉
v ∈ Terms ::= x | λx.v | µα.c

e ∈ Co-Terms ::= α | v · e | µ̃x.c
E ∈ Co-Values ::= α | v · E

〈µα.c||E〉 =µ c{E/α}
〈v||µ̃x.c〉 =µ̃ c{v/x}
µα.〈v||α〉 =ηµ v

µ̃x.〈x||e〉 =ηµ̃ e

〈λx.v′||v · e〉 =β 〈v||µ̃x.〈v′||e〉〉
λx.µα.〈v||x · α〉 =η v

FIGURE 7. The call-by-name λ̄µµ̃-calculus extended with η (λ̄µµ̃η)

As a warm up, let us make formal the idea from the prior chapter of functions

as pattern matching on their call stacks. We can do this by formally defining

untyped calculi for functions in both λ and pattern matching styles, and then,

proving these calculi to be equivalent in an appropriate sense.
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c ∈ Command ::= 〈v||e〉
v ∈ Terms ::= x | µ[(x · α).c] | µα.c

e ∈ Co-Terms ::= α | v · e | µ̃x.c
E ∈ Co-Values ::= α | v · E

〈µα.c||E〉 =µ c{E/α}
〈v||µ̃x.c〉 =µ̃ c{v/x}
µα.〈v||α〉 =ηµ v

µ̃x.〈x||e〉 =ηµ̃ e

〈µ[(x · α).c]||v · e〉 =β 〈v||µ̃x.〈µα.c||e〉〉
µ[(x · α).〈v||x · α〉] =η v

FIGURE 8. The call-by-name µµ̃→η -calculus

First, we define a calculus using λ but in the style of λ̄µµ̃η (Figure 7).

Second, we adopt the alternative notation for functions given in the first chapter

(see Figure 8). A function is not constructed; instead it is a procedure that reacts

by pattern matching on its observing call stack. As such, we write a function as

µ[(x · α).c], which says that the context is decomposed into an argument named x

and a place named α for the result. Indeed, either representation for functions can

be seen as syntactic sugar for the other:

µ[(x · α).c] , λx.µα.c or λx.v , µ[(x · α).〈v||α〉] (3.1)

From a logical standpoint, this alternative interpretation of functions corresponds

to the right introduction rule for implication, which does not preserve activation on

the right.

In order to make the equivalence between these two different views of

functions more precise, we utilize the concept of an equational correspondence from

Sabry and Felleisen (1993). To distinguish the different equational theories, we use
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the notation T ` t = t′ to indicate that t and t′ are equated by the theory T . Given

two equational theories S and T , the translations [ : S → T and ] : T → S form an

equational correspondence whenever the following four conditions hold:

1. ([) For all terms s1 and s2 of S, S ` s1 = s2 implies T ` s[1 = s[2.

2. (]) For all terms t1 and t2 of T , T ` t1 = t2 implies S ` t]1 = t]2.

3. ([]) For all terms s of S, S ` s = (s[)].

4. (][) For all terms t of T , T ` t = (t])[.

Proposition 1. λ̄µµ̃η and µµ̃→η are in equational correspondence.

Proof. The translations of the equational correspondence are given by the macro

definitions between the two syntactic representations of functions (Equation 3.1).

The translation is not a syntactic isomorphism, because λx.v in λ̄µµ̃η becomes µ[(x·

α).〈v||α〉] in µµ̃→η , which in turn translates back to λ̄µµ̃η as λx.µα.〈v||α〉. However,

we have

λx.v =ηµ λx.µα.〈v||α〉

in λ̄µµ̃η. Similarly, µ[(x · α).c] in µµ̃→η becomes λx.µα.c, which roundtrips back to

the term µ[(x · β).〈µα.c||β〉], but

µ[(x · α).c] =α µ[(x · β).c{β/α}] =µ µ[(x · β).〈µα.c||β〉] .

All other syntactic constructs roundtrip to themselves exactly. The equational

correspondence is completed by observing that all axioms of λ̄µµ̃η are derivable

in µµ̃→η after translation, and vice versa.
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An Extensional Call-By-Name Reduction Theory

Having seen the equational theory for the µµ̃→η -calculus, we now look for a

corresponding confluent reduction theory. The simplest starting point is to take

the left-to-right reading of each axiom as a reduction. However, this system lacks

confluence due to a conflict between the η- and µ-rules:

µδ.〈y||β〉 ←η µ[(x · α).〈µδ.〈y||β〉||x · α〉]→µ µ[(x · α).〈y||β〉] (3.2)

This issue is not caused by the two-sided sequent calculus presentation; it is part of

a fundamental conflict between lazy functions and control. Indeed, a similar issue

occurs in the λµ-calculus (Parigot (1992)), a language with control based on the

λ-calculus (David and Py (2001)); given a term of the form λx.M x, a reduction

in M x could ruin the pattern for the η-rule. This phenomenon does not occur in

plain λ-calculus since both reducts are the same. To combat this issue, David and

Py introduce a new rule, written in µµ̃→η as

µδ.c→ν µ[(x · α).c{x · α/δ}]

The above diverging diagram can thus be brought back together:

µδ.〈y||β〉 →ν µ[(x · α).〈y||β〉]

The ν rule can be understood as performing not an η-reduction but rather an η-

expansion followed by a µ-reduction.

µδ.c←η µ[(x · α).〈µδ.c||x · α〉]→µ µ[(x · α).c{x · α/δ}]
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Because ν involves expansion, it risks eliminating the concept of (finite) normal

forms. Moreover, confluence is not restored for arbitrary open terms, since terms

with a free co-variable can still lack confluence:

〈y||β〉 ←µ〈µδ.〈y||β〉||δ〉 ←η〈µ[(x · α).〈µδ.〈y||β〉||x · α〉]||δ〉 →µ〈µ[(x · α).〈y||β〉]||δ〉

The Λµcons-calculus (Nakazawa and Nagai (2014)) provides an interesting

alternative solution to the conflict between functional extensionality and control.

The Λµcons-calculus is an extension of the λµ-calculus (Parigot (1992)) which adds

not only an explicit representation of call stacks as co-terms, similar to µµ̃→η , but

also projections out of these call stacks: car projects out the argument and cdr

projects out the return continuation. This calculus suggests a third interpretation

of functions based on projections, instead of either λ-abstractions or pattern

matching. We can transport this alternative interpretation of functions to the

sequent calculus by extending µµ̃→η with the new term car(e), co-term cdr(e), and

co-value cdr(E), giving us the µµ̃→cons reduction theory in Figure 9. Note that to

avoid spurious infinite reduction sequences, the ς-rules are restricted to only lift

out non-co-values. Effectively, the exp rule implements functions as a µ-abstraction

with projections out of the given call stack. Thus, although µµ̃→cons does not have a

direct reduction rule corresponding to the β-law, function calls are still derivable:

〈µ[(x · α).c]||v · E〉 →exp 〈µβ.c{car(β)/x, cdr(β)/α}||v · E〉

→µ c{car(v · E)/x, cdr(v · E)/α}

→cdr→car c{v/x,E/α}
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Moreover, even the η-law becomes derivable as a sequence of reductions:

µ[(x · α).〈v||x · α〉]→exp µβ.〈v||car(β) · cdr(β)〉 →η· µβ.〈v||β〉 →ηµ v

Yet even though both µ and η are derivable in µµ̃→cons, the exp rule brings our

previous critical pairs back together (as usual, →→ stands for multiple steps of

reduction):

〈y||β〉←←〈µ[(x ·α).〈µδ.〈y||β〉||x ·α〉]||δ〉→µ〈µ[(x ·α).〈y||β〉]||δ〉→exp〈µγ.〈y||β〉||δ〉→µ〈y||β〉

From a logical standpoint, the new forms car(−) and cdr(−) correspond to

elimination rules for implication (Figure 10). Note that the cdr(−) rule is a left

elimination rule.

Before showing that the µµ̃→cons reduction theory is indeed confluent we need

to demonstrate that its associated equational theory—obtained as the symmetric,

transitive and reflexive closure of its reductions—is equivalent to µµ̃→η .

Remark 1. First-class control aside, η presents other challenges, as witnessed by

the fact that it took several years before finding a continuation-passing style (CPS)

transformation (written as J·K) validating it. In fact, according to the original call-

by-name transformation in Plotkin (1975), the CPS-transformed term Jλx.y xK,

where y is a free variable, is not βη-equal to JyK despite the fact that the original

λ-calculus terms are η-equivalent. An alternative approach originally presented

in Lafont et al. (1993) and proven sound and complete in Hofmann and Streicher

(2002) and Fujita (2003) provides a solution which relies on the same key idea

as the one described here to solve a completely different problem. The two main

ingredients of their transformation are (1) a continuation is not seen as a black
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c ∈ Command ::= 〈v||e〉
v ∈ Terms ::= x | µα.c | µ[(x · α).c] | car(e)

e ∈ Co-Terms ::= α | v · e | µ̃x.c | cdr(e)

E ∈ Co-Values ::= α | v · E | cdr(E)

〈µα.c||E〉 →µ c{E/α}
〈v||µ̃x.c〉 →µ̃ c{v/x}
µα.〈v||α〉 →ηµ v

µ̃x.〈x||e〉 →ηµ̃ e

car(E) · cdr(E)→η· E

car(v · E)→car v

cdr(v · E)→cdr E

car(e)→ςcar µα.〈µβ.〈car(β)||α〉||e〉 e /∈ Co-Values

cdr(e)→ςcdr µ̃x.〈µα.〈x||cdr(α)〉||e〉 e /∈ Co-Values

v · e→ς· µ̃x.〈µα.〈x||v · α〉||e〉 e /∈ Co-Values

µ[(x · α).c]→exp µβ.c{car(β)/x, cdr(β)/α}

FIGURE 9. The µµ̃→cons reduction theory

Γ | e : A→ B ` ∆

Γ ` car(e) : A | ∆
[→ Elim1]

Γ | e : A→ B ` ∆

Γ | cdr(e) : B ` ∆
[→ Elim2]

FIGURE 10. Additional typing rules for µµ̃→cons

box function but as a structure that can be analyzed and taken apart, and (2) an

extensional call-by-name function does not need to wait for the continuation to

provide its argument but can lazily take it apart when it wants its components.

Intuitively, the first point has been embraced by the sequent calculus, which gives

a first-class status to the context as a scrutable structure and the second point is

captured by the exp law. We can elaborate more on these points by relating how

λx.y x and y are equated by the CPS transformation and by the µµ̃→cons equational

theory. Following the transformation given in Figure 11, we have:
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JxK , x

Jλx.MK , λk.(λx.JMK)(π1k)(π2k)

JM NK , λk.JMK(JNK, k)

FIGURE 11. Product-based CPS for λ-calculus

Jλx.y xKk , (λx.Jy xK)(π1k)(π2k) , (λx.λq.y (x, q))(π1k)(π2k)

The association of a term and a continuation now becomes a command.

Notice the similarity between the function’s representation in the CPS translation

and its representation in the sequent calculus:

(λx.λq.y (x, q)) µ[(x · α).〈y||x · α〉]

The main difference is that instead of taking products as a primitive notion, the

sequent calculus recognizes that the product parallels the left constructor of a

function. Continuing with the CPS term, we have:

Jλx.y xKk , (λx.λq.y (x, q)))(π1k)(π2k)

=β y (π1k, π2k)

=η y k
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So function extensionality is validated by surjective pairing. On the other hand, we

have:

〈µ[(x · α).〈y||x · α〉]||k〉 =exp 〈µβ.〈y||car(β) · cdr(β)〉||k〉

=µ 〈y||car(k) · cdr(k)〉

=η· 〈y||k〉

where surjective pairing has been replaced by surjectivity of the call stack.

What is important here is not the syntax: the target language as in Fujita

(2003) is free to syntactically express elimination of pairs using pattern matching.

What matters is that those pairs be true categorical products equipped with an

equational theory equivalent to surjective pairing. In much the same way, the η-law

as expressed using pattern matching in µµ̃→η corresponds to the surjectivity law in

µµ̃→cons. However, while not relevant equationally, we find moving to a projection

based presentation informative for both pairs and functions, and in the later case,

deeply helpful when it comes to rewriting.

End remark 1.

Bridging Sequent Calculus And Natural Deduction

Since µµ̃→cons is designed as a sequent calculus counterpart to the Λµcons-

calculus, they are predictably related to one another. In particular, the µµ̃→cons-

calculus is equivalent to the λµcons-calculus shown in Figure 12, which syntactically

distinguishes between commands and terms, as did the original λµ-calculus

(Parigot (1992)). The type assignment for λµcons given in Figure 13 differs from the

type system given in Nakazawa and Nagai (2014) due to this syntactic difference,
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v ∈ Terms ::= x | λx.v | v v | µα.c | car S
S ∈ Streams ::= α | v :: S | cdr S

c ∈ Commands ::= [S]v

(µα.c) v =βT µα.c{v :: α/α}
[S](µα.c) =µ c{S/α}

λx.v =exp µα.[cdr α](v{(car α)/x})
[v′ :: S]v =assoc [S](v v′)

car (v :: S) =car v

cdr (v :: S) =cdr S

µα.[α]v =ηµ v

(car S) :: (cdr S) =η:: S

[cdr S](v (car S)) =η′:: [S]v

FIGURE 12. The λµcons calculus

making it closer to a traditional logic. In particular, λµcons is typed according

to the rules of classical natural deduction extended with left introduction and

elimination rules. We can translate between µµ̃→cons and λµcons based on the

standard relationship between the sequent calculus and λµ-calculus (Curien and

Herbelin (2000)), as shown in Figure 14. The primary complication in translating

from µµ̃→cons to λµcons is the usual issue that comes up when comparing sequent-

based and λ-based languages: the sequent calculus language has additional

syntactic categories that must be merged together in a λ-calculus language. In

particular, the commands and terms of the two calculi are in correspondence,

as are the co-values of µµ̃→cons and streams of λµcons (as shown by the auxiliary

translation E−). However, even though co-values and streams correspond, the

syntactic treatment of general co-terms in µµ̃→cons is absent in λµcons. For example,

cdr(µ̃x.c) cannot be represented directly as a stream in λµcons.
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(x : A) ∈ Γ

Γ ` x : A | ∆
[idR]

(α : A) ∈ ∆

Γ | α : A ` ∆
[idL]

c : (Γ ` α : A,∆)

Γ ` µα.c : A | ∆
[Act]

Γ ` v : A | ∆ Γ | S : A ` ∆

[S]v : (Γ ` ∆)
[cut]

Γ ` v : A→ B | ∆ Γ ` v′ : A | ∆
Γ ` v v′ : B | ∆

[Modus Ponens]

Γ, x : A ` v : B | ∆
Γ ` λx.v : A→ B | ∆

[→R]
Γ ` v : A | ∆ Γ | S : B ` ∆

Γ | v :: S : A→ B ` ∆
[→L]

Γ | S : A→ B ` ∆

Γ ` car S : A | ∆
[→ Elim1]

Γ | S : A→ B ` ∆

Γ | cdr S : B ` ∆
[→ Elim2]

FIGURE 13. Possible Simple Type Assignment for λµcons

To help bridge the gap between the two calculi, we introduce in λµcons the

notion of a context, denoted by the metavariable C, that is simply a command

with a term-shaped hole in it. These contexts in λµcons correspond to co-terms in

µµ̃→cons. For example, the ]-translation of the µµ̃→cons call stack x · α becomes the

context [α](� x) in the λµcons-calculus, as opposed to the more direct translation as

a stream (x · α)− = x :: α. Given any such context C, its translation as a µµ̃→cons

co-term is defined as a µ̃-abstraction:

C[ , µ̃x.(C[x])[

With this additional technical detail for dealing with contexts due to the loss of

co-terms, we form an equational correspondence between λµcons and µµ̃→cons.

Theorem 1. µµ̃→cons and λµcons are in equational correspondence.
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(−)] : µµ̃→cons → λµcons

〈v||e〉] , e][v]]

x] , x

(µα.c)] , µα.(c])

µ[(x · α).c]] , λx.µα.(c])

car(e)] , µα.e][µβ.[α](car β)]

α] , [α]�

(µ̃x.c)] , [δ]((λx.µδ.(c]))�)

(v · e)] , e][� v]]

cdr(e)] , e][µα.[cdr α]�]

(−)− : Co-Values→ Streams

α− , α (v · E)− , v] :: E− cdr(E)− , cdr(E−)

(−)[ : λµcons → µµ̃→cons

([S]v)[ , 〈v[||S[〉
x[ , x

(µα.c)[ , µα.c[

(λx.v)[ , µ[(x · α).〈v[||α〉]
(v1 v2)[ , µα.〈v[1||v[2 · α〉

(car S)[ , car(S[)

α[ , α

(v :: S)[ , v[ · S[

(cdr S)[ , cdr(S[)

FIGURE 14. Translations from µµ̃→cons to λµcons and vice versa

We build up to the proof in stages. The equational correspondence between

λµcons and µµ̃→cons is between the four different syntactic categories of the two calculi

according to the following translations:

1. λµcons commands correspond to µµ̃→cons commands by c[ and c],

2. λµcons terms correspond to µµ̃→cons terms by v[ and v],

3. λµcons streams correspond to µµ̃→cons co-values by S[ and E−, and

4. λµcons contexts correspond to µµ̃→cons co-terms by C[ and e].

To establish the equational correspondence, we must show that all translations

preserve all equalities, and the roundtrip translation of every expression is the same

as the original expression up to the respective equational theory. However, the fact
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that we translate between co-terms and contexts means that we need to be careful

about when contexts are equated. We say that any two such contexts are equal

if and only if they are equal commands for every possible filling. More formally,

given any two contexts C and C ′, λµcons ` C = C ′ if and only if for all λµcons

terms v, λµcons ` C[v] = C ′[v]. As a lighter notation for equating two contexts,

we will denote the universally quantified term of the equality by �, which is just

another metavariable for terms when used for this particular purpose, and write C

as shorthand for C[�].

Preservation of Equality

To begin the correspondence, we consider that the translations preserve

equalities. Observe that the (−)[, (−)], and (−)− translations, as given in

Figure 14, are compositional. Therefore, it suffices to show that the axioms

of λµcons and µµ̃→cons are preserved by each translation. Besides the fact that

substitution commutes with translation in either direction, the key property

needed is that E− is a valid interpretation of co-values as streams according to ]-

translation.

Lemma 1. For all co-values E, λµcons ` E] = [E−]�.

Proof. By induction on E. The case for cdr(E) requires the µ rule and the case for

v · E requires the assoc rule. With this fact, the interderivability of the λµcons and

µµ̃→cons axioms follows by routine calculation.
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–

α] , [α]�

, [α−]�

–

(v · E)] , E][� v]]

= [E−](� v]) Inductive Hypothesis

= [v] :: E−]� assoc

, [(v · E)−]�

–

cdr(E)] = E][µα.[cdr α]�]

= [E−](µα.[cdr α]�) Inductive Hypothesis

= [cdr E−]� µ

, [cdr(E)−]�

Next we show that substitution is well behaved.

Lemma 2 (Substitution property for [). For any command, term, or co-term t1 of

λµcons, we have that (t{v/x})[ , t[{v[/x} and (t{S/α})[ , t[{S[/α}.

1Through out this Chapter we use t as a metavariable to range over all syntactic sorts
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Proof. (−)[ is compositional and so these follow by induction on t.

Lemma 3 (Substitution property for ]). For t being any command, term, or stack

of µµ̃→cons then

1. (t{v/x})] , t]{v]/x} and

2. λµcons ` (t{E/α})] = t]{E−/α}

Proof. The first point follows because ] is compositional. The second point follows

by induction on t, with the non-immediate case being the base case of the variable

α where

(α[E/α])] , E]

= [E−]� Lemma 1

, ([α]�){E−/α}

, α]{E−/α}

We need to have the β-law in λµcons

Lemma 4 (β derivable for λµcons). The following holds for all terms v1 and v2

λµcons ` (λx.v1) v2 = v1{v2/x}
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Proof. By calculation.

(λx.v1) v2 =ηµ µα.[α]((λx.v1) v2)

=assoc µα.[v2 :: α](λx.v1)

=exp µα.[v2 :: α](µβ.[cdr β]v1{(car β)/x}

=µ µα.[cdr (v1 :: α)]v1{(car (v2 :: α)/x}

=cdr µα.[α]v1{(car (v2 :: α)/x}

=car µα.[α]v1{v2/x}

=ηµ v1{v2/x}

With this we can formally prove that the translation preserves equalities.

Lemma 5. If t1 and t2 are both terms, co-terms, or commands in µµ̃→cons and

µµ̃→cons ` t1 = t2 then λµcons ` t]1 = t]2.

Proof. The translation is compositional, so we only need to check each axiom of

µµ̃→cons. The ηµ-axiom of µµ̃→cons is precisely given by the ηµ axiom of λµcons. The

remaining axioms each involve some computation.
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– µ:

〈µα.c||E〉] , E][µα.c]]

= [E−]µα.c] Lemma 1

=µ c
]{E−/α}

= c{E/α}] Lemma 3

– µ̃:

〈v||µ̃x.c〉] , [δ]((λx.µδ.c])v])

= [δ]µδ.c]{v]/x} Lemma 4

=µ c
]{v]/x}

= c{v/x}] Lemma 3

– ηµ̃ :

(µ̃x.〈x||e〉)] , [δ]((λx.µδ.e][x]) �)

= [δ](µδ.e][�]) Lemma 4

=µ e
][�]
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– η· :

(car(E) · cdr(E))] = [(car(E) · cdr(E))−]� Lemma 1

, [car E− :: cdr E−]�

=η:: [E−]�

= E] Lemma 1

– car :

(car(v · E))] , µα.(v · E)][µβ.[α]car β]

= µα.[v] :: E−]µβ.[α]car β Lemma 1

=µ µα.[α]car (v] :: E−)

=ηµ car (v] :: E−)

=car v
]

– cdr :

(cdr(v · E))] = [cdr(v · E)]−� Lemma 1

, [cdr (v] :: E−)]�

=cdr [E−]�

= E] Lemma 1
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– exp :

(µ[(x · α).c])] , λx.µα.c]

=exp µβ.[cdr β]µα.c][(car β)/x]

=µ µβ.c
]{(car β)/x, (cdr β)/α}

, µβ.c]{(car(β))]/x, (cdr(β))−/α}

= µβ.(c{car(β)/x, cdr(β)/α})] Lemma 3

, (µβ.c{car(β)/x, cdr(β)/α})]

– ς·

(v · e)] , e][� v]]

=ηµ e
][µα.[α](� v])]

=µ [δ]µδ.e][µα.[α](� v])]

= [δ]((λx.µδ.e][µα.[α](x v])])�) Lemma 4

, (µ̃x.〈µα.〈x||v · α〉||e〉)]

– ςcdr

cdr(e)] , e][(µβ.[cdr β]�)]

=ηµ e
][µα.[α](µβ.[cdr β]�)]

=µ [δ](µδ.e][µα.[α](µβ.[cdr β]�)])

= [δ]((λx.µδ.e][µα.[α](µβ.[cdr β]x)])�) Lemma 4

, (µ̃x.〈µα.〈x||cdr(α)〉||e〉)]
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– ςcar

car(e)] , µα.e][µβ.[α]car β]

=µ µα.e
][µβ.[β](µδ.[α]car δ)]

=µ µα.e
][µβ.[α]µγ.[β](µδ.[γ]car δ)]

, (µα.〈µβ.〈car(β)||α〉||e〉)]

Lemma 6. If µµ̃→cons ` E1 = E2 then λµcons ` E−1 = E−2

Proof. We first show the general property that for any streams S, S ′ and (possibly

empty) sequence of terms v1, v2, . . . , vn−1, vn we have

(λµcons ` [S](x v1 v2 . . . vn−1 vn) = [S ′]x)

⇓

(λµcons ` (vn :: vn−1 :: . . . :: v2 :: v1 :: S) = S ′).

This follows by induction on the length of the derivation of [S](x v1 v2 . . . vn−1 vn) =

[S ′]x. Specifically, the only axioms which can equate a command to

[S](x v1 v2 . . . vn−1 vn) would be

– an equality internal to S or one of the vi which carries over to vn :: vn−1 ::

. . . :: v2 :: v1 :: S or
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– the assoc axiom (in either direction)

[v :: S](x v1 v2 . . . vn−1 vn) = [S](x v1 v2 . . . vn−1 vn v)

which directly corresponds to the inductive hypothesis.

Now, suppose µµ̃→cons ` E1 = E2, by Lemma 5 we know that λµcons ` E]
1 = E]

2.

By Lemma 1 we further know that λµcons ` E]
1 = [E−1 ]� and that λµcons ` E]

2 =

[E−2 ]�. Thus λµcons ` [E−1 ]� = [E−2 ]� and so for any term v, λµcons ` [E−1 ]v =

[E−2 ]v. Specifically, λµcons ` [E−1 ]x = [E−2 ]x which by the general property above

means that λµcons ` E−1 = E−2 .

Lemma 7.

If t1 and t2 are terms, streams, or commands in λµcons and λµcons ` t1 = t2 then

µµ̃→cons ` t[1 = t[2

Proof. The translation is compositional so we only need to check each axiom of

λµcons. The µ-axiom of λµcons translates to the µ-axiom of µµ̃→cons after Lemma 2.

The βT and assoc axioms each also correspond to single uses of the µ-axiom of

µµ̃→cons. The car, cdr and ηµ of λµcons correspond exactly to the axioms of the same

names in µµ̃→cons and the η:: axiom is implemented by η·. That leaves two axioms

which require some computation:

49



– exp:

(λx.v)[ , µ[(x · β).〈v[||β〉]

=exp µα.〈v[{car(α)/x}||cdr(α)〉

, µα.〈v[{(car α)[/x}||cdr(α)〉

= µα.〈v{(car α)/x}[||cdr(α)〉 Lemma 2

, (µα.[cdr α]v{(car α)/x})[

– η′::

([cdr S](v (car S)))[ , 〈µα.〈v[||car(S[) · α〉||cdrS[〉

=µ 〈v[||car(S[) · cdr(S[)〉

=η· 〈v[||S[〉

, ([S]v)[

Roundtrip Equality

To finish the correspondence, we consider the roundtrip translations. First,

note that the roundtrip from µµ̃→cons to λµcons and back is a provable equality.

In particular, we will show that the following three properties hold by mutual

induction on commands, terms, and co-terms:

1. For all µµ̃→cons commands c, µµ̃→cons ` (c])[ = c.

2. For all µµ̃→cons terms v, µµ̃→cons ` (v])[ = v.
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3. For all µµ̃→cons co-terms e and λµcons terms v, µµ̃→cons ` (e][v])[ = 〈v[||e〉.

The third property is generalized from the usual form of roundtrip translation,

and additionally expresses the fact that co-terms lost in a context can always be

rediscovered no matter what fills them. From the third property, we get the desired

roundtrip equality of co-terms: 2

for all µµ̃→cons co-terms e, µµ̃→cons ` (e])[ = e .

This follows from the translation of contexts in the λµcons-calculus into µ̃-

abstractions in the µµ̃→cons-calculus along with the ηµ̃ axiom:

µµ̃→cons ` (e])[ = µ̃x.(e][x])[ =3 µ̃x.〈x||e〉 =ηµ̃ e .

We can also derive a tighter roundtrip equality for establishing the correspondence

between co-values and streams:

for all µµ̃→cons co-values E, µµ̃→cons ` (E−)[ = E .

This follows by [-translating the equality λµcons ` E][x] = [E−]x (where x is not

free in E) which can be composed with the instance of co-term roundtrip equality

for co-values: µµ̃→cons ` 〈x||E〉 =3 (E][x])[ = ([E−]x)[ , 〈x||(E−)[〉. Thus, by the ηµ̃

axiom, we have µµ̃→cons ` (E−)[ =ηµ̃ µ̃x.〈x||(E−)[〉 = µ̃x.〈x||E〉 =ηµ̃ E.

In order to make this precise, observe that the axioms of µµ̃→cons were selected

based on the needs of a reduction theory: we wanted to avoid spurious loops.

However, it is useful to establish some general equations of µµ̃→cons.

2Note that we use the syntax, T ` t =r t′ to indicate that T ` t = t′ by the rule named r.
Similarly, here we use =3 to indicate that the equality is true for reason of property 3 above.
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Lemma 8. The three lifting rules of µµ̃→cons can be generalized as equations to apply

to all co-terms and not just co-values.

1. µµ̃→cons ` car(e) = µα.〈µβ.〈car(β)||α〉||e〉,

2. µµ̃→cons ` cdr(e) = µ̃x.〈µα.〈x||cdr(α)〉||e〉 and

3. µµ̃→cons ` v · e = µ̃x.〈µα.〈x||v · α〉||e〉

Proof. In each case, either e is a co-value or it is not. If it is not a co-value then

this is just the ς rule. If it is then the property follows from the µ, µ̃, ηµ̃, and ηµ

rules.

Thus

Lemma 9. 1. For all µµ̃→cons commands c, µµ̃→cons ` (c])[ = c.

2. For all µµ̃→cons terms v, µµ̃→cons ` (v])[ = v.

3. For all µµ̃→cons co-terms e and λµcons terms v, µµ̃→cons ` (e][v])[ = 〈v[||e〉.

Proof. By mutual induction.

–

((〈v||e〉)])[ , (e][v]])[

= 〈(v])[||e〉 Induction hypothesis

= 〈v||e〉 Induction hypothesis
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–

((x)])[ , x[

, x

–

((µα.c)])[ , (µα.(c]))[

, µα.((c])[)

= µα.c Induction hypothesis

–

((µ[(x · α).c])])[ , (λx.µα.c])[

, µ[(x · β).〈µα.(c])[||β〉]

= µ[(x · β).〈µα.c||β〉] Induction hypothesis

=µ µ[(x · α).c]
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–

((car(e))])[ , (µα.e][µβ.[α]car β])[

, µα.(e][µβ.[α]car β])[

= µα.〈(µβ.[α]car β])[||e〉 Induction hypothesis

, µα.〈µβ.〈car(β)||α〉||e〉

= car(e) Lemma 8.1

–

((v′ · e)][v])[ , (e][� (v′)]])[v][

, e][v (v′)]][

= 〈(v (v′)])[||e〉 Induction hypothesis

, 〈µα.〈v[||(v′)] · α〉||e〉

= 〈µα.〈v[||v′ · α〉||e〉 Induction hypothesis

=µ̃ 〈v[||µ̃x.〈µα.〈x||v′ · α〉||e〉〉

= 〈v[||v′ · e〉 Lemma 8.3

–

((α)][v])[ , ([α]v)[

= 〈v[||α〉 Induction hypothesis

54



–

((cdr(e))][v])[ , (e][µα.[cdr α]�])[v][

, (e][µα.[cdr α]v])[

= 〈µα.〈v[||cdr(α)〉||e〉 Induction hypothesis

=µ̃ 〈v[||µ̃x.〈µα.〈x||cdr(α)〉||e〉〉

= 〈v[||cdr(e)〉 Lemma 8.2

–

((µ̃x.c)][v])[ , ([γ]((λx.µγ.c]) v))[

, 〈µβ.〈µ[(x · α).〈µγ.(c])[)||α〉]||v[ · β〉||γ〉

= 〈µβ.〈µ[(x · α).〈µγ.c)||α〉]||v[ · β〉||γ〉 Induction hypothesis

=µ 〈µ[(x · α).〈µγ.c||α〉]||v[ · γ〉

=µ 〈µγ.c[v[/x]||γ〉 Lemma 4

=µ c[v
[/x]

=µ̃ 〈v[||µ̃x.c〉

Second, we note that the roundtrip from λµcons to µµ̃→cons and back is a

provable equality. In particular, we will show below that the following three

properties hold by mutual induction on commands, terms, and streams:

1. For all λµcons commands c, λµcons ` (c[)] = c.

2. For all λµcons terms v, λµcons ` (v[)] = v.
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3. For all λµcons streams S, λµcons ` (S[)− = S.

The third property relies on the auxiliary injection of co-values into streams to

maintain a tighter roundtrip equality which avoids losing the representation of co-

terms into contexts caused by the ]-translation. However, as a corollary of the third

property, we also get the fact that [ and ] are inverses for λµcons streams when they

are considered as contexts, up to equality:

for all λµcons streams S, λµcons ` (S[)] = [S]� ,

which holds by the previously noted fact that

λµcons ` E] = [E−]�.

Additionally, the first property establishes the fact that µµ̃→cons co-terms are in

exact correspondence to λµcons contexts by their [-translation as µ̃-abstractions.

Specifically,

for all λµcons contexts C, λµcons ` (C[)] = C ,

which is provable by the λµcons equational theory of contexts:

λµcons ` C[] , (µ̃x.(C[x])[)] , [δ]((λx.µδ.(C[x])[
]

) �) =1 [δ]((λx.µδ.C[x]) �) = C

The full calculation follows

Lemma 10. 1. For all λµcons commands c, λµcons ` (c[)] = c.

2. For all λµcons terms v, λµcons ` (v[)] = v.

3. For all λµcons streams S, λµcons ` (S[)− = S.
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Proof. By mutual induction.

–

(x[)] , x]

, x

–

((λx.v)[)] , (µ[(x · α).〈v[||α〉)]

, λx.µα.[α](v[)]

= λx.µα.[α]v Inductive hypothesis

=ηµ λx.v

–

((v1 v2)[)] , (µα.〈v[1||v[2 · α〉)]

, µα.(v[2 · α)][(v[1)]]

= µα.(v[2 · α)][v1] Inductive hypothesis

= µα.[(v[2)] :: α]v1 Lemma 1

= µα.[v2 · α]v1 Inductive hypothesis

=assoc µα.[α](v1 v2)

=ηµ v1 v2
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–

((µα.c)[)] , (µα.c[)]

, µα.(c[)]

= µα.c Inductive hypothesis

–

((car S)[)] , car(S[)]

, µα.(S[)][µβ.[α]car β]

= µα.[(S[)−]µβ.[α]car β Lemma 1

= µα.[S]µβ.[α]car β Inductive hypothesis

=µ µα.[α]car S

=ηµ car S

–

(([S]v)[)] , (〈v[||S[〉)]

, (S[)][(v[)]]

= [(S[)−](v[)] Lemma 1

= [S]v Inductive hypothesis
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–

((α)[)− , α−

, α

–

((v :: S)[)− , (v[ · S[)−

, (v[)] :: (S[)−

= v :: S Inductive hypothesis

–

((cdr S)[)− , cdr(S[)−

, cdr (S[)−

= cdr S Inductive hypothesis

Putting these Lemmas together proves our main result of this section.

Theorem 1. µµ̃→cons and λµcons are in equational correspondence.

Proof. Using the (−)] and (−)[ operations. Preservation of equalities is shown by

Lemmas 7, 6 and 5 while the round-trip properties are given by Lemmas 9 and

10.
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Equivalent Views of Functions: Pattern Matching and Projection

The use of car and cdr in function reduction appear so different from the

usual treatment of functions that it might come as a surprise. The rules are

justified by the previously established call-by-name continuation-passing style

transformation using surjective pairs (Hofmann and Streicher (2002)) as well as a

stream model (Nakazawa and Nagai (2014)). However, they can also be understood

as projection operations defined in terms of pattern matching (Herbelin (2005);

Munch-Maccagnoni (2013)) according to the macro expansions

car(e) , µα.〈µ[(x · ).〈x||α〉]||e〉 cdr(e) , µ̃x.〈µ[( · α).〈x||α〉]||e〉

similar to the way that the fst and snd projections out of a tuple can be defined

by pattern matching. These definitions give rise to an equational correspondence

between the µµ̃→η calculus and the µµ̃→cons equational theory.

The only major complication in establishing the correspondence is that

the two languages do not quite share the same notion of co-value. In particular,

cdr(E) is a co-value in µµ̃→cons but its definition in µµ̃→η is not a co-value because

cdr expands into a non-trivial µ̃-abstraction. However, even though cdr(E) is

not a syntactic co-value in the µµ̃→η -calculus, it is still a semantic co-value since

it behaves like one in the µµ̃→η equational theory. The only axiom of the µµ̃→η

equational theory that mentions co-values is the µ-axiom, which is derivable for

the expansion of cdr(α):

µµ̃→η ` 〈µβ.c||cdr(α)〉 = c{cdr(α)/β} (3.3)
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This above equality is the lynchpin that lets us bridge the two different

notions of co-value, and build an equational correspondence between µµ̃→η and

µµ̃→cons.

Before we show it, we observe the following fact about the macro definitions

of cdr and car which is useful and is a consequence of simple substitutions:

Fact 1. – µµ̃→η ` cdr(v · E) = E, and

– µµ̃→η ` car(v · E) = v.

Proof. By calculation:

–

cdr(v · E) , µ̃x.〈µ[( · α).〈x||α〉]||v · E〉

= µ̃x.〈v||µ̃ .〈µα.〈x||α〉||E〉〉 β

= 〈µα.〈x||α〉||E〉 µ̃

= µ̃x.〈x||E〉 µ

= E ηµ̃

–

car(v · E) , µα.〈µ[(x · ).〈x||α〉]||v·〉

= µα.〈v||µ̃x.〈E||µ .〈x||α〉〉〉 β

= µα.〈E||µ .〈v||α〉〉 µ̃

= µα.〈v||α〉 µ

= v ηµ
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〈v||e〉◦ = 〈v◦||e◦〉
α◦ , α

(v · e)◦ , v◦ · e◦

(µ̃x.c)◦ , µ̃x.(c◦)

cdr(e)◦ , µ̃x.〈µ[( · α).〈x||α〉]||e◦〉

x◦ , x

µ[(x · α).c]◦ , µ[(x · α).c◦]

(µα.c)◦ , µα.(c◦)

car(e)◦ , µα.〈µ[(x · ).〈x||α〉]||e◦〉

FIGURE 15. Translation from µµ̃→cons to µµ̃→η

We can now show the main lemma: cdr(E) is a semantic co-value in µµ̃→η .

Lemma 11. For all µµ̃→η co-values E, µµ̃→η ` 〈µβ.c||cdr(E)〉 = c{cdr(E)/β}

Proof. It is enough to show that µµ̃→η ` 〈µβ.c||cdr(α)〉 = c[cdr(α)/β] since then

µµ̃→η `〈µβ.c||cdr(E)〉=µ〈µα.〈µβ.c||cdr(α)〉||E〉=〈µα.c{cdr(α)/β}||E〉=µ c{cdr(E)/β}

〈µβ.c||cdr(α)〉 = 〈µβ.c||µ̃z.〈µ[(x · γ).〈z||γ〉]||α〉〉

= 〈µ[(x · γ).〈µβ.c||γ〉]||α〉 µ̃

= 〈µ[(x · γ).c{γ/β}||α〉 µ

= 〈µ[(x · γ).c{cdr(x · γ)/β}||α〉 Fact 1

= 〈µ[(x · γ).〈µε.c{cdr(ε)/β}||x · γ〉||α〉 µ

= 〈µε.c{cdr(ε)/β}||α〉 η

= c{cdr(α)/β} µ
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Theorem 2. µµ̃→η and µµ̃→cons are in equational correspondence.

Proof. The translation from µµ̃→η into µµ̃→cons is syntactic inclusion, and the

translation from µµ̃→cons to µµ̃→η is the full macro expansion of car and cdr as given

in Figure 15.

The only significant obstacle in showing that macro expansion maps equalities

of µµ̃→cons to equalities of µµ̃→η is that the expansion of a µµ̃→cons co-value, E◦, is not

always a µµ̃→η co-value due to the fact that the expansion of cdr is never a co-

value. Thus, the µ-axiom of µµ̃→cons does not map directly to the µ-axiom of µµ̃→η .

However, it turns out that every µµ̃→cons co-value E still behaves like a co-value in

µµ̃→η as justified by the extended µ-rule:

µµ̃→η ` 〈µα.c||E◦〉 = c{E◦/α} (3.4)

which can be shown by induction on E, (using Lemma 11 in the cdr case) and

noting that the case of α is trivial:

–

〈µβ.c||(v · E)◦〉 , 〈µβ.c||v◦ · E◦〉

= 〈µα.〈µβ.c||v◦ · α〉||E◦〉 Inductive Hypothesis

= 〈µα.c{(v◦ · α)/β}||E◦〉 µ

= c{(v◦ · E◦)/β} Inductive Hypothesis
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–

〈µβ.c||cdr(E)◦〉 , 〈µβ.c||cdr(E◦)〉

= 〈µα.〈µβ.c||cdr(α)〉||E◦〉 Inductive Hypothesis

= 〈µα.c{cdr(α)/β}||E◦〉 Lemma 11

= c{cdr(E◦)/β} Inductive Hypothesis

With this derived equality, and the fact that the translation is compositional,

it is straightforward to check that the equalities of µµ̃→η and µµ̃→cons are

interderivable by checking each axiom of each equational theory under translation.

More specifically, since many of the axioms are the same, and µµ̃→η is a syntactic

subset of µµ̃→cons, it suffices to show that the β- and η- axioms of µµ̃→η are derivable

in µµ̃→cons, and that the car, cdr, η·, exp, and ς-family of axioms from µµ̃→cons are

derivable in µµ̃→η by their macro expansions.

If µµ̃→η ` t = t′ then µµ̃→cons ` t = t′, where t and t′ range over commands,

terms and contexts. We only need to check the η- and β-axioms since all other µµ̃→η

axioms are µµ̃→cons axioms. For η we have:

µ[(x · α).〈v||x · α〉] =exp µβ.〈v||car(β) · cdr(β)〉

=η· µβ.〈v||β〉

=ηµ v

The derivability of β follows from the exp rule together with projection operations,

the underlying substitution calculus, and the derivability of the unrestricted version
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of the lifting rules.

〈µ[(x · α).c]||v · e〉 = 〈µβ.{car(β)/x, cdr(β)/α}||v · e〉 exp

= 〈µβ.c{car(β)/x, cdr(β)/α}||µ̃y.〈µγ.〈y||v · γ〉||e〉〉 ς·

= 〈µγ.〈µβ.c{car(β)/x, cdr(β)/α}||v · γ〉||e〉 µ̃

= 〈µγ.c{car(v · γ)/x, cdr(v · γ)/α}||e〉 µ

= 〈µγ.c{v/x, γ/α}||e〉 car/cdr

= 〈µα.c{v/x}||e〉 α

= 〈v||µ̃x.〈µα.c||e〉〉 µ̃

The last part of the equational correspondence is to show that all roundtrip

translations are equalities in their respective theories. For the roundtrip from µµ̃→η

to µµ̃→cons and back, this is trivial since µµ̃→η is included as a syntactic subset of

µµ̃→cons which is unchanged on the translation back to µµ̃→η . For the roundtrip from

µµ̃→cons to µµ̃→η and back, it suffices to observe that the macro expansions of car and

cdr are provable equalities in µµ̃→cons, as all other syntactic constructs roundtrip to

themselves exactly.

Specifically

1. If µµ̃→cons ` t = t′ then µµ̃→η ` t◦ = (t′)◦. This follows by checking the

axioms. The ηµ- and ηµ̃-axioms come directly from the equivalent axioms of

µµ̃→η . The µ̃-axiom works using the µ̃-axiom of µµ̃→η and the compositionality

of the ◦ translation that gives c◦{v◦/x} , c{v/x}◦. The µ-axiom works

since by Lemma 3.4 〈µα.c◦||E◦〉 = c◦{E◦/α} and because the translation is

compositional that further equals c{E/α}◦.
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– µµ̃→η ` (car(E) · cdr(E))◦ = E◦

(car(E) · cdr(E))◦

, car(E◦) · cdr(E◦)

= µ̃f.〈f ||car(E◦) · cdr(E◦)〉 ηµ̃

= µ̃f.〈µα.〈f ||car(α) · cdr(α)〉||E◦〉 Equation 3.4

= µ̃f.〈µ[(x · β).〈µα.〈f ||car(α) · cdr(α)〉||x · β〉]||E◦〉 η

= µ̃f.〈µ[(x · β).〈f ||car(x · β) · cdr(x · β)〉]||E◦〉 µ

= µ̃f.〈µ[(x · β).〈f ||x · cdr(x · β)〉]||E◦〉 Fact 1

= µ̃f.〈µ[(x · β).〈f ||x · β〉]||E◦〉 Fact 1

= µ̃f.〈f ||E◦〉 η

= E◦ ηµ̃

– µµ̃→η ` (µ[(x · α).c])◦ = (µβ.c{car(β)/x, cdr(β)/α})◦

µ[(x · α).c]◦ , µ[(x · α).c◦]

= µβ.〈µ[(x · α).c◦]||β〉 ηµ

= µβ.〈µ[(x · α).c◦]||car(β) · cdr(β)〉 η· Shown above

= µβ.〈car(β)||µ̃x.〈µα.c◦||cdr(β)〉〉 β

= µβ.〈µα.c◦{car(β)/x}||cdr(β)〉 µ̃

= µβ.c{car(β)/x, cdr(β)/α} Lemma 11

, (µβ.c{car(β)/x, cdr(β)/α})◦
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– µµ̃→η ` car(v · E)◦ = v◦

car(v · E)◦ , µα.〈µ[(x · ).〈x||α〉]||v◦ · E◦〉

= µα.〈v◦||µ̃x.〈E◦||µ .〈x||α〉〉〉 β

= µα.〈E◦||µ .〈v◦||α〉〉 µ̃

= µα.〈v◦||α〉 Equation 3.4

= v◦ ηµ

– µµ̃→η ` cdr(v · E)◦ = E◦

cdr(v · E)◦ , µ̃x.〈µ[( · α).〈x||α〉]||v◦ · E◦〉

= µ̃x.〈v◦||µ̃ .〈µα.〈x||α〉||E◦〉〉 β

= 〈µα.〈x||α〉||E◦〉 µ̃

= µ̃x.〈x||E◦〉 Equation 3.4

= E◦ ηµ̃

– µµ̃→η ` car(e)◦ = (µα.〈µβ.〈car(β)||α〉||e〉)◦

car(e) , µα.〈µ[(x · ).〈x||α〉]||e◦〉

= µα.〈µβ.〈µ[(x · ).〈x||α〉]||β〉||e◦〉 ηµ

= µα.〈µβ.〈µγ.〈µ[(x · ).〈x||γ〉]||β〉||α〉||e◦〉 µ

, (µα.〈µβ.〈car(β)||α〉||e〉)◦
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– µµ̃→η ` (cdr(e))◦ = (µ̃x.〈µα.〈x||cdr(α)〉||e〉)◦

(cdr(e))◦ , µ̃x.〈µ[( · β).〈x||β〉]||e◦〉

= µ̃x.〈µα.〈µ[( · β).〈x||β〉]||α〉||e◦〉 ηµ

= µ̃x.〈µα.〈x||µ̃y.〈µ[( · β).〈y||β〉]||α〉〉||e◦〉 µ̃

, (µ̃x.〈µα.〈x||cdr(α)〉||e〉)◦

– µµ̃→η ` (v · e)◦ = (µ̃x.〈µα.〈x||v · α〉||e〉)◦

(v · e)◦ , v◦ · e◦

= µ̃x.〈x||v◦ · e◦〉 ηµ̃

= µ̃x.〈µ[(y · α).〈x||y · α〉||v◦ · e◦〉 η

= µ̃x.〈v◦||µ̃y.〈µα.〈x||y · α〉||e◦〉〉 β

= µ̃x.〈µα.〈x||v◦ · α〉||e◦〉 µ̃

= (µ̃x.〈µα.〈x||v · α〉||e〉)◦

2. If t is in µµ̃→η then t◦ , t. That is, the ◦ translation is the identity on

everything except car(e) and cdr(e) which are constants that do not appear

in the µµ̃→η sub-syntax.
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3. If t is in µµ̃→cons then µµ̃→cons ` t◦ = t. By induction on t. The only non-trivial

cases to handle are car(e) and cdr(e). If e is a co-value, we have:

car(E)◦ , µα.〈µ[(x · ).〈x||α〉]||E◦〉

= µα.〈µ[(x · ).〈x||α〉]||E〉 Inductive hypothesis

= µα.〈µβ.〈car(β)||α〉||E〉 exp

= µα.〈car(E)||α〉 µ

= car(E) ηµ

cdr(E)◦ , µ̃x.〈µ[( · α).〈x||α〉]||E◦〉

= µ̃x.〈µ[( · α).〈x||α〉]||E〉 Inductive hypothesis

= µ̃x.〈µβ.〈x||cdr(β)〉||E〉 exp

= µ̃x.〈x||cdr(E)〉 µ

= cdr(E) ηµ̃
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In the case where e is not a co-value:

car(e)◦ , µα.〈µ[(x · ).〈x||α〉]||e◦〉

= µα.〈µ[(x · ).〈x||α〉]||e〉 Inductive hypothesis

= µα.〈µβ.〈car(β)||α〉||e〉 exp

= car(e) ςcar

cdr(e)◦ , µ̃x.〈µ[( · α).〈x||α〉]||e◦〉

= µ̃x.〈µ[( · α).〈x||α〉]||e〉 Inductive hypothesis

= µ̃x.〈µβ.〈x||cdr(β)〉||e〉 exp

= cdr(e) ςcdr

Confluence for Extensional Call-By-Name Reduction

Now we return to our original question of confluence as it applies to the

µµ̃→cons reduction theory. The main obstacle we must face is the fact that the

surjectivity rule for call stacks, η·, is not left-linear since it requires two projections

out of the same co-value. This is a problem because we might reduce one of the

sub co-values in an η·-redex, as in:

car(E) · cdr(E) E

car(E ′) · cdr(E)

η·

6η·

The two copies of E have gotten out of synch, so inner reductions can destroy

surrounding η· redexes. As a consequence, many standard rewriting techniques
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c ∈ Commands ::= 〈v||e〉
v ∈ Terms ::= µα.c | x | car(E) | µ[(x · α).c]

E ∈ Co-Values ::= α | cdr(E) | v · E
e ∈ Co-Terms ::= µ̃x.c | E

FIGURE 16. µµ̃Fcons: the focalized sub-syntax of µµ̃→cons

for establishing confluence—such as parallel reduction, full development, and

commutation or reordering of reductions—do not directly apply to the µµ̃→cons

calculus.

Instead, we look to simplify the calculus, eliminating any extraneous features

and keeping only the essential kernel that is necessary for performing computation,

until the non-left-linearity of η· is no longer problematic. Then, we hoist confluence

of the kernel into confluence of the full µµ̃→cons-calculus. As it turns out, a minor

restriction of the kernel calculus has appeared before as the stack calculus in

Carraro et al. (2012), which is already known to be confluent. In repeating the

proof of confluence for the extended stack calculus, we take the opportunity to

emphasize what we believe to be the single key idea for confluence of both Λµcons

and the stack calculus (Carraro et al. (2012); Nakazawa and Nagai (2014)).

In order to relate the original reduction theory of µµ̃→cons with the simpler one

of the stack calculus, we will use the directed analog of equational correspondence

for reductions known as a Galois connection or an adjunction (Sabry and Wadler

(1997)). The conditions of a Galois connection are essentially the same as the four

conditions of an equational correspondence, except that we need to be careful about

the direction of arrows. More specifically, given a source calculus S and target T ,
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the translations [ : S → T and ] : T → S form a Galois connection from S to T if

and only if the following four conditions hold:

1. ([) For all terms s1, s2 of S, s1→→ Ss2 implies s[1→→ Ts[2.

2. (]) For all terms t1, t2 of T , t1→→ Tt2 implies t]1→→ St]1.

3. ([]) For all terms s of S, s→→ S(s[)].

4. (][) For all terms t of T , (t])[→→ Tt.

Additionally, if the fourth condition is strengthened so that any term t of T

is syntactically equal to (t])[, then [ and ] form a reflection in S of T . Galois

connections are convenient to work with because they compose: given Galois

connections from S1 to S2 and from S2 to S3, we have one from S1 to S3. This lets

us break a complex translation down into simpler steps and put them back together

in the end. More crucially for our purposes, a Galois connection allows us to hoist

confluence of the target reduction theory into the source.

Theorem 3. Given a Galois connection from S to T , S is confluent whenever T is.

Furthermore, given a reflection in S of T , S is confluent if and only if T is.
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Proof. Let [ : S → T and ] : T → S be the translations of the Galois connection.

Supposing that s1←←S s→→ Ss2, the following diagram commutes by confluence of T :

s

s[

s1 s[1 s[2 s2

s[]1 t s[]2

t]

[

S S

([) ([)

T T

confl.
[

S
] T

(])

]T

(])

[

S

([])

S
]

S

([])

Additionally, a reflection gives us the fact that for any term t of T , t ≡ (t])[

(where ≡ is syntactic equality), meaning that t→→ T (t])[ by reflexivity. Thus, with

a reflection we can swap S with T and [ with ] in the above diagram so that it

commutes again by confluence of S.

Our proof of confluence for the µµ̃→cons-calculus is broken down into two

separate parts:

1. We establish a reflection in the µµ̃→cons-calculus of an extension of the stack

calculus (called the Σx-calculus in Figure 18). This reflection is formed as

a result of normalization in two steps. First, we show that ς-normalization

forms a reflection in µµ̃→cons of its focalized sub-syntax (called µµ̃Fcons in Figure

16). Second, we show that µ̃exp-normalization forms a reflection in µµ̃Fcons of

Σx. The full reflection comes out from composition of these two steps.

2. We elaborate the confluence proof of the Σx-calculus. First, we show that the

Σx reduction theory is equivalent to one with a restricted η· surjectivity rule.
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The restricted rule only applies to co-values with no other possible reductions,

so it avoids the problem where a η· redex is destroyed by getting out of sync.

Second, we finish the proof by showing that the reduction theory with this

restricted η· rule is confluent, meaning that the original Σx-calculus is also

confluent.

To conclude, since µµ̃→cons contains a reflection of the confluent Σx-calculus, from the

above theorem µµ̃→cons must be confluent as well.

A stack calculus and its reflection

We demonstrate a reflection in µµ̃→cons of Σx by a sequence of normal forms

with respect to two well-behaved subsets of the µµ̃→cons reduction theory. On

their own, these sets of reductions are normalizing and confluent, so their normal

forms can be computed all at once ahead of time to eliminate particular features

of the source µµ̃→cons-calculus. Furthermore, their normal forms are closed under

reduction, so that further reduction does not re-introduce those eliminated features,

giving a smaller target calculus. As such, these reductions can be seen as being

“administrative” in nature, since they simplify some feature down to more primitive

components, resulting in a simpler target calculus.

Reflection by normalization is a rather specific form of a general Galois

connection, so we have some extra knowledge about how the source and target

calculi are related to one another. In particular, we begin with the reduction theory

for the source calculus (S) and divide it into two parts: a set of administrative

reductions done upfront during normalization (A), and the remaining non-

administrative reductions that are carried over into the target (T ). The target

calculus then becomes T -reductions over A-normal forms. So long as the A
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reduction theory is confluent, a reflection in S of T via A-normalization just tells us

that full A-normalization commutes across T -reduction. In the following diagrams,

a dashed arrow stands for the existence of such a reduction.

Theorem 4. Let S, T , and A be reduction theories such that A is confluent and

normalizing and S is equivalent to the (reflexive, transitive) union of T and A. A-

normalization forms a reflection in S of T if and only if A-normalization commutes

across T reduction, i.e. for all s1 →→ Ts2 and their A-normal forms t1 and t2,

respectively:

s1 s2

t1 t2

T

A A

T

Proof. First, we note that every term s of S has a unique A-normal form (there

is at least one because A is normalizing and at most one because A is confluent)

which we denote sA, so our translation functions are A-normalization (s[ = sA)

and inclusion of A-normal forms inside the original language S (t] = t). To show

the right-to-left implication, given the above commutation, A-normalization and

inclusion form a reflection in S of T :

1. ([): Suppose that s1→→S s2. Because S reduction is equivalent to the reflexive,

transitive closure over both A and T reductions, we equivalently have that

s1→→A→→T→→A→→T. . .→→A→→T s2

We can therefore show that sA1 →→T s
A
2 by induction over the reduction over

n in s1(→→A→→T )ns2. If n = 0 then the result is immediate by reflexivity of

T . Otherwise, if n = 1 + m we have s1 →→A s
′
1 →→T s

′
2(→→A→→T )ms2, and the

result follows from confluence of A, commutation of T over A-normalization,
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and the inductive hypothesis:

s1 s′1 s′2 s2

sA1 s′A1 s′A2 sA2

A

A

confl. A

T

comm. A

(→→A→→T )

IH A

T T

2. (]): For all A-normal forms t1 and t2, t1 →→ Tt2 implies t1 →→ St2 because T

reduction is included in S.

3. ([]): For all s, s→→ SsA because A reduction is included in S.

4. (][): For all A-normal forms t, tA ≡ t.

To show the left-to-right implication, given that A-normalization forms a reflection

in S of T , the commutation of A-normalization across T reduction is a special case

of the first property ([), since T reduction is included in S. Specifically, if s1→→T s2

then since T is included in S, s1→→S s2 and so by the property [, t1→→T t2 where t1

and t2 are the A-normal forms of s1 and s2 respectively.

We now build our reflection in µµ̃→cons of Σx by ςµ̃exp-normalization in two

steps. First, we fully normalize commands, terms and co-terms of the µµ̃→cons by

the ς-rules. Second, we normalize ς-normal forms by the µ̃ and exp rules. We

separate these two steps due to the unnecessary complication of performing full

ςµ̃exp-normalization at once: the normal forms are difficult to identify, and even

showing that reduction is normalizing is not obvious. The complication is due

to the fact that ς-reduction creates new µ̃-abstractions, and thus new µ̃-redexes.

However, when taken separately, ς-normalization produces all the necessary extra

µ̃-abstractions first, so that µ̃-normalization can easily eliminate them all afterward.
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And since reflections compose, these two steps can be performed in sequence to

build an overall reflection in µµ̃→cons of ςµ̃exp-normal forms.

The ς-normal forms give the focalized sub-syntax of the µµ̃→cons-calculus,

called µµ̃Fcons in Figure 16, where call stacks are built out of co-values, and stack

projections only apply to co-values. In effect, the focalized sub-syntax limits general

co-terms, so that a µ̃-abstraction can only appear at the top of a co-term, and not

arbitrarily nested inside call stacks. Also notice that the sub-syntax of µµ̃Fcons is

closed under reduction: once we have fully applied all ς-rules, they never come up

again during reduction. Thus, the reduction theory of the µµ̃Fcons-calculus consists of

all non-ς rules. This gives us a reflection in µµ̃→cons of µµ̃Fcons by ς-normalization.

In order to have an idea of how this proof works, first, note that ς-reduction

is confluent (it is an orthogonal combinatory reduction system, see Klop, van

Oostrom, and van Raamsdonk (1993)) and normalizing (each application of ς-

reduction decreases the number of non-co-values, e, sitting in a call stack, v · e,

or projection, car(e) or cdr(e)). Therefore, by Theorem 4, we only need to show

that all other reductions of µµ̃→cons, namely those of µµ̃Fcons, commute over ς-

normalization, where we denote the ς-normal form of c as cς (similarly vς , eς , and

Eς). In order to establish commutation, we consider commutation of a single µµ̃Fcons

step over ς-normalization:

c1 c2

cς1 cς2

ς

µµ̃Fcons

ς

µµ̃Fcons

from which the full commutation result is obtained by composition over multiple

µµ̃Fcons steps. The single-step commutation can be shown by mutual induction on

commands, terms, and co-terms, considering the possible reductions in each case.

Most of these follow directly by the inductive hypothesis, using the additional
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facts that co-values are closed under reduction and ς-normalization commutes with

substitution.

The interesting cases are those in which internal reductions are capable of

destroying surrounding redexes. In particular, a η· redex can be ruined by putting

the co-values out of synch due to asymmetric reduction. Fortunately, because we

are forced to fully reduce to the unique ς-normal form, and because co-values are

closed under reduction, η· reduction commutes:

car(E) · cdr(E) E

car(Eς) · cdr(Eς) Eς

ς

η·

ς

η·

The other case in which an internal reduction may destroy an outer redex is in

the case of ς rules themselves. This is because a non-co-value co-term may be

converted into a co-value by an ηµ̃-reduction, which prevents the ς-family of rules

from applying and likewise changes the final shape of the ς-normal form. However,

substitution by µ̃ is capable of undoing such an unnecessary ς-reduction, and

additional ηµ and ηµ̃ reductions clean up the leftover µ- and µ̃-abstractions:

v · e v · E

µ̃x.〈µα.〈x||vς · α〉||eς〉 vς · Eς

ηµ̃

ς ς

µµ̃Fcons

Similar diagrams hold for the other ς rules for car(e) and cdr(e) when e is a non-

co-value that reduces to a co-value.

The full details follow.
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Lemma 12 (Closure of µµ̃Fcons). 1. Closure under substitution: If t, v, E are in

the focalized sub-syntax, then t{v/x,E/α} is in the same syntactic category as

t in µµ̃Fcons.

2. Closure under reduction: If t is in the focalized sub-syntax and t → t′

according to the rules of µµ̃→cons, then t′ is in the focalized sub-syntax (and

in the same syntactic category as t).

Proof. The first point follows by induction on t. For the second point, we proceed

by cases. The µ, µ̃, and exp rules hold by the closure under substitution. The

η, car, and cdr rules are all immediate. Finally, the various ς-rules are simply

syntactically prohibited as their left hand sides are not focalized because of the

requirement that the lifted e is not a co-value.

While as discussed previously, ς reduction is normalizing and confluent, it is

easier to work with a single procedure which computes a terms ς-normal form all in

one step. Such a procedure is given in Figure 17.

Lemma 13. (−)ς computes the unique ς-normal form of any command, term, or

co-term in µµ̃→cons

Proof. Observe that Eς is always a co-value. Therefore, by cases, we know that tς is

in µµ̃Fcons and that it is a ς-normal form.

By induction we see that t →→ς t
ς . xς and ας work in zero steps, (µα.c)ς ,

µ[(x · α).c]ς , (µ̃x.c)ς , car(E)ς , cdr(E)ς , (v · E)ς , and 〈v||e〉ς work by the inductive

hypothesis, the remaining cases of car(e)ς , cdr(e)ς , (v · e)ς each correspond to

a single application of a ς rule followed by additional ς reductions given by the

inductive hypothesis.
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xς , x

ας , α

(µα.c)ς , µα.(cς)

µ[(x · α).c]ς , µ[(x · α).cς ]

(µ̃x.c)ς , µ̃x.(cς)

car(E)ς , car(Eς)

car(e)ς , µα.〈µβ.〈car(β)||α〉||eς〉 (e 6∈ Co-Values)

cdr(E)ς , cdr(Eς)

cdr(e)ς , µ̃x.〈µα.〈x||cdr(α)〉||eς〉 (e 6∈ Co-Values)

(v · E)ς , vς · Eς

(v · e)ς , µ̃x.〈µα.〈x||vς · α〉||eς〉 (e 6∈ Co-Values)

〈v||e〉ς , 〈vς ||eς〉

FIGURE 17. The (−)ς : µµ̃→cons → µµ̃Fcons translation focalizing programs

Since ς is a (linear) term rewriting system without any critical pairs it is

confluent and so must have unique normal forms. Thus, tς is the unique ς-normal

form of t.

Lemma 14. For any t,v,E,x, and α, tς{vς/x} , (t{v/x})ς and tς{Eς/α} ,

(t{E/α})ς .

Proof. Induction on t. The only trick is that substitution will never change what is

a co-value.

Lemma 15. ς-normalization commutes across the non-ς reductions of µµ̃→cons.

Proof. By Lemma 13 it is enough to show that if t→→t′ then tς→→(t′)ς . By inducting

over the reduction t →→ t′ it is sufficient to show that t → t′ implies tς →→ (t′)ς .

Examining the cases, the main issue comes when we have an internal reduction

into a (co-)term subject to lifting as reduction might turn a non-co-value co-term
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into a co-value and thus change the translation. The main idea then is to prove the

special case that if e→ E then eς→→Eς . This follows by induction on the derivation

of the reduction e→ E, with only a small number of cases to consider:

– If µ̃x.〈x||E〉 → E

(µ̃x.〈x||E〉)ς , µ̃x.〈x||Eς〉

→ Eς ηµ̃

– If v · e→ v · E

(v · e)ς , µ̃x.〈µα.〈x||vς · α〉||eς〉

→→ µ̃x.〈µα.〈x||vς · α〉||Eς〉 Inductive Hypothesis

→ µ̃x.〈x||vς · Eς〉 µ

→ vς · Eς ηµ̃

, (v · E)ς

– If cdr(e)→ cdr(E)

cdr(e)ς , µ̃x.〈µα.〈x||cdr(α)〉||eς〉

→→ µ̃x.〈µα.〈x||cdr(α)〉||Eς〉 Inductive Hypothesis

→ µ̃x.〈x||cdr(Eς)〉 µ

→ cdr(Eς) ηµ̃

, cdr(E)ς
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– If car(e)→ car(E)

car(e)ς , µα.〈µβ.〈car(β)||α〉||eς〉

→→ µα.〈µβ.〈car(β)||α〉||Eς〉 Inductive Hypothesis

→ µα.〈car(Eς)||α〉 µ

→ car(Eς) ηµ

, car(E)ς

Otherwise, the translation is completely compositional and so the cases are direct:

– If 〈µα.c||E〉 →µ c{E/α} we have:

〈µα.c||E〉ς , 〈µα.cς ||Eς〉

→µ c
ς{Eς/α}

=α c{E/α}ς Lemma 14.

– If 〈v||µ̃x.c〉 →µ̃ c[v/x] we have:

〈v||µ̃x.c〉ς , 〈vς ||µ̃x.cς〉

→µ c
ς{vς/x}

=α c{v/x}ς Lemma 14.

– If µα.〈v||α〉 →ηµ v we have: (µα.〈v||α〉)ς , µα.〈vς ||α〉 →ηµ v
ς .

– If µ̃x.〈x||e〉 →ηµ̃ e we have: (µ̃x.〈x||e〉)ς , µ̃x.〈x||eς〉 →ηµ̃ e
ς .
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c ∈ Commands ::= 〈v||E〉
v ∈ Terms ::= µα.c | x | car(E)

E ∈ Co-Values ::= α | cdr(E) | v · E
e ∈ Co-Terms ::= µ̃x.c | E

〈µα.c||E〉 →µ c{E/α}
µα.〈v||α〉 →ηµ v

µ̃x.〈x||e〉 →ηµ̃ e

car(E) · cdr(E)→η· E

car(v · E)→car v

cdr(v · E)→cdr E

FIGURE 18. Stack calculus with free variables - Σx

– If µ[(x · α).c]→exp µβ.c{car(β)/x, cdr(β)/α} we have:

µ[(x · α).c]ς , µ[(x · α).cς ]

→exp µβ.c
ς{car(β)/x, cdr(β)/α}

, µβ.c{car(β)/x, cdr(β)/α}ς Lemma 14.

– If car(v · E)→car v we have: car(vς · Eς)→car v
ς .

– If cdr(v · E)→cdr E we have: cdr(vς · Eς)→cdr E
ς .

– In the case of car(E) · cdr(E) →η· E we have (car(E) · cdr(E))ς , car(Eς) ·

cdr(Eς)→η· E
ς , since Eς is still a co-value.

Lemma 16. ς-normalization forms a reflection in µµ̃→cons of µµ̃Fcons.

Proof. Follows as the composition of Lemma 15 and Theorem 4.
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(x : A) ∈ Γ

Γ ` x : A | ∆
[idR]

(α : A) ∈ ∆

Γ | α : A ` ∆
[idL]

c : (Γ ` α : A,∆)

Γ ` µα.c : A ` ∆
[ActR]

c : (Γ, x : A ` ∆)

Γ | µ̃x.c : A ` ∆
[ActL]

Γ ` v : A | ∆ Γ | E : A ` ∆

〈v||E〉 : (Γ ` ∆)
[cut]

Γ ` v : A | ∆ Γ | E : B ` ∆

Γ | v · E : A→ B ` ∆
[→ Intro]

Γ | E : A→ B ` ∆

Γ ` car(E) : A | ∆
[→ Elim1]

Γ | E : A→ B ` ∆

Γ | cdr(E) : B ` ∆
[→ Elim2]

FIGURE 19. Simple Type Assignment for Σx

The second step of our reflection is to normalize the focalized µµ̃Fcons sub-

syntax by µ̃exp-reduction. These normal forms are exactly the stack calculus

of Carraro et al. (2012) extended with free variables, Σx, shown in Figure 18.

From the typed perspective, as in Figure 19, has only elimination rules and left

introduction rules. Together with natural deduction (only right rules) and the

pure sequent calculus we started with (only introduction rules on both sides) it

thus represents one of a multitude of choices for a logical inference system. But, as

Carraro et al. (2012) noticed, this choice is interesting computationally. In effect,

µ̃exp-normalization eliminates all variable binders within commands, terms, and

co-values, replacing them either by substitution or by a projection out of a co-

variable. Therefore, commands, terms, and co-values do not contain any variable

binders. The one technical detail is the presence of general co-terms remaining in

the syntax. This is necessary to form a reflection in µµ̃Fcons because of the fact that
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〈v||µ̃x.c〉µ̃ , cµ̃[vµ̃/x]

〈v||E〉µ̃ , 〈vµ̃||Eµ̃〉
xµ̃ , x

(µα.c)µ̃ , µα.(cµ̃)

µ[(x · α).c]µ̃ , µβ.cµ̃[car(β)/x, cdr(β)/α]

car(E)µ̃ , car(Eµ̃)

αµ̃ , α

cdr(E)µ̃ , cdr(Eµ̃)

(v · E)µ̃ , vµ̃ · Eµ̃

FIGURE 20. Translation from µµ̃Fcons to Σx

a given co-term µ̃x.c will still reduce to another µ̃-abstraction µ̃x.c′. However, the

only µ̃-abstraction in the resulting co-term will be the one at the top; c′ contains

no other µ̃-abstractions. Thus, besides the possibility of one µ̃-abstraction at the

very top of a co-term, the Σx-calculus has no variable binders. And if general co-

terms are not of interest, this detail may be elided. Furthermore, like the focalized

µµ̃Fcons sub-syntax, the syntax of the Σx-calculus is also closed under reduction, so

the reduction theory of the Σx-calculus only consists of the car, cdr, η·, µ, ηµ, and

ηµ̃ (at the top of a co-term only) rules. This gives us a reflection in µµ̃Fcons of Σx by

µ̃exp-normalization.

The function (−)µ̃ translates commands and terms in the focalized sub-syntax

(µµ̃Fcons, Figure 16) into Σx and is given in Figure 20.

Lemma 17 (Closure of Σx). 1. – Closure under substitution: If t, v, E are in Σx

then t[v/x,E/α] is in the same syntactic category as t in Σx.

2. – Closure under reduction: If t is in Σx and t → t′ according to the rules of

µµ̃→cons then t′ is in Σx (in the same syntactic category as t).
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Proof. The first point follows by induction on t. The second point by cases.

Lemma 18. For every t, v, E in the focalized sub-syntax, t{v/x,E/α}µ̃ ,

tµ̃{vµ̃/x,Eµ̃/α}.

Proof. By induction on t.

Lemma 19. −µ̃ computes unique normal forms of µµ̃Fcons with respect to the µ̃- and

exp-rules.

Proof. For every t in µµ̃Fcons, t→→ tµ̃. This holds by induction on t. In each case we

need only to perform at most one µ̃- or exp-reduction and then utilize the inductive

hypothesis. tµ̃ does not contains any µ̃- or exp-redexes and is thus a normal form.

µ̃exp-reduction is confluent because it lacks critical pairs.

Intermezzo 1. Note that the above Lemma implies that µ̃exp-reduction is

normalizing as the (−)µ̃ function computes a normal form with respect to it.

However, it is interesting to think about why µ̃-reduction is normalizing (the exp-

rule is clearly strongly normalizing on its own as the number of µ[(x · α).c] forms is

strictly decreasing).

As shown later in Theorem 16, our normalization proof for the typed

system developed Chapter VI could be reworked to prove that µ and µ̃ is strongly

normalizing even in the untyped system, by constructing a “type system” with

a single type. One downside of that proof though is that it seems to have quite

high proof complexity, both in that we build quite a bit of machinery to make it

work, and in a technical sense : the existence of a fixed-point is guaranteed by the

Tarski fixed point theorem which depends on (foundationally) powerful tools such

as uncountable unions or higher ordinals. That isn’t much concern when our goal is

a proof of strong normalization which already implies the consistency of arithmetic,
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but does seem a bit much if all we care about is some basic property of rewriting

systems. However, we can give a simpler, and arithmetic, proof in the case of just µ̃

alone which may provide some insight.

The basic idea for how we could go about showing µ̃-normalization is that

µ̃-reduction never introduces any new redexes. In particular if v is µ̃-normal then

c{v/x} has one fewer µ̃-redex then 〈v||µ̃x.c〉. Thus, there is clearly a reduction

order which is normalizing. Further, strong normalization could be additionally

shown by interpreting each (co-)term or command as a polynomial with positive

integer coefficients.

J〈v||E〉K = JvK + JEK

J〈v||µ̃x.c〉K = 1 + JvK + JcK{JvK/x}

JxK = x

JαK = 0

Jv · EK = JvK + JEK

Jcdr(E)K = JEK

Jcar(E)K = JEK

Jµα.cK = JcK

Jµ[(x · α).c]K = JcK{0/x}

Jµ̃x.cK = JcK0/x

Then, the general property we would show is that Jt{v/x}K = JtK{JvK/x}, and then

given any assignment φ of free variables in the polynomial to integers if t →µ̃ t′

then JtK(φ) > Jt′K(φ) and so µ̃ is strongly normalizing.
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That µ̃ and µ are each strongly normalizing on their own is an interesting

property of the two-sided sequent calculus. However, as we have given a translation

function we do not actually need that property here. End intermezzo 1.

Lemma 20. µ̃exp-normalization commutes across µµ̃Fcons

Proof. Equivalently, t → t′ by a rule other than ηµ̃ implies tµ̃ →→ (t′)µ̃. We can

prove this by induction on the reduction t → t′. Reductions not at the top of t are

nearly all automatic since −µ̃ is compositional except for the cases of 〈v||µx.c〉 and

µ[(x · α).c] which are handled by Lemma 18. That leaves only the cases where the

reduction happens at the top of t:

– In the case of 〈µα.c||E〉 →µ c[E/α] we have 〈µα.c||E〉µ̃ , 〈µα.cµ̃||Eµ̃〉 →

cµ̃{Eµ̃/α} and by Lemma 18 cµ̃{Eµ̃/α} =α c{E/α}µ̃.

– In the case of 〈v||µ̃x.c〉 →µ̃ c{v/x} we have 〈v||µ̃x.c〉µ̃ , cµ̃{vµ̃/x} which by

Lemma 18 is c{v/x}µ̃.

– In the case of µα.〈v||α〉 →ηµ v we have (µα.〈v||α〉)µ̃ , µα.〈vµ̃||α〉 →ηµ v
µ̃.

– In the case of 〈v||µ̃x.〈x||µ̃y.c〉〉 →ηµ̃ 〈v||µ̃y.c〉 we have 〈v||µ̃x.〈x||µ̃y.c〉〉µ̃ ,

cµ̃{v/y} and 〈v||µ̃y.c〉µ̃ , cµ̃{v/y}.

– In the case of µ[(x · α).c] →exp µβ.c{car(β)/x, cdr(β)/α} we have µ[(x ·

α).c]µ̃ , µβ.cµ̃{car(β)/x, cdr(β)/α} which is (µβ.c{car(β)/x, cdr(β)/α})µ̃ by

Lemma 18.

– In the case of car(v · E)→car v we have car(v · E)µ̃ , car(vµ̃ · Eµ̃)→car v
µ̃.

– In the case of cdr(v · E)→cdr E we have cdr(v · E)µ̃ , cdr(vµ̃ · Eµ̃)→cdr E
µ̃.
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– In the case of car(E) · cdr(E)→η· E we have (car(E) · cdr(E))µ̃ , car(Eµ̃) ·

cdr(Eµ̃)→η· E
µ̃.

Lemma 21. µ̃exp-normalization forms a reflection in µµ̃Fcons of Σx.

Proof. By composition of Theorem 4 and Lemma 20

Theorem 5. ςµ̃exp-normalization forms a reflection in µµ̃→cons of Σx.

Proof. By composition of the reflections in µµ̃→cons of µµ̃Fcons (Lemma 16) and in

µµ̃Fcons of Σx (Lemma 21).

Confluence of a stack calculus

Now we focus on establishing confluence of the Σx-calculus. The Σx-calculus

is simpler than the full µµ̃→cons-calculus, doing away with several constructs and

reductions. However, the Σx reduction theory still has the complication of the η·

rule, whose non-left linearity defeats many approaches of establishing confluence.

Surprisingly, we can completely side-step the non-left-linearity problem of

surjective call stacks by restricting the η· rule. Instead of matching general co-

values, we will only bring together a certain form of stuck co-values consisting of

a chain of cdr projections out of a co-variable (where cdrn(α) means n applications

of cdr to α):

car(cdrn(α)) · cdr(cdrn(α))→η′· cdr
n(α)

The restricted η′· rule is clearly a particular instance of the more general η· rule,

and replacing η· with η′· gives us the simplified Σ′x reduction theory. However, η′·
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identifies an application of surjectivity that cannot get out of synch, since cdrn(α)

is a normal form that cannot reduce further. Therefore, the only possible reduct

of car(cdrn(α)) · cdr(cdrn(α)) is cdrn(α), and so η′· redexes cannot be destroyed

by other reductions. This side-steps the problematic aspect of η· that we began

with. Unfortunately, η′· brings up a different problem: η′· redexes are not closed

under substitution, so surrounding µ reductions näıvely destroy inner η′· reduction.

Miraculously though, the other reduction rules pick up the slack when η′· fails, and

so Σx and Σ′x end up being equivalent reduction theories.

Lemma 22. The Σx and Σ′x reduction theories are equivalent: c→→Σxc′ if and only

if c→→ Σ′xc′, and likewise for (co-)terms. Furthermore, the carcdrη· and carcdrη′·

reduction theories are equivalent.

Proof. The only difference between the two reduction theories is the rule for

surjectivity of call stacks, η· in Σx versus the restricted η′· in Σ′x. The η′· is clearly a

particular family of instances of the η· rule, car(E) · cdr(E) → E, where E must

have the form cdrn(α). So Σ′x is simulated by Σx step by step.

To go the other way, we only need to show that the unrestricted η· rule is

simulated by carcdrη′· reduction. To demonstrate the simulation, we consider what

happens when we substitute an arbitrary co-value E in for the co-variable of a η′·

redex. In particular, we demonstrate the following reduction holds:

car(cdrn(E)) · cdr(cdrn(E))→→ carcdrη′·cdr
n(E)

Crucially, this reduction holds because E can only be some form of call stack and

nothing else, so that the general extensionality reduction is simulated by the car

and cdr computational rules for call stacks. This can be seen by induction on
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n and considering cases on the possible co-values for E, where we take any cdr

projections at the top of E to be included in the chain of projections mentioned by

the rule:

– If E = α, then we can directly apply the η′· rule:

car(cdrn(α)) · cdr(cdrn(α))→η′· cdr
n(α)

– If E = v ·E ′ and n = 0 then the simulation follows by car and cdr reductions:

car(cdr0(v · E ′)) · cdr(cdr0(v · E ′)) = car(v · E ′) · cdr(v · E ′)

→car v · cdr(v · E ′)→cdr v · E ′ = cdr0(v · E ′)

– If E = v · E ′ and n = n′ + 1 then the simulation follows by two cdr reductions

and the inductive hypothesis:

car(cdrn+1(v · E ′)) · cdr(cdrn+1(v · E ′))→cdr→cdr car(cdrn(E ′)) · cdr(cdrn(E ′))

→→IH cdrn(E ′)

– Otherwise, we cannot have E = cdr(E ′), because this cdr surrounding E ′ is

joined with the chain of cdr projections in the rule:

car(cdrn(cdr(E ′))) · cdr(cdrn(cdr(E ′))) = car(cdrn+1(E ′)) · cdr(cdrn+1(E ′))
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The η· rule is the instance of the above reduction where n = 0. Thus carcdrη· is

simulated by carcdrη′·, so the two are equivalent. Furthermore, Σx is simulated by

Σ′x, so the two are equivalent reduction theories.

Now that we have isolated and defeated the non-left-linearity problem of

surjective call stacks within the Σ′x reduction theory, we can show that it is

confluent. From this point, the proof of confluence for the simplified Σ′x theory

is entirely routine, where the only technical detail that needs to be addressed is the

fact that reduction is closed under substitution, which we already saw in Lemma 22

when equating the Σx and Σ′x reduction theories.

Lemma 23. The Σ′x reduction theory is confluent.

Proof. We demonstrate confluence by a divide and conquer method, separating

the reductions dealing with call stacks (car, cdr, and η′·) from the reductions

dealing with variable binding (µ, ηµ, and ηµ̃). Observe that the carcdrη′· reduction

theory is confluent since it is subcommutative 3 . Additionally, the µηµηµ̃ reduction

theory is confluent since it is an orthogonal combinatory reduction system. We also

observe that these two sub theories commute:

c1 c′1

c2 c′2

µηµηµ̃

carcdrη′·

µηµηµ̃

carcdrη′·

3 By which we mean that critical pairs come together in zero or one step: whenever t1 ← t →
t2 there exists some t′ such that t1 →= t′ ←= t2
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and similarly for terms and co-terms, which follows by induction from the simpler

one-step diagram (where →= denotes zero or one steps):

c1 c′1

c2 c′2

µηµηµ̃

carcdrη′·

µηµηµ̃

=
carcdrη′·

Confluence of the whole Σ′x reduction theory follows from the Hindley-Rosen

lemma.4 The only challenge is to show that the carcdrη′· reduction theory is closed

under substitution: that c →→ carcdrη′·c
′ implies c{E/α} →→ carcdrη′·c

′{E/α},

and so on. This is not a trivial property because of the restricted form of the η′·

rule, whose redexes are destroyed by substitution of co-values for their free co-

variable: for example car(α) · cdr(α) →η′· α but (car(α) · cdr(α)){x · β/α} =

car(x · β) · cdr(x · β) 6→η′· . However, the carcdrη′· reduction theory is equivalent

to the carcdrη· reduction theory (Lemma 22) which is closed under substitution,

so carcdrη′· is closed under substitution as well. As a result, we find that carcdrη′·

and µηµηµ̃ reductions commute as shown above, and so Σ′x is confluent.

Theorem 6. The Σx and µµ̃→cons reduction theories are confluent.

Proof. Because Σ′x is confluent (Lemma 23) and Σ′x and Σx are equivalent

reduction theories (Lemma 22), then Σx is also confluent. Furthermore, because

there is a Galois connection from µµ̃→cons to Σx (Theorem 5) then µµ̃→cons is also

confluent (Theorem 3).

4If →→A and →→B are two confluent rewriting systems that commute then →→A ∪B is
confluent.
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CHAPTER IV

COMPUTING WITH LAZYNESS AND EXTENSIONALITY

This chapter is a version of (Johnson-Freyd et al. (2015)) revised to fit in this

dissertation. I was the primary author of that paper and principle designer of the

calculi and semantic artifacts appearing here. I am thankful to my coauthors Paul

Downen and Zena M. Ariola for their assistance in preparing that publication.

Programming language designers are faced with multiple, sometimes

contradictory, goals. On the one hand, it is important that users be able to reason

about their programs. On the other hand, we want our languages to support simple

and efficient implementations. For the first goal, extensionality is a particularly

desirable property. We should be able to use a program without knowing how

it was written, only how it behaves. In the previous chapter we explored how to

accomodate extensionality in a rewriting theory. However, a rewriting theory,

even a confluent one, alone is still insufficient for our second goal of actually

running programs. Firstly, while rewriting theories tell us what reductions are

permissible, they don’t tell which of those reductions we should take. Secondly,

rewriting theories aren’t necessarily aimed at efficiency: the fact that two reduction

sequences eventually reach the same place obscures the fact that one may be

much shorter than the other. Thus, for the second goal, it is important to have

normal forms, specifying the possible results of execution, that can be efficiently

computed. To that end, most implementations stop execution when they encounter

a λ-abstraction. This is called weak-head normalization and has the advantage

that evaluation never encounters a free variable so long as it starts with a closed

term. Only needing to deal with closed programs is a great boon for implementers.
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Beyond the added simplicity that comes from knowing we won’t run into a variable,

in a β-reduction (λx.v) v′ → v{v′/x} the fact that v′ is closed means that the

substitution operation {v′/x} need not rename variables in v. More generally,

weak-head normalization on closed programs avoids the variable capture problem,

which is quite convenient for implementations. Beyond reasoning and extensionality

there are other desirable goals. In the previous chapter we studied a language with

non-strict semantics which can be desirable in practice: programmers wanting to

work with infinite data structures, which can improve modularity by separating

unbounded producers from consumers (Hughes (1989)), might be more inclined to

use a non-strict programming language like Haskell rather than ML.

For these reasons, (1) call-by-name (or call-by-need) evaluation, (2) weak-

head normal forms and (3) functional extensionality are all desirable properties to

have. However, the combination of all three is inconsistent, representing a trilemma

where we can pick at most two. Switching to call-by-value evaluation respects

extensionality while computing to weak-head normal forms. But, sticking with

call-by-name forces us to abandon one of the other two. There is a fundamental

tension between evaluation to weak-head normal form, which always finishes when

it reaches a lambda, and the η axiom, which tells us that a lambda might not be

done yet. For example, the η law says that λx.Ωx is the same as Ω, where Ω is the

non-terminating computation (λy.y y)(λy.y y). Yet, λx.Ωx is a weak-head normal

form that is done while Ω isn’t. Thus, if we want to use weak-head normal forms

as our stopping point, the η law becomes suspect. This puts us in a worrisome

situation: η-equivalent programs might have different termination behavior. As

such, we cannot use essential properties, like our earlier example of the monad laws

for state, for reasoning about our programs without the risk of changing a program
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that works into one that doesn’t. The root of our problem is that we combined

extensionality with effects, namely non-termination. This is one example of the

recurrent tension that arises when we add effects to the call-by-name λ-calculus.

For example, with printing as our effect, we would encounter a similar problem

when combining η with evaluation to weak-head normal forms. Evaluating the

term “print "hello"; (λy.y)” to its weak-head normal form would print the string

"hello", while evaluating the η-expanded term λx.(print "hello"; (λy.y))x would

not.

In this chapter, we address the problem. The solution is to leverage the

insights we gained from the study of confluent rewriting in the previous chapter.

Namely, that functions perform pattern matching on the calling context — as this

view also is the basis for an abstract machine — and that these pattern matches

can be replaced with projections. This suggests how to continue computing under

a λ-abstraction. We present and relate a series of operational semantics and

abstract machines for head reduction motivated by this insight into the nature of

λ-abstractions.

After reviewing the small-step operational semantics, big-step operational

semantics and Krivine abstract machine for weak-head evaluation (Section 4.1),

we turn our investigation to head reduction with the goal of providing the three

different styles of semantics. We start our exploration of head reduction with the

Krivine abstract machine because it fits with the sequent calculus approach we

use throughout, bringing out the negative nature of functions (Downen and Ariola

(2014)). Functions are not constructed but are de-constructors ; it is the contexts of

functions which are constructed. Replacing pattern matching with projection, we

modify our Krivine machine with control to continue evaluation instead of getting
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v ∈ Terms ::= x | v v′ | λx.v
E ∈ EvaluationContexts ::= � | E v

E[(λx.v) v′] 7→ E[v{v′/x}]

FIGURE 21. Small-step weak-head reduction

stuck on a top-level lambda. Having gathered intuition on contexts, we focus on

the control-free version of this machine. This leads to our first abstract machine for

head reduction, and we utilize the syntactic correspondence (Biernacka and Danvy

(2007)) to derive an operational semantics for head reduction in the λ-calculus

(Section 4.2). The obtained operational semantics is, however, more complicated

than would be desirable, and so we define a simpler but equivalent operational

semantics. By once again applying the syntactic correspondence, we derive an

abstract machine for head reduction which is not based on projections and, by way

of the functional correspondence (Ager, Biernacki, Danvy, and Midtgaard (2003)),

we generate a big-step semantics which is shown to be equivalent to the big step

semantics for head reduction from Sestoft (2002). Finally, we conclude with a more

efficient implementation of the projection based machine that coalesces multiple

projections into one (Section 4.3).

Weak-Head Evaluation

The semantics of a programming language can come in different flavors. It

can be given by creating a mapping from a syntactic domain of programs into an

abstract domain of mathematical structures (denotational semantics), or it can be

given only in terms of syntactic manipulations of programs (operational semantics).

Operational semantics can be further divided into small-step or big-step. A small-
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N ∈ Neutral ::= x | N v

WHNF ∈WeakHeadNormalForms ::= N | λx.v

FIGURE 22. Weak-head normal forms

c ∈ Commands ::= 〈v||E〉
E ∈ CoTerms ::= tp | v · E

〈v v′||E〉 → 〈v||v′ · E〉
〈λx.v||v′ · E〉 → 〈v{v′/x}||E〉

FIGURE 23. Krivine abstract machine

step operational semantics shows step-by-step how a program transitions to the

final result. A big-step operational semantics, contrarily, only shows the relation

between a program and its final result with no intermediate steps shown, as in

an evaluation function. We first start in Figure 21 with a small-step call-by-name

semantics for λ-calculus. As before, the evaluation context, denoted by E, is simply

a term with a hole, written as �, which specifies where work occurs in a term. The

semantics is then given by a single transition rule which specifies how to handle

application. Unlike the case of the rewriting theory in the previous chapter, this

rule is interpreted as applying only at the top of a program. According to this

semantics, terms of the form x ((λx.x)y) or λx.x ((λx.x)y) are not reducible.

The final answer obtained is called weak-head normal form (whnf for short); a λ-

abstraction is in whnf and an application of the form x v1 · · · vn is in whnf. We

can give a grammar defining a whnf by using the notion of “neutral” from Girard,

Taylor, and Lafont (1989a) for λ-calculus terms other than λ-abstractions (see

Figure 22).

98



Note that decomposing a program into an evaluation context and a redex

is a meta-level operation in the small-step operational semantics. We can instead

make this operation an explicit part of the formalization in an abstract machine.

In Figure 23 we give the Krivine abstract machine (Krivine (2007)) which can be

derived directly from the operational semantics by reifying the evaluation context

into a co-term (Biernacka and Danvy (2007)). As shown in Chapter II co-values

can be understood as standing in for contexts, with tp understood as corresponding

to the empty context �, and the call-stack v · E can be thought of as the context

E[� v], and the formation of a command 〈v||E〉 corresponded to plugging v into

E to obtain E[v]. The reduction rules of the Krivine machine are justified by this

correspondence: we have a rule that recognizes that E[v v′] = (E[� v′])[v] and

a rule for actually performing β-reduction inside an evaluation context. We can

further describe how to run a λ-calculus term in the Krivine machine by plugging

the term into an empty context

v  〈v||tp〉

then after performing as many evaluation steps as possible, we “readback” a λ-term

using the rules

〈v||v′ · E〉 ↪→ 〈v v′||E〉 〈v||tp〉 ↪→ v

Note that the first rule is only needed if we want to interpret open programs,

because execution only terminates in commands of the form 〈λx.v||tp〉 and 〈x||E〉,

and only the first of these can be closed.

The syntactic correspondence of Biernacka and Danvy (2007) derives

the Krivine machine from the small-step operational semantics of weak-head

99



reduction by considering them both as functional programs and applying a series

of correctness-preserving program transformations. The interpreter corresponding

to the small-step semantics “decomposes” a term into an evaluation context and

redex, reduces the redex, “recompose” the resulting term back into its context, and

repeats this process until an answer is reached. Recomposing and decomposing

always happen in turns, and decomposing always undoes recomposing to arrive

again at the same place, so they can be merged into a single “refocus” function

that searches for the next redex in-place. This non-tail recursive interpreter

can then be made tail-recursive by inlining and fusing refocusing and reduction

together. Further simplifications and compression of intermediate transitions in

the tail-recursive interpreter yields an implementation of the abstract machine.

Equivalence of the two semantic artifacts follows from the equivalence of the

associated interpreters, which is guaranteed by construction due to the correctness

of each program transformation used. Note that we use →→ and ↪→→ as the reflexive-

transitive closures of → and ↪→ respectively.

Theorem 7 (Equivalence of Krivine machine and small-step operational

semantics). For any λ-calculus terms v, v′ the following conditions are equivalent:

1. v 7→→ v′ such that there is no v′′ where v′ 7→ v′′;

2. there exists a command c such that 〈v||tp〉 →→ c ↪→→ v′ where there is no c′ such

that c→ c′.

Let us now turn to the big-step weak-head semantics (see Figure 24). It is

not obvious that this semantics corresponds to the small step semantics, a proof

of correctness is required. Interestingly, Reynolds’s functional correspondence

(Ager et al. (2003); Reynolds (1972)) links this semantics to the Krivine abstract
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x ⇓wh x λx.v ⇓wh λx.v

v1 ⇓wh λx.v′1 v′1{v2/x} ⇓wh v
v1 v2 ⇓wh v

v1 ⇓wh v′1 v′1 6≡ λx.v

v1 v2 ⇓wh v′1 v2

FIGURE 24. Big-step semantics for weak-head reduction

machine by way of program transformations, similar to the connection between the

small-step semantics and abstract machine. The big-step semantics is represented

as a compositional interpreter which is then converted into continuation-passing

style and defunctionalized (where higher-order functions are replaced with data

structures which correspond to co-terms), yielding an interpreter representing

the Krivine machine. Correctness follows from construction and is expressed

analogously to Theorem 7 by replacing the small-step reduction (i.e. 7→→) with the

big-step (i.e. ⇓).

Theorem 8 (Equivalence of Krivine machine and big-step operational semantics).

For any λ-calculus terms v, v′ the following conditions are equivalent:

1. v ⇓wh v′;

2. there exists a command c such that 〈v||tp〉 →→ c ↪→→ v′ where there is no c′ such

that c→ c′.

In conclusion, we have seen three different semantics artifacts, small-step,

big-step and an abstract machine, which thanks to the syntactic and functional

correspondence define the same language. Our goal is to provide the three different

styles of semantics for a different notion of final result: head normal forms (hnf for
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N ∈ Neutral ::= x | N v

HNF ∈ HeadNormalForms ::= N | λx.HNF

FIGURE 25. Head Normal Forms

c ∈ Commands ::= 〈v||E〉
v ∈ Terms ::= x | v v′ | µ[(x · α).c] | µα.c
E ∈ CoTerms ::= α | v · E | tp

〈v v′||E〉 → 〈v||v′ · E〉
〈µα.c||E〉 → c{E/α}
〈µ[(x · α).c]||v · E〉 → c{E/α, v/x}

FIGURE 26. Krivine abstract machine for λ-calculus with control

short) (see Figure 25). Note that head reduction unlike weak-head reduction allows

execution under a λ-abstraction, e.g. λx.(λz.z)x is a whnf but is not a hnf, whereas

λx.(x(λz.z)x) is both a whnf and a hnf.

We have seen how, in the Krivine machine, evaluation contexts take the form

of a call-stack consisting of a list of arguments to the function being evaluated. As

we have seen in previous chapters, from here abstraction over co-terms is the only

necessary ingredient to realizing control operations. We thus arrive at an extension

of the Krivine machine with control given in Figure 26.

Surjective Call Stacks

There are two different ways to take apart tuples in programming languages.

The first, as we’ve seen, is to provide functionality to decompose a tuple by

matching on its structure, as in the pattern-matching let-term let (x, y) = v′ in v.

By pattern-matching, let (x, y) = (v1, v2) in v evaluates to v with v1 and v2

substituted for x and y, respectively. The second is to provide primitive projection
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operations for accessing the components of the tuple, as in fst(v) and snd(v). The

operation fst(v1, v2) evaluates to v1 and snd(v1, v2) evaluates to v2. These two

different views on tuples are equivalent in a sense. The fst and snd projections can

be written in terms of pattern-matching

fst(z) = (let (x, y) = z in x) snd(z) = (let (x, y) = z in y)

and likewise, “lazy” pattern-matching can be implemented in terms of projection

operations

let (x, y) = v′ in v → v{fst(v′)/x, snd(v′)/y}

The projective view of tuples has the advantage of a simple interpretation of

extensionality, that the tuple made from the parts of another tuple is the same,

by the surjectivity law for pairs: v = (fst(v), snd(v)).

In the previous chapter we saw that by viewing functions as pattern-matching

constructs in a programming language, analogous to pattern-matching on tuples,

we likewise have another interpretation of functions based on projection. That

is, we can replace λ-abstractions or pattern-matching with projection operations,

car(E) and cdr(E), for accessing the components of a calling context. The

operation car(v · E) evaluates to the argument v and cdr(v · E) evaluates to the

return context E. Analogously to the different views on tuples, this projective view

on functional contexts can be used to implement pattern-matching:

〈µ[(x · α).c]||E〉 → c{car(E)/x, cdr(E)/α}
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And since λ-abstractions can be written in terms of pattern-matching, they can

also be implemented in terms of car(−) and cdr(−):

〈λx.v||E〉 = 〈µ[(x · α).〈v||α〉]||E〉 → 〈v{car(E)/x}||cdr(E)〉

Therefore, the evaluation contexts of extensional functions are surjective call-stacks.

In the case where the co-term is v · E, the reduction of pattern-matching into

projection justifies our existing reduction rule by performing reduction inside of a

command:

〈µ[(x · α).c]||v · E〉 → c{car(v · E)/x, cdr(v · E)/α}→→ c{v/x,E/α}

However, when working with abstract machines we want to keep reduction at the

top of a program, therefore we opt to keep using the rule which combines both

steps into one. Instead, rewriting λ-abstractions as projection suggests what to do

in the case where E is not a stack extension. Specifically, in the case where E is

the top-level constant tp we have the following rule

〈µ[(x · α).c]||tp〉 → c{car(tp)/x, cdr(tp)/α}

which has no equivalent in the Krivine machine where the left-hand side of this

reduction is stuck.

We thus arrive at another abstract machine in Figure 27 which works just like

the Krivine machine with control except that now we have a new syntactic sort of

stuck co-terms. The idea behind stuck co-terms is that E is stuck if cdr(E) does

not evaluate further. For example, the co-term cdr(cdr(tp)) is stuck, but cdr(v · tp)
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c ∈ Commands ::= 〈v||E〉
v ∈ Terms ::= x | v v′ | µα.c | µ[(x · α).c] | car(S)
E ∈ CoTerms ::= α | v · E | S
S ∈ StuckCoTerms ::= tp | cdr(S)

〈v v′||E〉 → 〈v||v′ · E〉
〈µα.c||E〉 → c{E/α}
〈µ[(x · α).c]||v · E〉 → c{E/α, v/x}
〈µ[(x · α).c]||S〉 → c{car(S)/x, cdr(S)/α}

FIGURE 27. Abstract machine for λ-calculus with control (projection based)

is not. Note, however, that we do not consider co-variables to be stuck co-terms

since they may not continue to be stuck after substitution. For instance, cdr(α){v ·

tp/α} = cdr(v · tp) is not stuck, so neither is cdr(α). This means that we have no

possible reduction for the command 〈µ[(x · β).c]||α〉, but this is not a problem since

we assume to work only with programs which do not have free co-variables as our

source language is a λ-calculus. Further, because we syntactically restrict the use of

the projection to stuck co-terms, we do not need reduction rules like car(v · E)→ v

since car(v ·E) is not syntactically well formed in our machine. Intuitively, anytime

we would have generated car(v · E) or cdr(v · E) we instead eagerly perform the

projection reduction in the other rules.

With the projection based approach, we are in a situation where there

is always a reduction rule which can fire at the top of a command, except for

commands of the form 〈x||E〉 or 〈car(S)||E〉, which are done, or 〈µ[(x · β).c]||α〉

which is stuck on a free co-variable. Specifically, we are no longer stuck when

evaluating a pattern-matching function term at the top-level, i.e. 〈µ[(x · α).c]||tp〉.

As a consequence of this, reduction of co-variable closed commands now respects η.

If we have a command of the form 〈µ[(x · α).〈v||x · α〉]||E〉 with no free co-variables

and where x and α do not appear free in v, there are two possibilities depending on
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c ∈ Command ::= 〈v||E〉
v ∈ Terms ::= x | v v | λx.v | car(S)

E ∈ CoTerms ::= v · E | S
S ∈ StuckCoTerms ::= tp | cdr(S)

〈v v′||E〉 → 〈v||v′ · E〉
〈λx.v||v′ · E〉 → 〈v{v′/x}||E〉
〈λx.v||S〉 → 〈v{car(S)/x}||cdr(S)〉

FIGURE 28. Head reduction abstract machine for λ-calculus (projection based)

the value of E. Either E is a call-stack v′ · E ′, so we β-reduce

〈µ[(x · α).〈v||x · α〉]||v′ · E ′〉 → 〈v||v′ · E ′〉

or E must be a stuck co-term, so we reduce by splitting it with projections

〈µ[(x · α).〈v||x · α〉]||S〉 → 〈v||car(S) · cdr(S)〉

meaning that we can continue to evaluate v. Thus, the use of projection out of

surjective call-stacks offers a way of implementing call-by-name reduction while also

respecting η.

Head Evaluation

We have considered the Krivine machine with control to get an intuition

about dealing with co-terms, however, our primary interest in this chapter is to

work with the pure λ-calculus. Therefore, from the Krivine machine with control

and projection, we derive an abstract machine for the pure λ-calculus which

performs head reduction (see Figure 28). Observe that the only co-variable is tp,
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which represents the “top-level” of the program. Here we use car(−) and cdr(−)

(as well as the top-level context tp) as part of the implementation since they can

appear in intermediate states of the machine. However, we still assume that the

programs being evaluated are pure λ-terms. Observe that the projection based

approach works just like the original Krivine machine (see Figure 23), except in

the case where we need to reduce a lambda in a context that is not manifestly a

call-stack (〈λx.v||S〉), and in that situation we continue evaluating the body of

the lambda. To avoid the problem of having free variables, we replace a variable

(x) with the projection into the context (car(S)) and indicate that we are now

evaluating under the binder with the new context (cdr(S)).

Not all commands derivable from the grammar of Figure 28 are sensible;

for example, 〈car(tp)||tp〉 and 〈x||car(cdr(tp)).cdr(tp)〉 are not. Intuitively,

the presence of car(tp) means that reduction has gone under a λ-abstraction

so the co-term needs to witness that fact by terminating in cdr(tp), making

〈car(tp)||cdr(tp)〉 a legal command. Analogously, the presence of car(cdr(tp))

indicates that reduction has gone under two λ-abstractions and therefore the co-

term needs to terminate in cdr(cdr(tp)) making 〈x||car(cdr(tp)).cdr(cdr(tp))〉

a legal command. To formally define the notion of a legal command, we make

use of the notation cdnr(−) for n applications of the cdr operation, and we write

cdnr(tp) ≤ cdmr(tp) if n ≤ m and similarly cdnr(tp) < cdmr(tp) if n < m. We will

only consider legal commands, and obviously reduction preserves legal commands.

Definition 1. A command of the form 〈v1||v2 · · · vn · S〉 is legal if and only if for

1 ≤ i ≤ n and for every car(S ′) occurring in vi, S
′ < S.
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As we saw for the Krivine machine, we have an associated readback function

with an additional rule

〈v||cdr(S)〉 ↪→ 〈λx.v{x/car(S)}||S〉

for extracting resulting λ-calculus terms after reduction has terminated, where

v{x/car(S)} is understood as replacing every occurrence of car(S) in v with x

(which is assumed to be fresh). The readback relation is justified by reversing the

direction of the reduction 〈λx.v||S〉 → 〈v{car(S)/x}||cdr(S)〉.

Example 1. If we start with the term λx.(λy.y) x, we get an evaluation trace

〈λx.(λy.y) x||tp〉 → 〈(λy.y) car(tp)||cdr(tp)〉

→ 〈λy.y||car(tp) · cdr(tp)〉

→ 〈car(tp)||cdr(tp)〉

↪→ 〈λx.x||tp〉

↪→ λx.x

which reduces λx.(λy.y) x to λx.x. This corresponds to the intuitive idea that

head reduction performs weak-head reduction until it encounters a lambda,

at which point it recursively performs head reduction on the body of that

lambda. End example 1.

Applying Biernacka and Danvy’s syntactic correspondence, we reconstruct the

small-step operational semantics of Figure 29. Because we want to treat contexts

and terms separately, we create a new syntactic category of indices which replaces

the appearance of car(S) in terms, since stuck co-terms correspond to top-level
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t ∈ TopTerms ::= v | λ.t
v ∈ Terms ::= x | v v | λx.v | i
i ∈ Indices := zero | succ(i)

E ∈ Contexts ::= E v | �
S ∈ TopLevelContexts ::= λ.S | �

Count : TopLevelContexts→ Indices

Count(�) = zero

Count(λ.S) = succ(Count(S))

S[E[(λx.v) v′]] 7→ S[E[v{v′/x}]]
S[λx.v] 7→ S[λ.v{Count(S)/x}]

FIGURE 29. Small-step head reduction corresponding to projection machine

contexts. The function Count(−) is used for converting between top-level contexts

and indices. Note that, as we now include additional syntactic objects beyond the

pure λ-calculus, we need a readback relation just like in the abstract machine:

S[λ.v] ↪→ S[λx.v{x/Count(S)}]

Example 2. Corresponding to the abstract machine execution in Example 1 we

have:

λx.(λy.y) x 7→ where S = �

λ.(λy.y) zero 7→ where S = λ.� and E = �

λ.zero ↪→

λx.x

Here, the context λ.� zero corresponds to the co-term car(tp) ·

cdr(tp). End example 2.
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Because abstract machine co-terms correspond to inside out contexts, we can

not just define evaluation contexts as

E ∈ Contexts ::= E v | S

which would make ((λ.S) v) a context which does not correspond to any co-term

(and would allow for reduction under binders). Indeed, the variable-free version of

λ-abstraction is only allowed to occur at the top of the program. Thus, composed

contexts of the form S[E[�]] serve as the exact equivalent of co-terms. Analogously

to the notion of legal commands, we have the notion of legal top-level terms, and

we will only consider legal terms.

Definition 2. A top-level term t of the form S[v] is legal if and only if for every

index i occurring in v, i < Count(S).

This operational semantics has the virtue of being reconstructed directly from

the abstract machine, which automatically gives a correctness result analogous to

Theorem 7.

Theorem 9 (Equivalence of small-step semantics and abstract machine based on

projections). For any index free terms v, v′ the following conditions are equivalent:

1. v 7→→ t ↪→→ v′ such that there is no t′ where t 7→ t′;

2. there exists a command c such that 〈v||tp〉 →→ c ↪→→ v′ where there is no c′ such

that c→ c′.

However, while, in our opinion, the associated abstract machine was

extremely elegant, this operational semantics seems unnecessarily complicated.

Fortunately, we can slightly modify it to achieve a much simpler presentation.
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v ∈ Terms ::= x | v v | λx.v
E ∈ Contexts ::= E v | �

S ∈ TopLevelContexts ::= E | λx.S

S[(λx.v) v′] 7→ S[v{v′/x}]

FIGURE 30. Small-step head reduction

At its core, the cause of the complexity of the operational semantics is the use

of indices for top-level lambdas. A simpler operational semantics would only

use named variables (see Figure 30). To show that the two semantics are indeed

equivalent we make use of Sabry and Wadler’s reduction correspondence (Sabry

and Wadler (1997)). For readability, we write 7→S for the evaluation according

to Figure 29 and 7→T for the evaluation according to Figure 30. We define the

translations ∗ and # from top-level terms, possibly containing indices, to pure

λ-calculus terms, and from pure λ-terms to top-level terms, respectively. More

specifically, ∗ corresponds to the normal form of the readback rule and # to the

normal form with respect to non-β 7→S reductions.

Theorem 10. The reduction systems 7→→S and 7→→T are sound and complete with

respect to each other:

1. t 7→→S t
′ implies t∗ 7→→T t

′∗;

2. v 7→→T v
′ implies v# 7→→S v

′#;

3. t 7→→S t
∗# and v#∗ = v.

Proof. First, we observe that the non-β-reduction of 7→S is inverse to the readback

rule, so that for any top-level terms t and t′, t 7→S t′ by a non-β-reduction if and

only if t′ ↪→ t. Second, we note that for any top-level context S = λ . . . λ.� and
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term v of Figure 29, there is a top-level context S ′ = λx0 . . . λxn.� of Figure 30 and

substitution σ = {x0/0, . . . , xn/n} such that (S[v])∗ = S ′{vσ} by induction on S.

Similarly, for any top-level context S of Figure 30 and neutral term N , there is a

top-level context S ′ and context E ′ of Figure 29 such that (S[N ])# = S ′[E ′[Nσ]] by

induction on S.

1. Follows from the fact that each step of 7→S corresponds to zero or one step of

7→T :

S[E[(λx.v)v′]] S[E[v{v′/x}]]

S ′[Eσ[(λx.vσ)v′σ]] S ′[Eσ[vσ{v′σ/x}]]

S

∗ ∗

T

S[λx.v] S[λ.v{Count(S)/x}]

S ′[λx.vσ] S ′[λx.vσ]

S

∗ ∗

T

2. Follows from the fact that each step of 7→T corresponds to one step of 7→S,

similar to the above.

3. Follows from induction on the reductions of the ∗ and # translations along

with the facts that the non-β-reduction of 7→S is inverse to ↪→, t∗# is the

normal form of t with respect to non-β-reductions of 7→S, and the top-level

term v is the normal form of the readback.

This semantics corresponds to the semantics in Figure 29. where we quotient

out by the equivalence on top-level terms

S[λx.v] ≡ S[λ.v{Count(S)/x}]

which relates named and index based λ-abstractions. Further we have already

defined how to normalize a top term into its underlying term according to this

equivalence: we simply use the readback relation ↪→. However, because the
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simplified semantics does not contain any indices, to make the connection precise

we need to only work with those top-level terms in the derived semantics with are

legal in the sense of not having any free indices.

Definition 3. A top-level term t is legal if it is of the form S[v] where for every

index i which occurs in S, i < Count(S).

Observe that for an ordinary term v, v legal implies that v is index free and

thus a pure λ-term.

Lemma 24. For every legal top term t there exists a unique legal term v such that

t ↪→→ v. We denote this v as readback(t).

Proof. t = S[v] for some S and v, so the lemma follows by induction on the length

of S.

Lemma 25. For legal S[E[(λx.v)v′]], readback(S[E[(λx.v) v′]]) 7→

readback(S[E[v{v′/x}]]) according to the rules of the simplified OS.

Proof. First observe that for all S in the derived operational semantics

and S ′ in the simplified semantics, there exists a S ′′ in the simplified

semantics and φ which is a substitution mapping from indices to variables

such that readback(S[S ′[E[(λx.v) v′]]]) = S ′′[φ(E[(λx.v) v′])] and

readback(S[S ′[E[v{v′/x}]]]) = S ′′[φ(E[v{v′/x}])] as this follows by induction

on S. We get the main result by using � for S ′ as S ′′[φ(E[(λx.v) v])] 7→

S ′′[φ(E[v{v′/x}a])].

Lemma 26. If S[v] is legal and readback(S[v]) 7→ v′ according to the simplified

semantics then there exists some t such that S[v] 7→+ t according to the derived

semantics and readback(t) = v′.
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Proof. Specifically, S[v] 7→→ S ′[E[(λx.v′′) v′′′]] 7→ S ′[E[v′′{v′′′/x}]] with

readback(S ′[E[v′′{v′′′/x}]]) = v′, which we show induction on the length of S.

– In the base case readback(v) = v and so v 7→ v′ means that v =

S ′′[E[(λx.v′′) v′′′]] and v′ = S ′′[E[v′′{v′′′/x}]] for some S ′′ taken from the

syntax of the simplified operational semantics. By induction on S ′′ that

means there exists S ′ and φ a substitution mapping variables to indices

such that readback(S ′[φ(E[v′′{v′′′/x}])]) = v′ with S ′′[E[(λx.v′′) v′′′]] 7→→

S ′[φ(E[(λx.v′′) v′′′])] 7→ S ′[φ(E[v′′{v′′′/x}])].

– In the inductive case readback(S[λ.v]) = readback(S[λx.v{x/Count(S)}])

and we know by the inductive hypothesis that S[λx.v{x/Count(S)}] 7→→

S ′[E[(λx.v′′) v′′′]] 7→ S ′[E[v′′{v′′′/x}]] but then, S[λx.v{x/Count(S)}] 7→

S[λ.v] and since reduction is deterministic that means that S[λ.v] 7→→

S ′[E[(λx.v′′) v′′′]] 7→ S ′[E[v′′{v′′′/x}]] with readback(S ′[E[v′′{v′′′/x}]]) = v′.

Theorem 11 (Equivalence of small-step semantics for head reduction). For any

legal terms v, v′ the following conditions are equivalent:

1. v 7→→ v′ such that there is no v′′ where v′ 7→ v′′ (by Figure 30)

2. v 7→→ t ↪→→ v′ such that there is no t′ where t 7→ t′ (by Figure 29);

Proof. – To show that 1. implies 2. suppose v 7→→ v′ and there is no v′′ such that

v′ 7→ v′′. By induction of the reduction sequence and Lemma 26 we know that

for all t′′ if readback(t′′) 7→→ v′ then there exists some t such that t′′ 7→→ t and

readback(t) = v′. Specifically, since readback(v) = v, there exists some t such

that v 7→→ t and readback(t) = v′ so t ↪→→ v′. Now suppose for contradiction
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c ∈ Command ::= 〈v||E〉
v ∈ Terms ::= x | v v | λx.v

E ∈ CoTerms ::= v · E | S
S ∈ StuckCoTerms ::= tp | Abs(x, S)

〈v v′||E〉 → 〈v||v′ · E〉
〈λx.v||v′ · E〉 → 〈v{v′/x}||E〉
〈λx.v||S〉 → 〈v||Abs(x, S)〉

FIGURE 31. Head reduction abstract machine

that t 7→ t′, then, by Lemma 25, v′ 7→ readback(t′) but that contradicts the

assumption.

– To show that 2. implies 1. suppose that v 7→→ t ↪→→ v′ and there is no t′ such

that t 7→ t′. Then, by induction on the reduction on v 7→→ t and by Lemma

25 we know that readback(v) 7→→ readback(t). But, t ↪→→ v′ so readback(t) =

readback(v′) = v′. Thus, v 7→→ v′. Now suppose for contradiction that v′ 7→ v′′.

By 26 that means there exists t′ such that readback(v′) = v′ 7→ t′ which

contradicts the assumption.

Remark 2. The small-step semantics of Figure 30 captures the definition of head

reduction given by Barendregt (1984) (Definition 8.3.10) who defines a head redex

as follows: If M is of the form

λx1 · · ·xn.(λx.M0)M1 · · ·Mm ,

for n ≥ 0, m ≥ 1, then (λx.M0)M1 is called the head redex of M . Note that the

context λx1 · · ·xn.� · · ·Mm is broken down into λx1 · · · xn.� which corresponds
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v ⇓wh λx.v′ v′ ⇓h v′′

v ⇓h λx.v′′
v ⇓wh v′ v′ 6≡ λx.v′′

v ⇓h v′

FIGURE 32. Big-step semantics for head reduction

to a top-level context S and � · · ·Mn which corresponds to a context E. Thus,

Barendregt’s notion of one-step head reduction:

M →h N if M →∆ N ,

i.e. N results from M by contracting the head redex ∆, corresponds to the

evaluation rule of Figure 30. End remark 2.

By once again applying the syntactic correspondence, this time to the

simplified operational semantics in Figure 30, we derive a new abstract machine

(Figure 31) which works by going under lambdas without performing any

substitutions in the process. To extract computed λ-calculus terms we add one

rule to the readback relation for the Krivine machine.

〈v||Abs(x, S)〉 ↪→ 〈λx.v||S〉

The equivalence of the abstract machine in Figure 31 and the operational semantics

of Figure 30 follows by construction, and is expressed analogously to Theorem 7.

From the abstract machine in Figure 31 we again apply the functional

correspondence Ager et al. (2003) to derive the big-step semantics in Figure 32.

This semantics utilizes the big-step semantics for weak-head reduction (⇓wh) from

Figure 24 as part of its definition of head reduction (⇓h). This semantics tells us

that the way to evaluate a term to head-normal form is to first evaluate it to weak-
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x ⇓sf x
v ⇓sf v′

λx.v ⇓sf λx.v′

v1 ⇓wh v′1 v′1 6≡ (λx.v)

v1 v2 ⇓sf v′1 v2

v1 ⇓wh λx.v′1 v′1{v2/x} ⇓sf v
v1 v2 ⇓sf v

FIGURE 33. Sestoft’s big-step semantics for head reduction

head normal form, and if the resulting term is a lambda to recursively evaluate the

body of that lambda. This corresponds to the behavior of the abstract machine

which works just like the Krivine machine (which only reduces to weak head)

except in the situation where we have a command consisting of a λ-abstraction and

a context which is not a call-stack. Again, the big-step semantics corresponds to

the abstract machine by construction: the equivalence can be expressed analogously

to Theorem 8.

Interestingly, Sestoft gave a different big-step semantics for head reduction

(Sestoft (2002), Figure 33). The only difference between the two is in the way they

search for β-redexes. Sestoft’s semantics is more redundant by repeating the same

logic for function application from the underlying weak-head evaluation, whereas

the semantics of Figure 32 only adds a loop for descending under the top-level

lambdas produced by weak-head evaluation. However, besides this difference in the

search for β-redexes, they are the same: they eventually find and perform β-redexes

in exactly the same order. By structural induction one can indeed verify that they

generate identical operational semantics.

Theorem 12. v ⇓h v′ if and only if v ⇓sf v′.
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Coalesced Projection

The projection based machine in Figure 28 has the desirable feature that we

will never encounter a variable when we start with a closed program. Additionally,

unlike the machine in Figure 31, machine states do not have co-terms that bind

variables in their opposing term. On the other hand, it has a certain undesirable

property in that when we substitute a projection in for a variable

〈λx.v||S〉 → 〈v{car(S)/x}||cdr(S)〉

we may significantly increase the size of the term as the stuck co-term has size

linear in the number of λ-abstractions we have previously eliminated in this

way. The story is even worse in the other direction: the readback relation for the

projection machine (and associated operational semantics) depends on performing a

deep pattern-match to replace projections with variables

〈v||cdr(S)〉 ↪→ 〈λx.v{x/car(S)}||S〉

which requires matching all the way against S.

We now show that we can improve the abstract machine for head evaluation

by combining multiple projections into one. We will utilize the macro projection

operations pickn(−) and dropn(−) which, from the perspective of car(−) and

cdr(−), coalesce sequences of projections into a single operation:

drop0(E) , E pickn(E) , car(dropn(E))

dropn+1(E) , cdr(dropn(E))
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c ∈ Command ::= 〈v||E〉
v ∈ Terms ::= x | v v | λx.v | pickn(tp)

E ∈ CoTerms ::= v · E | dropn(tp)

〈v v′||E〉 → 〈v||v′ · E〉
〈λx.v||v′ · E〉 → 〈v{v′/x}||E〉
〈λx.v||dropn(tp)〉 → 〈v{pickn(tp)/x}||dropn+1(tp)〉

FIGURE 34. Coalesced projection abstract machine

Given that our operational semantics is for the pure λ- calculus, pickn(tp) and

dropn(tp) are the only call-stack projections we need in the syntax.

We now construct an abstract machine (Figure 34) for head evaluation of

the λ-calculus which is exactly like the Krivine machine with one additional rule

utilizing the coalesced projections. As in the machine of Figure 28, the coalesced

machine “splits” the top-level into a call-stack and continues. Analogously to

Example 1, one has:

〈λx.(λy.y)x||drop0(tp)〉 → 〈(λy.y)(pick0(tp))||drop1(tp)〉

→→ 〈pick0(tp)||drop1(tp)〉

If the machine terminates with a result like 〈pickn(tp)||E〉, it is straightforward to

read back the corresponding head normal form:

〈v||v′ · E〉 ↪→ 〈v v′||E〉 〈v||tp〉 ↪→ v

〈v||dropn+1(tp)〉 ↪→ 〈λx.v{x/pickn(tp)}||dropn(tp)〉

where x is not free in v in the third rule. Note that the substitution

v{x/pickn(tp)} replaces all occurrences of terms of the form pickn(tp) inside v
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with x. Correctness is ensured by the fact that reduction in the machine with

coalesced projections corresponds to reduction in the machine with non-coalesced

projections, which in turn corresponds to the operational semantics of head

reduction.

Theorem 13 (Equivalence of Coalesced and Non Coalesced Projection Machines).

1. c → c′ in the coalesced machine if and only if c → c′ in the non-coalesced

machine and

2. c ↪→ c′ in the coalesced machine if and only if c ↪→ c′ in the non-coalesced

machine

where conversion is achieved by interpreting dropn(−) and pickn(−) as macros.

Proof. By cases. Note that the interesting case in each direction is

〈λx.v{x/pickn(tp)}||dropn(tp)〉 → 〈v||dropn+1(tp)〉 which follows since

〈λx.v{x/pickn(tp)}||dropn(tp)〉

→ 〈v{x/pickn(tp)}[car(dropn(tp))/x]||cdr(dropn(tp))〉

= 〈v{x/pickn(tp)}[pickn(tp)]||dropn+1(tp)〉

= 〈v||dropn+1(tp)〉

Our abstract machine, in replacing variables with coalesced sequences of

projections, exhibits a striking resemblance to implementations of the λ-calculus

based on de Bruijn indices (de Bruijn (1972)). Indeed, our abstract machine

can be seen as given a semantic justification for de Bruijn indices as offsets into

the call-stack. However, our approach differs from de Bruijn indices in that, in
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t ∈ TopTerms ::= λn.v

v ∈ Terms ::= x | n | v v | λx.v
E ∈ Contexts ::= � | E v

λn.λx.v 7→ λn+1.v{n/x}
λn.E[(λx.v) v′] 7→ λn.E[v{v′/x}]

FIGURE 35. Operational semantics of head reduction with partial de Bruijn

general, we still utilize named variables. Specifically, numerical indices are only

ever used for representing variables bound in the leftmost branch of the λ-term

viewed as a tree. As such, we avoid the complexities of renumbering during β-

reduction. However, implementations which do use de Bruijn to achieve a nameless

implementation of variables in general have the advantage that the substitution

operations {pickn(tp)/x} as used in the abstract machine could be replaced with

a no-op. The Krivine machine is often presented using de Bruijn despite being

used only for computing whnfs. With the addition of our extra rule—which in a

de Bruijn setting does not require substitution—we extend it to compute hnfs.

Further, we can extract from our abstract machine an operational semantics

which utilizes de Bruijn indices only for top-level lambdas by way of the syntactic

correspondence. The resulting semantics, in Figure 35, keeps track of the number

of top-level lambdas as part of λn.v while performing head reduction on v.

As expected, the equivalence between the coalesced abstract machine and the

operational semantics is by construction. The coalesced projection machine, and

de Bruijn based operational semantics, are essentially equivalent to the projection

machine and associated operational semantics. The difference is that by coalescing

multiple projections into one, we replace the use of unary natural numbers with

abstract numbers which could be implemented efficiently. In this way, we both

greatly reduce the size of terms and make the pattern-matching to readback final
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results efficient. Numerical de Bruijn indices are an efficient implementation of the

idea that λ-abstractions use variables to denote projections out of a call stack.

Towards a Complete Implementation

The desirable combination of weak-head normal forms, call-by-name

evaluation, and extensionality is not achievable. This is a fundamental, albeit easily

forgettable, constraint in programming language design. However, we have seen

that there is a simple way out of this trilemma: replace weak-head normal forms

with head normal forms. Moreover, reducing to head normal form is motivated by

an analysis of the meaning of λ-abstraction. We took a detour through control

so that we could directly reason about not just terms but also their context.

This detour taught us to think about the traditional β rule as a rule for pattern-

matching on contexts. By analogy to the different ways we can destruct terms

we recognized an alternative implementation based on projections out of call-

stacks. Projection allows us to run a λ-abstraction even when we don’t yet have

its argument.

Returning to the pure λ-calculus we derived an abstract machine from

this projection-based approach. Using the syntactic correspondence we derived

from our abstract machine an operational semantics, and showed how that could

be massaged into a simpler operational semantics for head reduction. With

a second use of the syntactic correspondence we derived an abstract machine

which implemented head reduction in what seems a more traditional way. By

the functional correspondence we showed finally that our entire chain of abstract

machines and operational semantics correspond to Sestoft’s big-step semantics

for head reduction. The use of automated techniques for deriving one form of
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semantics from another makes it easy to rapidly explore the ramifications that

follow from a shift of strategy; in our case from weak-head to head reduction. So

in the end, we arrive at a variety of different semantics for head reduction, all of

which are equivalent and correspond to Barendregt’s definition of head reduction

for the λ-calculus.

Branching from our projection based machine we derived an efficient abstract

machine which coalesces projections, so we may have our cake and eat it too. We

escape the trilemma by giving up on weak-head reduction, while still retaining its

virtues like avoiding the variable capture problem and keeping all reductions at the

top-level. Our machine is identical to the Krivine machine, which performs weak-

head evaluation, except for a single extra rule which tells us what to do when we

have a λ-abstraction and no arguments to feed it. Further, these changes can be

seen as a limited usage of (and application for) de Bruijn indices.

Although our motivating problem and eventual solution were in the context of

the pure λ-calculus, our detour through explicit continuations taught us valuable

lessons about operational semantics. Having continuations forces us to tackle

many operational issues head on because it makes the contexts a first class part

of the language. Thus, a meta lesson of this chapter is that adding control can be a

helpful aid to designing even pure languages.

In practice, the trilemma is usually avoided by giving up on call-by-name

or extensionality rather than weak-head normal forms. However, it may be that

effective approaches to head evaluation such as those in this Chapter are of interest

even in call-by-value languages or in settings (such as Haskell with seq) that lack

the η axiom.
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c ∈ Commands ::= 〈v|σ|E〉
v ∈ Terms ::= x | λx.v | v v

E ∈ CoTerms ::= tp | t · E
σ ∈ Environments ::= [] | (x 7→ t) :: σ

t ∈ Closures ::= (v, σ)

〈v v′|σ|E〉 → 〈v|σ|(v′, σ) · E〉
〈λx.v|σ|t · E〉 → 〈v|(x 7→ t) :: σ|E〉

〈x|σ|E〉 → 〈v|σ′|E〉 where σ(x) = (v, σ′)

FIGURE 36. Krivine abstract machine with environments

c ∈ Commands ::= 〈v|σ|E〉
v ∈ Terms ::= x | λx.v | v v | pickn(tp)

E ∈ CoTerms ::= dropn(tp) | t · E
σ ∈ Environments ::= [] | (x 7→ t) :: σ

t ∈ Closures ::= (v, σ)

〈v v′|σ|E〉 → 〈v|σ|(v′, σ) · E〉
〈λx.v|σ|t · E〉 → 〈v|(x 7→ t) :: σ|E〉

〈λx.v|σ|dropn(tp)〉 → 〈v|(x 7→ (pickn(tp), σ)) :: σ|dropn+1(tp)〉
〈x|σ|E〉 → 〈v|σ′|E〉 where σ(x) = (v, σ′)

FIGURE 37. Head reduction abstract machine with environments

Finally, we presented our abstract machines using substitutions and have

suggested a possible alternative implementation based on de Bruijn indices,

but we can also perform closure conversion to handle variables. For example,

the machine in Figure 36 is an implementation of the Krivine machine using

closures. We assume the existence of a data structure for maps from variable

names to closures which supports at least an extension operator :: and variable

lookup, which we write using list-like notation. Similarly, the machine in Figure

37 takes our efficient coalesced machine and replaces the use of substitutions with

environments. This would correspond to a calculus of explicit substitutions like

λρ (Curien (1988)). However, in general, the problem of how to handle variables
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is orthogonal to questions of operational semantics, and thus environment based

handling of variables can be added after the fact. What the present chapter

suggests, however, is that the de Bruijn view of representing variables as numbers

is semantically motivated by the desire to make reduction for the call-by-name λ-

calculus consistent with extensional principles.
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CHAPTER V

BEYOND LAZY FUNCTIONS

So far, we have focused on the λ-calculus and its sequent calculus analogue.

In so doing we have made particular choices and limited ourselves down to a subset

of features. Everything in the untyped λ-calculus is a function, and we approach

those functions using a lazy call-by-name parameter passing technique. However,

there are many other data types and evaluation strategies of use in real languages.

In a practical language like ML we don’t just have functions, but also tuples

(represented by product types), booleans (a sum type), numbers, etc. Moreover,

ML doesn’t use call-by-name but rather call-by-value.

Indeed, even a lazy language like Haskell not only has numerous data types

beyond functions, but, in practice, isn’t really call-by-name. While the semantics

of Haskell is call-by-name, real implementations memoize results in the style of

call-by-need. Because Haskell is pure this difference is not observable, but as we

are interested in control effects also we should at least take note of it. Moreover,

Haskell compilers often use strictness analysis to convert parts of a program to call-

by-value for efficiency, and so the actual intermediate languages must incorporate

multiple different evaluation strategies.

Consequently, it seems that what is called for in calculi for intermediate

languages is to go beyond just lazy functions and be able to support other types

and strategies as well.

Thus, a natural question is if it is possible to apply the lessons we learned

in the previous chapters to an extended setting with more types or alternative

evaluation strategies. We know confluence, for example, is a very desirable
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property. We were able to construct a reduction theory for lazy functions with

extensionality which was confluent by switching to the alternative, projection based

account of their computational interpretation. Can we use the same technique with

other strategies?

Unfortunately, it appears that extending our approach to other strategies and

types runs into a host of challenges as we explore in the next section.

Extensionality with Other Structures and Strategies
Consider the negative form of product (&). Since negative products share the

same polarity as functions, they also share the same construction/deconstruction

bias: co-terms of products are constructed whereas terms pattern match on their

context. This gives us two new co-terms of the form π1(e) and π2(e), which can be

interpreted as building a context that requests either the first or second component

of a product and sends the reply to the context e. On the other side, we have the

term µ[π1(α1).c1 | π2(α2).c2] which expresses the fact that the product is an object

waiting for a request. If the first component is requested then c1 is executed with

α1 bound to the context inside the request message, as described by the following

reduction rule:

〈µ[π1(α1).c1 | π2(α2).c2]||π1(e)〉 →β& 〈µα1.c1||e〉

We have a similar rule to handle the case if the second component is requested.

The η rule captures the fact that request-forwarding terms can be simplified:

µ[π1(α1).〈v||π1(α1)〉 | π2(α2).〈v||π2(α2)〉]→η& v
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Predictably, we see the same conflict between extensionality and control that

we had with functions, as expressed by the critical pair:

v0 = µ[π1(α).〈µβ.c||π1(α)〉

|π2(α).〈µβ.c||π2(α)〉]

µβ.c←η& v0→→µ µ[π1(α).c{π1(α)/β}|π2(α).c{π2(α)/β}]

However, it is far from obvious how to adapt the solution used for functions

to work for products as well. The exp rule converts a function—a value that

decomposes a call stack—into a µ-abstraction. Unfortunately, a product contains

two branches instead of one, and it is not clear how to merge two arbitrary

branches into a single µ-abstraction. We might be inclined to add the following

reduction

µ[π1(α).c{π1(α)/β}|π2(α).c{π2(α)/β}]→ µβ.c

for α not occurring in c. However, this rule is suspicious since the pattern πi(α) can

easily be destroyed. In fact, a similar rule for functions (which corresponds to the

backward ν-rule):

µ[(x · α).c{x · α/β} → µβ.c
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gives rise to a simple counterexample:

v0 = µ[x · α].〈µ[ · ].〈µ[ · ].〈z||δ〉

||x · α〉

||δ〉

µβ.〈µ[ · ].〈µ[ · ].〈z||δ〉

||β〉

||δ〉

← v0→→ µ[x · α].〈µ[ · ].〈z||δ〉||δ〉

Adding a positive notion of product, the tensor ⊗, is also problematic. On the

term side, a positive product is constructed by putting together two terms in the

pair (v, v′) and deconstructed via the co-term µ̃[(x, y).c] which pattern matches on

its input term. The β and η rules are :

〈(v, v′)||µ̃[(x, y).c]〉 →β⊗ 〈v||µ̃x.〈v′||µ̃y.c〉〉 µ̃[(x, y).〈(x, y)||E〉]→η⊗ E

(Since µ̃[(x, y).c] is a value in call-by-name, the restriction on the η rule guarantees

that a value is not turned into a non-value, similar to the restriction on η for call-

by-value functions.) Unfortunately, our proof of confluence relies on co-values

always being reducible to simple, normalized structures, containing no reducible

sub-commands. However, decomposition of tuples, µ̃[(x, y).c], is a co-value which

contains arbitrary sub-commands and therefore our proof of confluence does not

apply. We conjecture that confluence is lost because in the η· redex

car(µ̃[(x, y).c]) · cdr(µ̃[(x, y).c])
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the two occurrences of command c can get out of synch, destroying the η· redex,

similar to what is happening in Klop’s counterexample of confluence for λ-calculus

extended with surjective pairing (Klop and de Vrijer (1989)).

Since call-by-value is dual to call-by-name, similar problems and solutions

arise in call-by-value calculi along with similar limitations. Consider the tensor

product, which has a stronger η-rule (since any co-term is a co-value in call-by-

value):

µ̃[(x, y).〈(x, y)||e〉]→η⊗ e

whereas the β-rule remains the same. As pairs have dual properties to functions,

the dual of the counterexample shown in Equation (3.2) unsurprisingly arises in

call-by-value:

µ̃z.〈y||β〉 ←η⊗ µ̃[(x, y).〈(x, y)||µ̃z.〈y||β〉〉]→µ̃ µ̃[(x, y).〈y||β〉]

It might help to consider this example in a more natural style from functional

programming, where we have the following β- and η-rules for decomposing pairs:1

case (v1, v2) of (x1, x2)⇒ v →β⊗ let x1 = v1 in let x2 = v2 in v

case v of (x, y)⇒ E[(x, y)]→η⊗ E[v]

let x = v in v′ →let v
′{v/x}

1 Note that the stronger reduction case v of (x, y) ⇒ v′[(x, y)/z] → v′[v/z] is not valid in
an untyped call-by-value calculus including non-termination. For example, case Ω of(x, y) ⇒
λd.(x, y) loops forever, whereas the reduct λd.Ω does not under call-by-value evaluation. Thus,
we restrict the η-rule for pairs to only apply when the decomposed pair appears in the eye of an
evaluation context.
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In this notation, the critical pair appears as:

let z = v in w ←η⊗ case v of (x, y)⇒ let z = (x, y) in w →let case v of (x, y)⇒ w

We can adopt the same solution for call-by-value pairs as we did for call-by-name

functions, by converting patterns to projections and adding a surjectivity reduction:

µ̃[(x, y).c]→ µ̃z.c{fst(z)/x, snd(z)/y}

fst(V1, V2)→ V1 snd(V1, V2)→ V2 (fst(V ), snd(V ))→ V

However, this solution does not scale in similar ways. It is not obvious how to

apply this solution to a disjunctive type. Consider the additive sum type ⊕ which

comes with two new ways of forming terms, ι1(v) and ι2(v), and a pattern matching

co-term µ̃[ι1(x).c1|ι2(y).c2] with the reduction rules

〈ιi(v)||µ̃[ι1(x1).c1 | ι2(x2).c2]〉 →β⊕ ci[v/xi]

µ̃[ι1(x).〈ι1(x)||e〉 | ι2(x).〈ι2(x)||e〉]→η⊕ e

We witness the same counterexample of confluence we had for & in call-by-

name. Moreover, adding functions (which are a co-data type) to the calculus

breaks confluence of the surjectivity rule for pairs—a previously known and well-

studied problem (Klop and de Vrijer (1989))—because values can contain arbitrary

reducible sub-terms that can get out of synch:

(fst(λx.v), snd(λx.v))
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We have seen how the interpretation of functional objects through

projections out of their call stack resolves the problems with confluence in a lazy

λ-calculus with both control and extensionality. Further, we have shown how

that interpretation arises naturally from the standpoint that functions are a co-

data type, so the observations of functions deserve just as much attention as the

functions themselves. Indeed, as our equational correspondence result makes clear,

defining functions by projection adds nothing that wasn’t already there in the

theory from the beginning. The only trick is noticing that λ-abstractions are not

the only way to describe functions, and that η-contraction and -expansion are not

the only operational interpretations of the η-law.

The projection-based interpretation of functions can be traced back to

the call-by-name continuation-passing style transformation of the λ-calculus

that validates η (Hofmann and Streicher (2002)). In continuation-passing style,

programs are inverted so that function types are explained in terms of a different

type of surjective products. Here, we use the sequent calculus as a vehicle for

studying the surjective nature of functions in a more direct style, enabled by the

equal consideration given to both producers and consumers. Indeed, the sequent

calculus explanation of surjective call stacks does not need to introduce other types

to explain functions. As presented here, functions are defined independently in

their own right without referencing products or negation, following an orthogonal

approach to studying logical connectives (Pfenning (2002)). Furthermore, even

though λµcons (Nakazawa and Nagai (2014)) is based on the λ-calculus, its streams

are logically interpreted as left rules that come from sequent calculus instead of

natural deduction. Therefore, we find that in the same way a symmetric treatment

for assuming and concluding facts is important in logic, a symmetric treatment for
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producing and consuming information is important in programming languages as

well.

The effectiveness of the projection-based approach for solving the problems

with lazy functions makes it enticing to try to extend it to other systems. However,

we see that this technique does not extend easily.

The Need for Types

These challenges collectively suggest a limit: we can get confluence for

extensional rewriting with only lazy functions with our projection trick, but once

we add anything else the trick breaks down. However, perhaps this isn’t such

a surprise. Our intuition for the η-rule is that it tells us that a function which

merely delegates to another function is the same as the function it delegates to.

But, as an untyped equation, this rule tells us two terms are the same without any

requirement they are both actually functions. Instead, it really only makes sense to

apply η when we know what we are dealing with is indeed a function.

This suggests an alternative view where we only apply extensionality

principles when they are in some sense well typed. Once we start thinking about

typed equations though, completeness of the reduction theory can’t be so high

on our list of priorities as it will often become impossible. Consider the most

basic extensionality principle for functions: two functions which always do the

same thing on the same input are the same. In a typed setting “the same input”

should only refer to well typed inputs. However, this is a problem, since, for

instance, determining if two functions agree on the space of all natural numbers

is undecidable.
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c ∈ Command ::= 〈v||e〉
v ∈ Term ::= x || µα.c || µ[x · α.c] || µ[t#α.c]

e ∈ Co-Term ::= α || µ̃x.c || v · e || A#e

A,B,C,D ∈ Type ::= t || A→ B || ∀t.A

FIGURE 38. Syntax of classical system F (µµ̃→∀S )

Instead, we can think of extensionality principles as rules for reasoning about

programs which reduction should respect but perhaps not enforce. Extensionally

equivalent programs should never be observably distinct, but they don’t always

need to be equated by the reduction theory.

Type systems let us reason safely about extensionality. More than that, they

allow us to run programs with multiple data types without worrying about crashes

by keeping data of different types separate. By the same token, we can use types to

let us integrate different strategies into a single language, keeping items of different

strategies separate.

A Typed System

As a first step towards a system using types, let us consider the classical

equivalent of the polymorphic λ-calculus given in system F style in Fig. 38.

For now, we consider only the type constructors → and ∀. We view both as

co-data defined by their destructors: just as a primitive function co-term is formed

as a call-stack v · e where v can be thought of as the argument and e the return

continuation. Similarly, a primitive co-term of the universal type is an alternative

kind of call-stack built by packing a type A together with a co-term e in the form

A#e. The term µ[x · α.c] of the function type, corresponding to a λ-abstraction,

pattern-matches on its associated co-term, seeking out a call stack to destruct and
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〈µα.c||E〉 →µS c{E/α} 〈V ||µ̃x.c〉 →µ̃S c{V/x}

µα.〈v||α〉 →ηµ v µ̃x.〈x||e〉 →ηµ̃ e

〈µ[x · α.c]||V · E〉 →β→S
c{V/x,E/α}

〈µ[t#α.c]||A#E〉 →β∀S
c{A/t,E/α}

v · e→ς→S
µ̃x.〈v||µ̃y.〈x||y · e〉〉 where v /∈ V alueS

V · e→ς→S
µ̃x.〈µβ.〈x||V · β〉||e〉 where e /∈ Co-V alueS

A#e→ς∀S
µ̃x.〈µβ.〈x||A#β〉||e〉 where e /∈ Co-V alueS

FIGURE 39. Strategy parameterized rewriting for classical system F (µµ̃→∀S )

V ∈ V aluesN ::= v

E ∈ Co-V aluesN ::= α || v · E || A#E

FIGURE 40. (Co-)values in the call-by-name strategy N

bind to x and α. Similarly, the term µ[t#α.c] of the universal type, akin to a Λ-

abstraction in system F, pattern matches on type-specializing co-terms.

Parameterized Reduction Theory

Following Downen and Ariola (2014) our reduction rules shown in Fig. 39 are

parameterized by a strategy consisting of a set of terms (denoted with the meta-

variable V ) and a set of co-terms (denoted with E). For example, the reduction

rule

〈V ||µ̃x.c〉 →µ̃S c{V/x}

substitutes a value V of the strategy S into the variable of an input abstraction.

Conversely, the reduction rule

〈µα.c||E〉 →µS c{E/α}
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V ∈ V aluesV ::= x || µ[x · α.c] || µ[t#α.c]

E ∈ Co-V aluesV ::= e

FIGURE 41. (Co-)values in the call-by-value strategy V

V ∈ V aluesLV ::= x || µ[x · α.c] || µ[t#α.c]

E ∈ Co-V aluesLV ::= α || µ̃x.C[〈x||E〉] || v · E || A#E

C ∈ ContextsLV ::= � || 〈v||µ̃y.C〉

FIGURE 42. (Co-)values in the call-by-need strategy LV

substitutes a co-value E of S into the co-variable of an output abstraction.

Restricting these rules to only fire with (co-)values allows us to avoid the essential

critical pair of classical logic:

c1{µ̃x.c2/α} ←µS 〈µα.c1||µ̃x.c2〉 →µ̃S c2{µα.c1/x} .

Different choices for the sets of values and co-values yield different evaluation

strategies. The call-by-name strategy in Fig. 40 treats all terms as values (giving

it the strongest possible notion of substitution for terms) and restricts the notion

of co-values down to just (hereditary) call-stacks. Conversely, the call-by-value

strategy in Fig. 41 is formed by taking the largest possible set of co-values (giving

it the strongest possible notion of substitution for co-terms) and restricting the set

of values down to only variables and pattern-matching abstractions.

Note that the notion of (co-)value appears not just in the substitution rules:

the lifting ς rules—originally due to Wadler (2003)—appear in our reduction theory

to lift unevaluated components out of call-stacks so that they can be computed

first, much as the components of a (call-by-value) tuple are computed down to
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values one at a time before the tuple is constructed and returned. These rules are

essential to ensure that computation does not get stuck, and must be restricted

to only fire with non-(co-)values for us to have any hope of strong normalization,

avoiding spurious loops which simply lift out part of a structure and substitute it

back in again.

While call-by-value and call-by-name represent extremes in the design

space, they are not the only possible confluent strategies. Another is the call-

by-need “lazy value” strategy in Fig. 42 which starts with the same, restricted,

notion of values as in call-by-value, but has a much smaller set of co-values: call-

by-name co-values together with those input abstractions which demand their

argument. Thus, it corresponds to an evaluator where in 〈µα.c1||µ̃x.c2〉 execution

initially proceeds like call-by-name by executing c2 and treating µα.c1 as a delayed

computation, until such a time as x is needed, at which point control jumps to c1.

Then, if µα.c1 ever reduces to a value, that value could be substituted for x back

into c2.

Compared to call-by-name and call-by-value, call-by-need’s nuanced approach

comes at a cost: delayed non-values stick around indefinitely when they are never

needed. However, call-by-need is of deep interest in understanding lazy languages

with effects—such as R, or Haskell extended with unsafePerformIO—and has clear

efficiency benefits.

While a strategy can be used to resolve the critical pair and bring about

confluence, it is important to also consider non-confluent strategies. One of these,

which we call U , simply treats every (co-)term as a (co-)value and is the most basic

strategy for reducing classical proofs as used in a number of calculi (Barbanera

and Berardi (1994); Curien and Herbelin (2000)), as well as Gentzen’s original
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Γ, x : A `Θ x : A | ∆ V ar
Γ | α : A `Θ α : A,∆

Co-V ar

c : (Γ `Θ α : A,∆)

Γ `Θ µα.c : A | ∆ Act
c : (Γ, x : A `Θ ∆)

Γ | µ̃x.c : A `Θ ∆
Co-Act

Γ `Θ v : A | ∆ FV (A) ⊆ Θ Γ | e : A `Θ ∆

〈v||e〉 : (Γ `Θ ∆)
Cut

Γ `Θ v : A | ∆ Γ | e : B `Θ ∆

Γ | v · e : A→ B `Θ ∆
FunLeft

c : (Γ, x : A `Θ α : B,∆)

Γ `Θ µ[x · α.c] : A→ B | ∆ FunRight

Γ | e : B{A/t} `Θ ∆ FV (A) ⊆ Θ

Γ | A#e : ∀t.B `Θ ∆
ForallLeft

c : (Γ,`Θ,t α : B,∆)

Γ `Θ µ[t#α.c] : ∀t.B | ∆ ForallRight

FIGURE 43. The type system for classical system F

formulation of cut elimination (Gentzen (1935)). While useless as an equational

theory, rewriting with U is interesting since it allows any substitution and is

unbiased. Moreover, we may use it when it does not matter what normal form we

get so long as we get one. However, we caution that this non-confluent strategy

should not be thought of as the most general since it completely forecloses the

ς reductions which are essential to all other strategies. Indeed, there is no most-

general strategy as any time the set of possible µ and µ̃ reductions are extended the

set of possible ς reductions must shrink, and vice versa.
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Typing

The typing rules given in Fig. 43 are essentially the rules of system F but

presented in a sequent calculus style, giving a term assignment to the second-order

classical sequent calculus.

Since we assume the Barendregt convention, we treat contexts as sets rather

than lists. When we write ∆, x : A (and similar) we require that x not already

appear in ∆. Moreover we consider a sequent to be well formed only if all of the

free type variables on both the left and right side of the turnstile come from Θ.

Only derivations where all sequents are well formed are considered proofs. This

imposes the standard side condition on the ForallRight rule that the new type

variable introduced above the line not appear free below the line. Our rules for Cut

and ForallLeft, which are the only places where new types can appear going up

the proof, include the condition that these new types only use free variables in Θ.

This ensures that any derivation whose last line is well formed is a proof.

Adding Additional Type Formers

The classical System F system described above includes functions and type

abstraction, but no other features. However, now that we have a typed system it

is easy to incorporate additional type formers. Those include not just negative co-

data types, like ∀ and →, but also positive data types.

Positive Sum

For example, the positive sum type is given by extending the syntax with two

additional term formers

v ::= . . . | ι1(v) | ι2(v)
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as well as a pattern matching co-term construct.

e ::= . . . | µ̃[ι1(x).c1; ι2(y).c2]

The corresponding typing rules would be

Γ `Θ v : T | ∆
Γ `Θ ι1(v) : T ⊕ S | ∆

Γ `Θ v : S | ∆
Γ `Θ ι2(v) : T ⊕ S | ∆

c1 : Γ, x : T `Θ ∆ c2 : Γ, y : S `Θ ∆

Γ | µ̃[ι1(x).c1; ι2(y).c2] : T ⊕ S `Θ ∆

with a parmetric computational inerpretation given by a pair of β rules

〈ι1(V )||µ̃[ι1(x).c1; ι2(y).c2]〉 →βι1
c1{V/x}

〈ι2(V )||µ̃[ι1(x).c1; ι2(y).c2]〉 →βι2
c2{V/y}

as well as lifting rules which can fire whenever v is not a value

ι1(v)→ς µα.〈v||µ̃x.〈ι1(x)||α〉〉

ι2(v)→ς µα.〈v||µ̃x.〈ι2(x)||α〉〉

Positive Sum

Another data type we might consider adding would be the positive product,

⊗, representing a pair of objects in memory.

v ::= . . . | (v1, v2)

e ::= . . . | µ̃[(x, y).c]
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Γ `Θ v1 : T | ∆ Γ `Θ v2 : S | ∆
Γ `Θ (v1, v2) : T ⊗ S | ∆

c : Γ, x : T, y : S `Θ ∆

Γ | µ̃[(x, y).c] : T ⊗ S `Θ ∆

〈(V1, V2)||µ̃[(x, y).c]〉 →β c{V1/x, V2/y}

(v1, v2)→ς µα.〈v1||µ̃x.〈(x, v2)||α〉〉

(V1, v2)→ς µα.〈v2||µ̃x.〈(V1, x)||α〉〉

Negative Product

⊗ and ⊕ are both positive data types, defined by constructors and observed

by pattern matching. Conversly, → and ∀ are negative co-data types, defined by

destructors and constructed by pattern matching on the calling context. There are

other co-data types too. For example, we can take the exact dual of the ⊕ type

which is an alternative kind of product formed not as a pair in memory (as in ⊗)

but rather as an object able to respond to two different kinds of messages.

e ::= . . . | Fst(e) | Snd(e)

v ::= . . . | µ[Fst(α).c1; Snd(β).c2]

Γ | e : T `Θ ∆

Γ | Fst(e) : T&S `Θ ∆

Γ | e : S `Θ ∆

Γ | Snd(e) : T&S `Θ ∆

c1 : Γ `Θ α : T,∆ c2 : Γ `Θ β : S,∆

Γ `Θ µ[Fst(α).c1; Snd(β).c2] : t&S | ∆
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〈µ[Fst(α).c1; Snd(β).c2]||Fst(E)〉 →β c1{E/α}

〈µ[Fst(α).c1; Snd(β).c2]||Snd(E)〉 →β c2{E/β}

Fst(e)→ς µ̃x.〈µα.〈x||Fst(α)〉||e〉

Snd(e)→ς µ̃x.〈µα.〈x||Snd(α)〉||e〉

Negative Sums

Less familiar is the dual to ⊗ which is an alternative kind of sum, formed

not as a tagged union, but instead as an object taking a single message with two

different options as to what to do next.

e ::= . . . | (e1, e2)

v ::= . . . | µ[(α, β).c]

Γ | e1 : T `Θ ∆ Γ | e2 : S `Θ ∆

Γ | (e1, e2) : T ` S `Θ ∆

c : Γ `Θ α : S, β : T,∆

Γ `Θ µ[(α, β).c] : T ` S | ∆

〈µ[(α, β).c]||(E1, E2)〉 →β c{E1/α,E2/β}

(e1, e2)→ς µ̃x.〈µα.〈x||(α, e2)〉||e1〉 e1 6∈ Co-Values

(E1, e2)→ς µ̃x.〈µα.〈x||(E1, α)〉||ee〉 e2 6∈ Co-Values
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Combining Strategies

Not only can we leverage the type system to have multiple kinds of things

beyond just functions, but also multiple different strategies. To make this work, we

must prohibit the direct interaction of (co-)terms of different strategies. However,

we want to enable the mixing of strategies in different parts of the program.

Moreover, as much as possible we would like the reduction rules to be untyped.

We thus partition the syntax given in Fig. 44 into sorts parameterized by a set of

strategy symbols (metavariable S), such that a command 〈vS||eS〉 is formed from

(co-)terms from the same strategy. Here, the different vS and vS′ are the meta

variables refering to different syntactic sorts (assuming S and S ′ are distinct).

(Co-)variables and stack constructors (·) are always tagged with their strategy (xS

and αS), and the strategy of a call stack might differ from its components.

The reduction rules shown in Fig. 45 are parameterized by a family of

strategies. As a parameter to the rewriting theory, the family of strategies must

define a set of values and a set of co-values for each of the strategy symbols. We

use unsubscripted metavariables to refer to the union over the scripted versions, so

for example we simply write 〈µαS .c||E〉 →µ c{E/αS} and 〈V ||µ̃xS .c〉 →µ̃ c{V/xS}

which, by the syntactic requirement that the two parts of the command are

from the same strategy, also restricts the (co-)term to the same strategy as the

(co-)variable. The strategy not only restricts what rules may fire, but also what

new names are created in the ς rules. Call-by-value, call-by-name and call-by-need

(here called “lazy value”) computations are thus characterized by the strategies

V , N , and LV of Fig. 46. In addition, the strategy U treats every (co-)term as a

(co-)value. As a consequence of lifting, U should not be thought of as the most

general strategy since it completely forecloses ς reductions which are essential to
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c ∈ Command ::= 〈vS ||eS〉 AS , BS ∈ TypeS ::= tS || AS1 →S BS2 || ∀StS1 .AS2
vS ∈ TermS ::= xS || µαS .c || µ[xS1 S αS2 .c] || µ[tS1 S αS2 .c]

eS ∈ Co-TermS ::= αS || µ̃xS .c || v S e || A S e

FIGURE 44. Syntax of classical system F with multiple strategies (µµ̃→∀S? )

〈µ[xS1 S αS2 .c]||VS1 S ES2〉 →β→ c{VS1/xS1 , ES2/αS2} 〈µαS .c||E〉 →µ c{E/αS}
〈µ[tS1 S αS2 .c]||AS1 S ES2〉 →β∀ c{AS1/tS1 , ES2/αS2} 〈V ||µ̃xS .c〉 →µ̃ c{V/xS}

µαS .〈v||αS〉 →ηµ v

µ̃xS .〈xS ||e〉 →ηµ̃ e

vS1 S e→ς→ µ̃xS .〈vS1 ||µ̃yS1 .〈xS ||yS1 S e〉〉 where vS1 /∈ V alueS1
V S eS2 →ς→ µ̃xS .〈µβS2 .〈xS ||V S βS2〉||eS2〉 where eS2 /∈ Co-V alueS2
A S eS2 →ς∀ µ̃x

S .〈µβS2 .〈xS ||A S βS∈〉||eS2〉 where eS2 /∈ Co-V alueS2

FIGURE 45. Rewriting theory parameterized by multiple strategies (µµ̃→∀S? )

all other strategies. There is no most-general strategy: any time the set of possible

µ and µ̃ reductions grows the set of possible ς reductions must shrink, and vice

versa. Additionally, the call-by-push-value (Levy (2001)) function space (a.k.a.

the polarized “primordial” function space in Zeilberger (2009)) is characterized

as AV →N BN , the function and its result are lazy but the argument is eagerly

evaluated.

Finally the type system Fig. 47 is much the same as the type system before,

only now it keeps track of strategies. Consequently, there are multiple kinds of type

variables, however, the strategy of type variables is largely handled syntactically.

We could extend this system with all of the other type formers given earlier,

but in strategy parametric forms. Doing so would be routine. However, we prefer

to focus on just the multi-strategy system F type system as an object of study, as

it reduces the number of concepts. We must assure ourselves, however, that all our

proofs extend to the other type formers if we want to add them. In this way, we
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VV ∈ V aluesV ::= xV || µ[xS1 V αS2 .c] || µ[tS1 V αS2 .c]

EN ∈ Co-V aluesN ::= αN || V N E || A N E

VN ∈ V aluesN ::= vN

EV ∈ Co-V aluesV ::= eV

VLV ∈ V aluesLV ::= xLV || µ[xS1 LV αS2 .c] || µ[tS1 LV αS2 .c]

ELV ∈ Co-V aluesLV ::= αLV || µ̃xLV .C[〈xLV ||ELV〉] || v LV E || A LV E

C ∈ ContextsLV ::= � || 〈vLV ||µ̃yLV .C〉

FIGURE 46. (Co-)values in call-by-name (N ), -value (V), and -need (LV)

Γ, xS : AS `Θ xS : AS | ∆
V ar

Γ | αS : AS `Θ αS : AS ,∆
Co-V ar

c : (Γ `Θ αS : AS ,∆)

Γ `Θ µαS .c : AS | ∆
Act

c : (Γ, xS : AS `Θ ∆)

Γ | µ̃xS .c : AS `Θ ∆
Co-Act

Γ `Θ vS : AS | ∆ FV (AS) ⊆ Θ Γ | eS : AS `Θ ∆

〈vS ||eS〉 : (Γ `Θ ∆)
Cut

Γ `Θ vS1 : AS1 | ∆ Γ | eS2 : BS2 `Θ ∆

Γ | vS1 S eS2 : AS1 →S BS2 `Θ ∆
→L

c : (Γ, xS1 : AS1 `Θ αS2 : BS2 ,∆)

Γ `Θ µ[xS1 S αS2 .c] : AS1 →S BS2 | ∆
→R

Γ | eS2 : BS2{AS1/tS1} `Θ ∆ FV (AS1) ⊆ Θ

Γ | AS1 S eS2 : ∀StS1 .BS2 `Θ ∆
∀L

c : (Γ,`Θ,tS1 α
S2 : BS2 ,∆)

Γ `Θ µ[tS1 S αS2 .c] : ∀StS1 .BS2 | ∆
∀R

FIGURE 47. Type system for classical system F with multiple strategies (µµ̃→∀S? )

can focus on a small core calculus that has enough to reveal crucial complexities,

but not enough for us to be caught up in uninteresting details.
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CHAPTER VI

STRONG NORMALIZATION

The model in this chapter is a ultimately derived from an appendix appearing

in (Downen et al. (2015)) which was my main contribution to that paper I

coauthored with Paul Downen and Zena M. Ariola. I initially came up with the idea

for the fixed-point construction used in this chapter independently, later realizing

that it could be seen as a refinement of the technique of (Barbanera and Berardi

(1994)). Paul Downen suggested using variations on orthogonality combined

with restriction operators which I developed here into the theory of generalized

orthogonality, as well as the notion of “charge” in the behavioral characterization

of head reduction.

Now that we have a type language, what can we say about it? We saw in

Chapter V that the approach to confluence with η from Chapter III doesn’t scale to

other types and other strategies. Indeed, our typed reduction theory does not fully

capture η, and admits non-confluent strategies.

But there are other properties of interest. One is “strong normalization”

which is the property that every reduction path is finite, meaning that there are

no infinite loops, even allowing reduction inside of a program. Strong normalization

is closely related to confluence: in a strongly normalizing system it is enough to

prove only “local confluence”, that any single-step critical pair eventually comes

back together. Assuming strong normalization local confluence implies confluence,

while that is not true in non-strongly-normalizing settings. Moreover, strong

normalization is of importance directly for compiler writers, as if we have a strongly

normalizing reduction system the compiler can freely apply rewrites without getting
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into infinite loops. Thus, even when we have some non-terminating reductions,

it is often useful to know that the remainder of the reduction system is strongly

normalizing.

Untyped programming languages are rarely strongly normalizing. However,

the situation is different with types where it may be possible to have large strongly

normalizing fragments where interesting programs can be written.

Consequently there are well developed proof techniques for proving strong

normalization for certain classes of typed languages. In pure typed languages,

strong normalization is often shown with the reducibility candidates technique

(Girard, Taylor, and Lafont (1989b)) which models types as sets of terms. This

picture fails once effects are added: with effects different evaluation strategies can

result in different answers for the same program. Consequently, different strategies

also require different equational and reduction theories specifying the rules for

what program transformations are even possible. In the λ-calculus, for example,

β reduction is sufficient for deciding equality only with the call-by-name evaluation

strategy. For call-by-value evaluation, other rules are needed to make a complete

equational theory (Herbelin and Zimmermann (2007); Sabry and Felleisen (1992)),

which must be included in any reduction theory that hopes to decide equality of

terms.

In this vein, while there are many published proofs of strong normalization for

call-by-name and call-by-value λ-calculi, we know of no existing proofs for the call-

by-need λ-calculus. The proofs for call-by-value and call-by-name are insufficient

since neither strategy fully captures call-by-need’s reduction theory. Further, call-

by-need is just one of many possible alternative strategies. How can a language

designer be sure their newly invented evaluation strategy is strongly normalizing?
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The main component of this chapter is a proof of strong normalization

which is strategy parametric, working uniformly for any strategy satisfying some

minimal conditions. Our focus is on explaining the proof. Thus, we initially use

the single strategy sequent calculus µµ̃→∀S whose only type formers are implication

and universal quantification. Later in the chapter we discuss how the proof can

be amended to handle larger systems with other type formers or those combining

multiple strategies (such as µµ̃→∀S? ). As with the rest of this dissertation, our setting

is the sequent calculus. However, our technique can be applied directly to the λ-

calculus as well.

An early version of the technique in this chapter was already put to use to

show strong normalization for a language with well founded (co-)induction in

Downen et al. (2015). We do not consider recursive types here, but do consider

features, such as mixed strategies, not considered in that work. Moreover,

compared to that earlier paper, the proof in this chapter is significantly refined. As

a result of that refinement, we are now able to establish some additional theorems

showing the relation of our technique to other methods.

Strong normalization proofs for languages similar to ours have a rich heritage

tracing back decades. Orthogonality provides elegant proofs for call-by-name and -

value languages, and gives direct constructions for modeling types (Krivine (2009)).

Orthogonality has been further refined for polarized languages, exposing how types

are generated by their values (Munch-Maccagnoni (2009)). On the other hand, the

symmetric candidates technique (Barbanera and Berardi (1994)) works for non-

confluent strategies where orthogonality is not applicable (Lengrand and Miquel

(2008)) by interpreting types with an infinite fixed-point construction. Our proof

does not overthrow these previous methods, but is instead a capstone combining
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ideas from each and subsuming them all. In our view, the key insight of all of these

techniques is that types are intrinsically two-sided, accounting for how elements of

a type are both constructed and used. The meaning of a type must track both its

valid terms and valid contexts, and “candidates” of types are defined by how these

two sets relate to each other. By studying the algebra of “pre-types,” we hope to

demystify that essential relationship.

Admissible Strategies

Our proof of strong normalization is parametric in the strategy S. Moreover,

in the case of the multi-strategy system, our proof is parametric over the entire

collection of strategies. However, there are two important properties for each S

which we need in order for our proof to hold.

Definition 4. First, a strategy is stable if and only if:

1. (co-)values are closed under reduction and substitution, and

2. non-(co-)values are closed under substitution and ς reduction.

Second, a strategy is focalizing if and only if all:

1. (co-)variables,

2. structures built from (co-)values (V · E and A#E), and

3. case abstractions

are considered (co-)values.

The focalizing property of strategies corresponds to focalization in logic

(Munch-Maccagnoni (2009))—each criterion for a focalizing strategy comes from

an inference rule for typing a (co-)value in focus.
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In general, for the multi-strategy system we need to account for all of the

strategies when we prove stability and focalization as the notion of co-value in the

other strategies may influence the notion of co-value in any given strategy.

Proposition 2. The call-by-value (V), call-by-name (N ), call-by-need (LV), and

non-deterministic strategy (U) are collectively stable and focalizing.

Proof. For all the strategies, focalization is immediate. And, stability is trivial

for all but call-by-name. To show stability for call-by-name, observe that the

decomposition of a command c into C[〈xLV ||ELV〉] is, if it exists, unique so long

as xLV is not bound in c (by induction on C in the solution). Moreover, both

(co-)values and non-(co-)values are closed under substitution (immediate).

Moreover, LV contexts are closed under substitution of (co-)variables by

(co-)values.

Now, observe that the lifting rules do not change values into non values and

vice versa.

– vS LV e →ς→ µ̃xLV .〈vS ||µ̃yS .〈xLV ||yS LV e〉〉 if e is not a co-value, then neither

side are (co-)values. If e is a co-value then both sides are.

– V LV eS →ς→ µ̃xLV .〈µβS .〈xLV ||V LV βS〉||eS〉 for this rule to fire eS must

not be a co-value, in which case neither side are (co-)values. Notably, in the

right hand side the reason it is not a co-value is that 〈µβS .C||eS〉 is not a

production of C.

– A LV eS →ς∀ µ̃xLV .〈µβS .〈xLV ||A LV βS〉||eS〉, as before, eS must not be a

co-value. So neither side are (co-)values.

All that remains is showing that the additional reduction rules do not turn

(co-)values into non-(co-)values. To do so, all at once we show three things:
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1. if E → e′ then e′ is a co-value,

2. if V → v′ then v′ is a value and

3. if CLV [〈xLV ||ELV〉] → c then there exists C ′LV , E
′
LV such that c =

C ′LV [〈xLV ||E ′LV〉].

which follows by mutual induction on the size of the syntax. The interesting case

being

〈V ||µ̃yLV .C[〈xLV ||E〉]〉 → C[〈xLV ||E〉]{yLV/V }

= C{yLV/V }[〈xLV ||E{yLV/V }〉]

which follows since, by the structure of the syntax xLV 6= yLV . Note also that

because xLV 6= yLV we know µ̃yLV .C[〈xLV ||E〉] is not a co-value, as such, there is

no µ reduction case for reducing C[〈xLV ||E〉].

Our proof of strong normalization works uniformly for any stable and

focalizing collection of strategies. It could be any combination of the four strategies

mentioned or any other collection of stable and focalizing strategies.

A Strategy Parametric Proof

Here we will show that reduction is strongly normalizing for any stable and

focalizing strategy S. Our argument is based on a logical relation: types and typing

judgments are interpreted semantically as unary relations on untyped syntax. This

follows the usual idea of factoring normalization through logical relations so that

(1) the typing rules are sound (all well-typed expressions are in the relation), and

(2) everything in the relation is strongly normalizing. More specifically, our method
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is a combination and refinement of techniques based on orthogonality (Krivine

(2009); Munch-Maccagnoni (2009)) and symmetric candidates (Barbanera and

Berardi (1994); Lengrand and Miquel (2008)).

The first challenge is to find a suitable domain for modeling types which can

accommodate the control effects in the language. Sequent calculus emphasizes

a fact already latent in λ-calculus: types classify both the production (terms)

and consumption (co-terms) of information. As such, we take a two-sided view

of types modeled as a pair of a set of terms and a set of co-terms, both strongly

normalizing, as opposed to the more common orthogonality-based models that only

pay attention to one side (i.e. terms) at a time. This domain of term-and-co-term

pairs, which we call pre-types since only some behave as types, becomes a central

object of study.

(Co-)terms aren’t the only syntactic objects, however. We must also ensure

that the commands, formed by the cut rule, are also strongly normalizing. Thus,

the set of strongly normalizing commands, denoted by ‚, becomes the other

central object of study. The set ‚ lets us speak about the namesake orthogonality

operation on pre-types, and check when a pre-type is orthogonally sound so that

all the commands formed by its (co-)terms are strongly normalizing. Orthogonal

soundness is a crucial property that must hold for all reducibility candidates—that

is, pre-types that might actually model types—guaranteeing that the type disallows

any bad interactions and justifying the cut rule for that type.

Soundness is only one of the criteria for reducibility candidates. We must

also force them to be “complete” in the appropriate sense so that they carry all the

(co-)terms promised by the typing rules. For instance, for the (Co-)Act rules for

forming µ and µ̃ abstractions to be sound, we must ensure that the interpretation
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of every type contains at least those abstractions meeting the premise of the

typing rules. And thus we meet our second challenge. Usually, orthogonality-based

models will rely on a closure under head expansion property of the set ‚—that

〈v||e〉 ∈‚ if 〈v||e〉 7→ c and c, v, e are strongly normalizing—to ensure the necessary

completeness. Unfortunately, this property fails in the general setting, because non-

confluent strategies like U allow for the essential critical pair of classical logic, and

it can happen that c1 ←[ 〈v||e〉 7→ c2 where v, e, c1 is strongly normalizing but c2 is

not (Lengrand and Miquel (2008)).

To sidestep the critical pair, we give up on closure under head expansion

for the set ‚, and instead construct pre-types that come with an appropriate

head expansion closure property in themselves. Our approach derives from the

symmetric candidates method, constructing the models for types as fixed-point

solutions of an appropriate saturation operation on pre-types. And here our two-

sided presentation of pre-types bears fruit, because having both sides yields two

natural orderings.

One ordering of pre-types is by straightforward inclusion, which we call

refinement, and uses subset ordering of their (co-)terms in the same direction. This

ordering is useful in the model for framing soundness and completeness properties

of pre-types by putting upper and lower bounds on their permitted and mandatory

(co-)terms. Refinement effectively corresponds to the usual subset order used

in orthogonality models, and shares the same basic properties like the fact that

orthogonality (and other similar operations like saturation) reverses refinement

ordering. The other ordering of pre-types, which we call sub-typing because it

corresponds to behavioral sub-typing, does not commonly appear in the literature

on orthogonality and uses subset ordering of their (co-)terms in opposite directions.
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While we do not include sub-typing in our language, it is still useful in the model

because of the way orthogonality-like operations preserve sub-type ordering. The

fact that the domain of pre-types can speak about sub-typing guarantees that we

have fixed-point solutions to our saturation operation for constructing models of

types.

With the two orderings on pre-types, we have a general method for

constructing models for types that are fixed-points of any orthogonality-like

saturation operation, thereby baking in the necessary completeness properties.

The final challenge is then to show that these fixed-points are indeed sound. In

order to frame saturation in a generic and strategy-agnostic way, we define a

special head reduction relation that details the reductions can happen at the top

of a program according to a charge, and allows us to characterize (co-)terms by

how they behave, rather than how they are written, which was the approach of

previous symmetric candidates proofs. Positive and negative head reductions allow

the term and co-term, respectively, to take control without consideration for the

other side, whereas neutral head reductions operate on both sides of a command in

tandem. Each of the three charged reduction sub-relations are always deterministic,

regardless of the chosen strategy, which cuts the Gordian knot of the classical

critical pair. The pre-types we get from one step of saturation may not be sound,

but it happens that the fixed-point solutions to saturation are sound only because

both sides of the fixed-point must be aware of each other so that no ill-behaved

head reductions are possible. Strong normalization then follows by commuting head

reduction with other arbitrary reductions.
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Pre-Types

Types classify both terms and co-terms, so pre-types are a pair of (1) a

set of terms and (2) a set of co-terms. We require the (co-)terms of a pre-type

to be strongly normalizing on their own. However, in general we don’t require

anything about how a pre-type’s terms and co-terms interact. Developing such

requirements is the crux of the notion of “reducibility candidates” which model

actual types; however, having the more general notion of pre-type available to us is

very useful. Firstly, we are able to define candidates as pre-types satisfying certain

conditions, and so being able to state those conditions as conditions on pre-types is

very convenient. Secondly, pre-types which are not well-behaved types necessarily

appear in the interim as we construct types, since types will be modeled as fixed-

points of functions over the domain of pre-types.

Definition 5. A pre-type in S is a pair of a set of strongly normalizing terms from

S and a set of strongly normalizing co-terms in S. For a pre-type A, we write v ∈

A or e ∈ A to mean that (co-)term is an element of the respective set underlying A.

Making pre-types explicit in our construction reveals latent structure that

might otherwise be missed. As pairs of sets, pre-types have two fundamental

orderings arising from the subset relation on their underlying sets. One we call

refinement which is just the product of the two underlying subset partial orders.

The other we call sub-typing comes as the product of the subset order for the set

of terms with the opposite order for the set of co-terms. It is the interplay of these

orderings which makes pre-types a productive domain for modeling types.

Refinement makes it easy to talk about when a type contains the right

(co-)terms since it treats the two sides of the type symmetrically and so works
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much like the ordinary subset operation. As such, we use v pervasively in our

definitions.

On the other hand, we use the term “sub-type” for the alternative order

because it corresponds to behavioral sub-typing (Liskov (1987)): a type A is a sub-

type of B if every object of A is an object of B and also the valid observations that

can be made about B are a subset of the observations of A. Although less useful

for constraining types, sub-typing is crucial for us because the operations we use for

building types preserve sub-type order but reverse refinement order, and thus the

sub-type ordering is used to find fixed-points to those operations.

Definition 6. Given two pre-types A and B in S, A refines B, written A v B, if

and only if

v ∈ A =⇒ v ∈ B and e ∈ A =⇒ e ∈ B

and A is a sub-type of B, written A ≤ B, if and only if

v ∈ A =⇒ v ∈ B and e ∈ B =⇒ e ∈ A .

Notice that both these two orderings form complete lattices on the set of

strongly-normalizing pre-types which is crucial to constructing our models of types

as fixed-point solutions.

Lemma 27 (Pre-type lattice). Each of the ≤ and v orderings on the set of pre-

types in a strategy S form a complete lattice: that is, they have all joins and meets.

Proof. The set of subsets of a set is a complete lattice ordered by ⊆ with the usual⋃
and

⋂
operations. Further, the dual of a complete lattice is itself a complete
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lattice, and the product of two complete lattices is a complete lattice. The case of

v is the product of the two subset lattices; the case of ≤ is the product of the two

subset lattices where one is dualized.

In particular, given the pre-types A = (A+,A−) and B = (B+,B−), where

A+ and B+ contain the terms and A− and B− contain the co-terms of A and B,

respectively, we have the following binary joins and meets for both orders:

(A+,A−) t (B+,B−) , (A+ ∪ B+,A− ∪ B−)

(A+,A−) u (B+,B−) , (A+ ∩ B+,A− ∩ B−)

(A+,A−) ∨ (B+,B−) , (A+ ∪ B+,A− ∩ B−)

(A+,A−) ∧ (B+,B−) , (A+ ∩ B+,A− ∪ B−)

Note that we use square symbols like v, u, and t for refinement and triangular

ones like ≤, ∧, and ∨ for sub-typing.

Lemma 28. t is monotonic (in both arguments) with respect to ≤ and is

commutative and associative.

Proof. That t is commutative and associative follows immediately from its

definition. The interesting fact is that, for any pre-types A = (A+,A−), B =

(B+,B−), and C = (C+, C−) if A ≤ B then we have

A t C = (A+ ∪ C+,A− ∪ C−)

≤ (B+ ∪ C+,B+ ∪ C−)

= B t C
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since A+ ⊆ B+ means A+ ∪ C+ ⊆ B+ ∪ C+ and B− ⊆ A− means B− ∪ C− ⊆

A− ∪ C−.

We can now talk about the largest pre-type SN with respect to refinement

ordering, which is just the pre-type containing all strongly normalizing (co-)terms,

as well as the complementary set ‚ of strongly normalizing commands.

Definition 7. 1. SNS is the largest pre-type (w.r.t. v) containing exactly the

strongly normalizing (co-)terms in S.

2. ‚ is the set containing exactly the strongly normalizing commands.

Note also that ‚ and SNS are closed under reduction since all reducts of

strongly normalizing expressions are themselves strongly normalizing.

The most basic operation on pre-types is the orthogonal (−)⊥ which collects

all the (co-)terms which are strongly normalizing with everything in that pre-type.

Definition 8. For any pre-type A, the pre-type A⊥ is:

v ∈ A⊥ ⇐⇒ v ∈ SN ∧ ∀e ∈ A.〈v||e〉 ∈‚
e ∈ A⊥ ⇐⇒ e ∈ SN ∧ ∀v ∈ A.〈v||e〉 ∈‚ .

Furthermore, A is orthogonally sound if it refines its own orthogonal (A v A⊥)

and orthogonally complete if it is refined by its own orthogonal (A⊥ v A).

Expanding the definition, A is orthogonally sound if for all v, e ∈ A,

〈v||e〉 ∈‚. It is orthogonally complete if every v ∈ SN such that 〈v||e〉 ∈‚ for

all e ∈ A is also in A, and the dual statement for co-terms. However, we prefer the

refinement based definitions to cut down on nested quantifiers. Because refinement
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is a partial order, an orthogonally sound and complete pre-type A is one where

A = A⊥.

In terms of sub-typing, the orthogonal is a monotonic function. Given A ≤ B,

if v ∈ A⊥ then v ∈ B⊥ as well because the co-terms of B are included in A,

and vice versa. Since in most proofs the orders on pre-types are glossed over, the

monotonicity with respect to sub-typing is not immediately noted. However, for

us it is central. On the other hand, viewed from the perspective of refinement,

the orthogonal operation is order inverting and is self adjoint. We summarize the

relationship between orthogonality and the two orderings as follows, where all but

the first result are standard.

Lemma 29. For all pre-types A and B, the following hold:

– Monotonicity: if A ≤ B then A⊥ ≤ B⊥

– Contrapositive: if A v B then B⊥ v A⊥

– Double negation introduction: A v A⊥⊥

– Triple negation elimination: A⊥ = A⊥⊥⊥

Proof. If the set of terms of A is a subset of the set of terms of B then any co-term

which is strongly normalizing when paired with all the terms in B must be strongly

normalizing when paired with the smaller set of terms in A. Thus, in that case, the

set of co-terms of B⊥ must be a subset of the co-terms of A⊥. Conversely, if the co-

terms of A is a subset of the co-terms of B then the terms of B⊥ are a subset of the

terms of A⊥. Thus, by the definition of ≤, (−)⊥ must be monotonic with respect to

it, and by the definition of v it must be order inverting.
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If v is in A then by the definition of (−)⊥ we know that for every e ∈

A⊥, 〈v||e〉 ∈‚. Therefore, it must be that v ∈ A⊥⊥. As the case of co-terms is

symmetric.

By the above we know that A v A⊥⊥. Thus, by contrapositive A⊥⊥⊥ v A⊥.

However, the double negation elimination also gives us the inclusion in the other

direction, A⊥ v A⊥⊥⊥ and so they must be equal.

A (co-)term is strongly normalizing iff it is strongly normalizing when made

into a command with a (co-)variable. While seemingly obvious, this is an important

sanity check since some potential reductions could invalidate that property by

allowing reductions only on commands which should really be thought of as

reductions internal to the (co-)term (like ς). Because our rewriting theory passes

that test, the largest pre-type SN can be rephrased in terms of orthogonality and

the pre-type V ar of (co-)variables. This ensures that any orthogonally complete

pre-type A must contain (co-)variables, since A v SN by definition and thus

SN⊥ v A⊥ v A by contrapositive. This will be important, because deriving

strong normalization of open programs from soundness requires that the models of

all types be inhabited with some (co-)values.

Lemma 30. 1. vS is strongly normalizing iff 〈vS ||αS〉 is.

2. eS is strongly normalizing iff 〈xS ||eS〉 is.

Proof. 1. Since vS is a sub-term of 〈vS ||αS〉, strong normalization of 〈vS ||αS〉

implies strong normalization of vS .

Going the other way, we show that every reduction of 〈vS ||αS〉, except for

possibly one top-level µ reduction, can be traced by vS as well. We proceed
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to show that 〈vS ||αS〉 is strongly normalizing because all of its reducts are by

well-founded induction on |vS |:

– Suppose vS = µβS .c, so that we have the top-level µS reduction:

〈µβS .c||αS〉 →µ c{αS/βS}

Furthermore, we know µαS .c{αS/βS} is strongly normalizing since it

is αS-equivalent to the strongly normalizing µβS .c, which means that

c{αS/βS} is also strongly normalizing since it is a sub-command of

µαS .c{αS/βS}.

– Suppose we have some other reduction internal to vS , so that:

〈vS ||αS〉 → 〈v′S ||αS〉

Then we know that vS → v′S so |v′S | < |vS |. Therefore, by the inductive

hypothesis, we get that 〈v′S ||αS〉 is strongly normalizing.

Since every reduct of 〈vS ||αS〉 is strongly normalizing, then 〈vS ||αS〉 is

also strongly normalizing.

2. Analogous to the above by duality.

Lemma 31. SN = V ar⊥.

Proof. Note that V ar⊥S is the pre-type:

v ∈ V ar⊥S ⇐⇒ v ∈ SNS ∧ ∀αS ∈ V arS .〈v||αS〉 ∈‚
e ∈ V ar⊥S ⇐⇒ e ∈ SNS ∧ ∀xS ∈ V arS .〈x||eS〉 ∈‚
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And so v, e ∈ SNS if and only if v, e ∈ V ar⊥S by the above Lemma 30.

Corollary 1. If A⊥ v A v SN then V ar v A.

Proof. Using the above Lemma 31, we conclude by double negation introduction

(Lemma 29) and contrapositive (Lemma 29):

V arS v V ar⊥⊥S = SN⊥S v A⊥ v A

Beyond orthogonality, there are other interesting operations on pre-types. We

write Av for the pre-type containing exactly the (co-)values in A. It is immediate

that Av v A and that (−)v is monotonic with respect to both orders. Extending

this further, it is often fruitful to consider the orthogonal of just the values of a pre-

type (Av)⊥, which we usually write Av⊥, and which behaves similarly to the plain

orthogonal.

Lemma 32. For all pre-types A and B the following hold:

1. if A ≤ B then Av⊥ ≤ Av⊥,

2. if A v B then Bv⊥ v Av⊥,

3. A⊥ v Av⊥, and

4. Av v Av⊥v⊥.

Proof. Properties 1 through 3 hold by composition of a property of (−)v (resp.

monotonicity with respect to ≤, monotonicity with respect to v, and that (−)v is

decreasing) with a property of (−)⊥ (monotonicity for 1 and contrapositive for 2

and 3). For property 4 observe that Av⊥v v Av⊥ by monotonicity of (−)v and so

Av⊥⊥ v Av⊥v, however, we already know that A v A⊥⊥ so by transitivity the

property holds.
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Head Reduction

A command is strongly normalizing iff everything it reduces to is. However,

proving that a command is strongly normalizing based on that fact can be quite

challenging. The problem is that it is generally very hard to consider the set of

everything that a command might reduce to, as that requires thinking about

multiple possible reductions at the top of a command, as well as reductions deep

inside a command. To avoid this, we consider a limited rewriting theory which

only talks about what reductions can happen at the head of a command. Head

reduction commutes with internal reduction, giving a limited standardization

result—just enough standardization to show orthogonal soundness for forward

closed pre-types by only looking at head reductions.

Moreover, it allows us to prove a command strongly normalizing when all we

know is that it head-reduces to a strongly normalizing command, so long as that

reduction happens to be from a deterministic part of the theory. Digging deeper

into the rewriting theory, the head reduction relation given in Fig. 48 is charged.

Neutrally charged reductions 7→0 require cooperation of the term and co-term, like

in the β rules. Positively charged reductions 7→+ allow the term to take over the

command in order to simplify itself. Negatively charged reductions 7→− instead

allow the co-term to take over the command. There are several useful facts that are

immediately apparent about this definition of head reduction.

1. Every head reduction step is simulated by the general reduction theory:

c 7→+,0,− c
′ implies that c→→ c′.

2. Head reduction only occurs when one side of the command is a (co-)value:

if 〈v||e〉 7→+ then e is a co-value, if 〈v||e〉 7→− then v is a value, and if
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〈µα.c||E〉 7→+ c{E/α}

〈µ[x · α.c]||V · E〉 7→0 c{V/x,E/α}
〈µ[t#α.c]||A#E〉 7→0 c{A/t,E/α}

〈V ||µ̃x.c〉 7→− c{V/x}
〈V ||v · e〉 7→− 〈V ||µ̃x.〈v||µ̃y.〈x||y · e〉〉〉 where v /∈V alue
〈V ||V ′ · e〉 7→− 〈V ||µ̃x.〈µβ.〈x||V ′ · β〉||e〉〉 where e /∈Co-V alue
〈V ||A#e〉 7→− 〈V ||µ̃x.〈µβ.〈x||A#β〉||e〉〉 where e /∈Co-V alue

FIGURE 48. Head Reductions.

〈v||e〉 7→0 then both v and e are (co-)values. This last point follows from the

assumption that the chosen strategy S is focalizing.

3. When taken on their own, each of the charged head reduction relations, 7→0,

7→+, and 7→−, are always deterministic regardless of the chosen strategy, even

though the combined 7→+,− head reduction relation may be non-deterministic.

Additionally, the combined 7→+,0 and 7→−,0 reduction relations are always

deterministic as well.

Furthermore, the key to its utility is the observation that head reduction steps

commute with reduction inside the (co-)term, and that commutation preserves

charge.

Lemma 33. 1. If v → v′ and 〈v||e〉 7→0 c then there is a c′ such that 〈v′||e〉 7→0 c
′

and c→→ c′.

2. If e→ e′ and 〈v||e〉 7→0 c then there is a c′ such that 〈v||e′〉 7→0 c
′ and c→→ c′.

3. If v → v′ and 〈v||e〉 7→− c then there is a c′ such that 〈v′||e〉 7→− c′ and c→→ c′.

4. If e→ e′ and 〈v||e〉 7→+ c then there is a c′ such that 〈v||e′〉 7→− c and c→→ c′.
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5. If v → v′ then either

(a) ∀e, c such that 〈v||e〉 7→+ c we have c→→ 〈v′||e〉, or

(b) ∀e, c such that 〈v||e〉 7→+ c there exists a c′ such that 〈v′||e〉 7→+ c′ and

c→→ c′.

6. If e→ e′ then either

(a) ∀v, c such that 〈v||e〉 7→− c we have c→→ 〈v||e′〉 or

(b) ∀v, c such that 〈v||e〉 7→− c there exists a c′ such that 〈v||e′〉 7→− c′ and

c→→ c′.

Proof. By cases on the possible reductions. Note that for statements 1-4, there are

no critical pairs between neutral head reductions and general reductions, because

(co-)values are closed under reduction by stability. Additionally, for the other

statements, the fact that (co-)values are closed under reduction cuts out many

critical pairs. For statements 5 and 6 we consider all the remaining interesting

cases.

– µ̃xS .〈xS ||e〉 → e. Statement (a) holds since the only possible negative head

reduction is

〈V ||µ̃xS .〈xS ||e〉〉 7→− 〈V ||e〉

which is identical.

– µαS .〈v||αS〉 → v Statement (a) holds analogously to above.
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– µ̃xS .c→ µ̃xS .c′. Statement (b) holds since the only possible head reduction is

〈V ||µ̃xS .c〉 7→− c{V/xS}

and since reduction commutes with substitution, c{V/xS}→→ c′{V/xS}

– µαS .c→ µαS .c′. Statement (b) holds analogously to above.

– vS1 S e → µ̃xS .〈vS1 ||µ̃yS1 .〈x||yS1 S e〉〉. Case (b) holds as there is only a single

possible negative head reduction.

〈V ||vS1 S e〉 7→− 〈V ||µ̃xS .〈vS1 ||µ̃yS .〈xS ||yS1 S e〉〉〉

→ 〈vS1||µ̃yS1 .〈V ||yS1 S e〉〉

〈V ||µ̃xS .〈vS1||µ̃yS1 .〈xS ||yS1 S e〉〉〉 7→− 〈vS1||µ̃yS1 .〈V ||yS1 S e〉〉

– In the case of V S eS2 → µ̃xS .〈µαS2 .〈xS ||V S αS2〉||e〉 (b) holds since there is

only one possible negative head reduction.

〈V ′||V S eS2〉 7→− 〈V ′||µ̃xS .〈µαS2 .〈xS ||V S αS2〉||eS2〉〉

→ 〈µαS2 .〈V ′||V S αS2〉||eS2〉

〈V ′||µ̃xS .〈µαS2 .〈xS ||V S αS2〉||eS2〉〉 7→− 〈µαS2 .〈V ′||V S αS2〉||eS2〉

– ς∀ analaguous to above.
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– In the case of vS1 S e → V S e where vS1 is not a value, case (a) holds since

there is only a single possible head reduction

〈V ′||vS1 S e〉 7→− 〈V ′||µ̃xS .〈vS1 ||µ̃yS1 .〈xS ||yS1 S e〉〉〉

→ 〈vS1||µ̃yS1 .〈V ′||yS1 S e〉〉

→ 〈V ||µ̃yS1 .〈V ′||yS1 S e〉〉

→ 〈V ′||V S e〉

– In the case of V S e → V S E and A S e → A S E where e is not a co-value

case (a) holds analogously to above.

Lemma 34 (Commutation). Given any v, e, v′, e′ where v →→ v′ and e→→ e′ and

p ∈ {+,−, 0}, if 〈v||e〉 7→p c then there exists some c′ such that 〈v′||e′〉 7→=
p c′ and

c→→ c′. In pictures:

〈v||e〉 c

〈v′||e′〉 c′

p

p

or

〈v||e〉 c

〈v′||e′〉

Proof. A special case of Lemma 33

The main application of head reduction is in providing a tool for showing

that a pre-type is orthogonally sound. Note that the proof of the next lemma is the

only place where we need to perform induction on strongly normalizing reduction

sequences: every other time we need to prove a pre-type orthogonally sound we will

be able to use this lemma to avoid having to consider internal reductions.
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Lemma 35 (Head orthogonality). Suppose that A is a pre-type forward closed

under reduction and that for all v, e ∈ A, 〈v||e〉 7→+,0,− c implies c ∈‚. Then

A v A⊥.

Proof. Note that a command c is in ‚ if and only if all reducts of c are in ‚. Since

A v SN , every (co-)term in A is strongly normalizing, so let |v| and |e| be the

lengths of the longest reduction sequence from any v, e ∈ A, respectively. We now

proceed to show that for any v, e ∈ A, 〈v||e〉 ∈‚ because all of its reducts are in ‚,

by induction on |v|+ |e|.

– 〈v||e〉 7→+,0,− c: we know c ∈‚ by assumption.

– 〈v||e〉 → 〈v′||e〉 because v → v′: then v′ ∈ A because A is forward closed,

and |v′| < |v|. Furthermore, we have that all head reducts of 〈v′||e〉 are in

‚ by Lemma 34 and the fact that ‚ is closed under reduction. Therefore,

〈v′||e〉 ∈‚ by the inductive hypothesis.

– 〈v||e〉 → 〈v||e′〉 because e→ e′: analogous to the previous case by duality.

The head orthogonality lemma serves as the workhorse for the rest of our

proof. One useful consequence is that if a command made of strongly normalizing

(co-)terms can reduce by a neutral head reduction to something strongly

normalizing then it must be strongly normalizing as well.

Lemma 36. If v, e ∈ SN and 〈v||e〉 7→0 c ∈‚, then 〈v||e〉 ∈‚.

Proof. Consider the pre-type A defined as

v′ ∈ A ⇐⇒ v→→ v′ e′ ∈ A ⇐⇒ e→→ e′
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Given any v′, e′ ∈ A, 〈v′||e′〉 7→=
0 c′ such that c →→ c′ by Lemma 34, so that

c′ ∈‚ because ‚ is closed under reduction. As such 〈v′||e′〉 is either in ‚ (meaning

everything it head reduces to is in ‚) or it undergoes a neutral head reduction

to something in ‚. However, in second case since both 7→0,+ and 7→0,− are

deterministic, that means everything it head reduces to is in ‚. Thus, A v A⊥

by Lemma 35 and so 〈v||e〉 ∈‚.

A second application of the head reduction relation is in classifying terms

based on how they behave. For example, we define the set of simple (co-)terms

which only cause neutral reductions. Simplicity is useful because the simple

(co)terms of a type can be defined in a strategy-agnostic way.

Definition 9. A term is simple if it never takes part in a positive head reduction.

A co-term is simple if it never takes part in a negative head reduction. A pre-type is

simple if all its (co-)terms are.

Observe that because our chosen strategy is assumed to be focalizing, all

simple (co-)terms are (co-)values: a simple (co-)term either takes a neutral head

reduction step, in which case it must be stack or a pattern match, or it doesn’t

actively participate in any reduction, so it must be a (co-)variable. Furthermore,

the set of simple (co-)terms is closed under reduction because (co-)values are closed

under reduction (since the strategy is stable). Also of note is the fact that non-

simple (co-)terms never participate in neutral reductions.

We define the operation As as containing all the simple (co-)terms of A.

(−)s is, by construction, monotonic with respect to both orders. There is also a

simplified version of the orthogonality operation (A⊥)s, which we write as (−)⊥s.

Note that like (−)v⊥, (−)⊥s satisfies the same monotonicity and contrapositive

properties as the plain orthogonal (−)⊥.
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Beyond being (co-)values, simple (co-)terms have another important property

which is that they are deterministic. That is, we can always tell if a command

containing a simple (co-)term is strongly normalizing by looking at a single possible

head reduction it takes. Thus, we also consider a generalization of simplicity in the

pre-type of deterministic values DV .

v ∈ DV ⇐⇒ v ∈ SN v∧

∀V ′, e, c, c′, v→→ V ′ ⇒

〈V ′||e〉 7→ c ∧ 〈V ′||e〉 7→ c′ ∧ c ∈‚⇒ c′ ∈‚
e ∈ DV ⇐⇒ e ∈ SN →→ e′∧

∀E ′, v, c, c′, e→→ E ′ ⇒

〈v||E ′〉 7→ c ∧ 〈v||E ′〉 7→ c′ ∧ c ∈‚⇒ c′ ∈‚

We can restrict any pre-type down to just deterministic values via the

operation (−)d or use a deterministic version of the orthogonal (−)⊥d where

A⊥d = (A⊥)d = A⊥ u DV

Observing that

Ad v As v Av v A

for all A.

Reducibility Candidates

To define the set of reducibility candidates, we have to determine the pre-

types which are sufficiently saturated so that they contain enough (co-)terms
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to make the typing rules sound without invalidating the Cut rule. For example,

we need to be sure that reducibility candidates contain the necessary µ- and

µ̃-abstractions according to Act and Co-Act. Our trick is to characterize this

saturation in terms of head reduction, using the Head(−) operation on pre-types

given below. Head(A) collects all the terms which induce a positive head reduction

to a strongly normalizing command when cut with any of the co-values from A,

and all the co-terms which induce a negative head reduction with all the values.

As such, to show something is in Head(A), we only need to show it produces a

strongly normalizing reduction with all the (co-)values in A instead of showing that

all its head reductions take us to strongly normalizing places. For example µα.c is

in Head(A) so long as c is strongly normalizing when we substitute in any co-value

from A for α since 〈µα.c||E〉 7→+ c{E/α} even if E itself is a µ̃-abstraction which

might induce its own head reductions. Formally, Head(−) is defined as:

v ∈ Head(A) ⇐⇒ v ∈ SN ∧ ∀E ∈ A.〈v||E〉 7→+ c ∈‚
e ∈ Head(A) ⇐⇒ e ∈ SN ∧ ∀V ∈ A.〈V ||e〉 7→− c ∈‚

Note that Head(−) satisfies the same monotonicity and contrapositive properties as

(−)⊥ and (−)⊥s.

In order to adequetly model types, pre-types need to contain there own

Head(−). However, Head(−) might not always enough since it doesn’t for

instance, include all the things orthogonal to a type. We thus define the saturation

function Sat(A), which selects all the (co-)terms that are strongly normalizing with
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all the (co-)values of A either now or one step in the future:

v ∈ Sat(A) ⇐⇒ v ∈ SN

∧ ∀E ∈ A.〈v||E〉 ∈‚ ∨〈v||E〉 7→+ c ∈‚
e ∈ Sat(A) ⇐⇒ e ∈ SN

∧ ∀V ∈ A.〈V ||e〉 ∈‚ ∨〈V ||e〉 7→− c ∈‚

Sat(A) includes both A’s head and its (co-)value-orthogonal:

Head(A) t Av⊥ v Sat(A).

However, the converse may not be true. The definition of Sat(A) includes all terms

which when paired with any co-value of A produce a command which is either

strongly normalizing now or in one step. That could potentially include more terms

than are in Head(A) t Av⊥ because of the relative order of the quantifier and the

disjunction: a term is in Head(A) t Av⊥ only when (paired with co-values from

A) it either always produces commands that are strongly normalizing immediately

or always produces commands which are strongly normalizing in one step. The

advantage to the larger saturation function is that it produces forward-closed pre-

types (by Lemma 34) which might not be true for Head(A) t Av⊥ since an internal

reduction might eliminate the need to take a head reduction step.

We now define reducibility candidates as all orthogonally sound and complete

pre-types that are sufficiently saturated.

Definition 10 (Reducibility candidates). A pre-type A is a reducibility candidate

iff Sat(A) v A v A⊥.
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The set of reducibility candidates in a strategy S is written CRS .

An immediate consequence of the definition is that any reducibility candidate

contains its own Head, is orthogonally complete, and is generated by its values

Munch-Maccagnoni (2009).

Theorem 14. If A is a reducibility candidate then

– A = A⊥ = Av⊥ = Sat(A)

– Head(A) v A

Proof. For one, we just observe that, by definition, for every pre-type A

A⊥ v Av⊥ v Sat(A)

which means that when Sat(A) v A v A⊥ all of these must be equal. Two follows

since Head(A) v Sat(A).

We know that since it contains its own head, a reducibility candidate must

contain all the µ- and µ̃- abstractions that are well-behaved when paired with any

of its (co-)values.

Lemma 37 (Strong activation). 1. If A is a reducibility candidate in S and for

all E ∈ A, c{E/αS} ∈‚, then µαS .c ∈ A.

2. If A is a reducibility candidate and for all V ∈ A, c{V/xS} ∈‚, then µ̃xS .c ∈

A.
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Proof. – Since A is a reducibility candidate, we know that Head(A) v A.

Observe that for all E ∈ A,

〈µαS .c||E〉 7→ c{E/αS} ∈‚

by assumption. Therefore, µαS .c ∈ Head(A) v A.

– Analogous to the previous statement by duality.

Additionally, if a reducibility candidate contains all the structures built

from (co-)values of other reducibility candidates, then it must contain the general

constructs built from (co-)terms as well. This follows from strong activation

together with the fact that all the lifting rules are implemented as non-neutrally

charged head reductions.

Lemma 38 (Unfocalization). 1. If A, B and C are reducibility candidates such

that V S E ∈ A for every V ∈ B and E ∈ C, then v S e ∈ A for every v ∈ B

and e ∈ C.

2. If A and B are reducibility candidates and C is a syntactic type such that

C S E ∈ A for every E ∈ B, then C S e ∈ A for every e ∈ B.

Proof. First observe

1. If A and B are reducibility candidates and e a co-term such that for all V ∈

B, V S e ∈ A then for every v ∈ B. v S e ∈ A.

2. If A and B are reducibility candidates and V a value such that for all E ∈ B,

V S E ∈ A then for every e ∈ B, V S e ∈ A.

since
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1. If A and B are reducibility candidates and e a co-term such that for all V ∈

B, V S e ∈ A it follows by repeated application of Lemma 37 that for any

v ∈ B, µ̃yS .〈v||µ̃xS1 .〈yS ||xS1 S e〉〉 ∈ A. Thus, for any v ∈ B we have for

all V ∈ A we know 〈V ||v S e〉 7→− 〈V ||µ̃yS .〈v||µ̃xS1 .〈yS ||xS1 S e〉〉〉 ∈‚ so

v S e ∈ Head(A) meaning v S e ∈ A.

2. Analogously to statement 1 above.

Therefore we can show our two main goals

1. By statement 1 above, for every V ∈ B and e ∈ C, V S e ∈ A. Thus, by

statement 1 for every v ∈ B and e ∈ C, v S e ∈ A.

2. Analogous to statements 1 and 2 above.

Building Candidates

Because Sat(A) includes A’s head and the orthogonal of its (co-)values,

we can use Sat(−), to grow a full-fledged reducibility candidate by iteratively

saturating it starting with an arbitrary fixed seed C, one Step at a time:

StepC(A) = C t Sat(A)

Because StepC is monotonic and the pre-types form a complete lattice with respect

to sub-typing, it must have a fixed-point and indeed a least fixed-point Cousot and

Cousot (1979). This lets us define a function that saturates any pre-type C.

Lemma 39. A ≤ B =⇒ StepC(A) ≤ StepC(B)

Proof. Because t is monotonic in both arguments and Sat(−) is monotonic with

respect to sub-typing by construction.
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Corollary 2. For any C, there is a fixed point A = StepC(A).

Lemma 40. There exists a function on pre-types R(−) such that R(C) =

StepC(R(C)).

Proof. By Corollary 2 there is a fixed point to the function StepC. Indeed, there is

a least fixed point which we can take for R(C) avoiding the axiom of choice.

Note that this R(−) operation gives us something that might be a

reducibility candidate. We know it is complete enough by construction; however,

perhaps it is not sound. For any Sat(A) v A v SNS we have that:

Head(A) v Sat(A) v A

A⊥ v Av⊥ v Sat(A) v A

So all that is remaining is to show that for appropriate choices for C, R(C) is

orthogonally sound, i.e.R(C) v R(C)⊥. In particular, we will find by application

of Lemma 35 that R(C) is guaranteed to be orthogonally sound whenever C = C⊥d.

First we observe that the fixed-point constructed from a forward closed

seed must itself be forward closed because the Sat(−) function always generates

a forward closed pre-type.

Lemma 41. For any pre-type A, Sat(A) is forward closed.

Proof. – Suppose v ∈ Sat(A) and v → v′. Let E ∈ A, so that v ∈ Sat(A)

implies that either v ‚ E or 〈v||E〉 7→+ c.

In the first case we know that 〈v||E〉 ∈‚, so 〈v||E〉 → 〈v′||E〉 and 〈v′||E〉 ∈‚
since ‚ is forward closed.
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In the second case we know that 〈v′||E〉 ← 〈v||E〉 7→+ c ∈‚. Based on the

commutation of internal and head reduction (Lemma 34), and the fact that ‚
is forward closed, we have one of two cases:

∗ c→→ 〈v′||E〉 ∈‚, or

∗ 〈v′||E〉 7→+ c′←← c ∈‚

Therefore, since in any case 〈v′||E〉 ∈‚ or 〈v′||E〉 7→+ c′ ∈‚, then v′ ∈

Sat(A).

– Suppose e ∈ Sat(A) and e → e′. Analogous to the previous case by duality.

Further, C⊥s must be forward closed because orthogonal pre-types and the

pre-type of deterministic (co-)values are.

Lemma 42. Given A = StepC(A), A is forward closed when C is.

Proof. Immediate.

Moreover, because we start with a seed pre-type that is deterministic and

orthogonally sound, we can analyze all the head reductions between (co-)terms in

the fixed-point A = StepC(A) = Sat(A)t C by cases. Since all such head reductions

lead to strongly normalizing commands, A must be orthogonally sound so it is a

reducibility candidate.

Lemma 43. If C v C⊥d and A = StepC(A), then for all v, e ∈ A, 〈v||e〉 7→+,0,− c

implies c ∈‚.

Proof. Let v, e ∈ A = C t Sat(A). By cases, we have:
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– V,E ∈ C: V ‚ E by the assumption that C v C⊥d, so C is orthogonally

sound.

– V ∈ C, e ∈ Sat(A): by e ∈ Sat(A) and the fact that V is a value, we know

that either 〈V ||e〉 ∈‚ or 〈V ||e〉 7→− c ∈‚ for some c. In the first case, every

reduct of 〈V ||e〉 is in ‚, including any head reductions, since ‚ is forward

closed. In the second case, we know V is deterministic so 〈V ||e〉 7→+,−,− c

implies c in ‚.

– v ∈ Sat(A), E ∈ C: analogous to the previous case by duality.

– v, e ∈ Sat(A): Let us consider the possible head reductions:

∗ 〈v||e〉 7→0 c: in this case, both v and e are simple (co-)values, and neither

can take a positively charged head reduction step. Therefore, for v, e ∈

Sat(A) to hold, it must be that 〈v||e〉 ∈‚, and so c ∈‚ because ‚ is

closed under reduction.

∗ 〈v||e〉 7→+ c: in this case, e must be a co-value, so for v ∈ Sat(A) to hold,

either 〈v||e〉 ∈‚ already or there is a c′ such that 〈v||e〉 7→+ c′. In the

former case, c ∈‚ because ‚ is closed under reduction, and in the latter

case, c = c′ ∈‚ because 7→+ is deterministic.

∗ 〈v||e〉 7→− c: analogous to the previous case by duality.

Lemma 44. For any forward closed C v C⊥d, any A such that A = StepC(A) is a

reducibility candidate such that C v A.

As an instance of this fact, if C = C⊥d then R(C) is a reducibility candidate

such that C v R(C)
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Proof. Suppose C v C⊥d and is forward closed, and that A = StepC(A). Clearly,

C v A by the definition of StepC, so we only need to prove that it is a reducibility

candidate. By Lemma 42 and Lemma 43 we know that A is forward closed and all

head reducts are in ‚, so A v A⊥ by Lemma 35 and contains Sat(A) by definition.

If C = C⊥d then it is forward closed since both the orthogonal and the set of

deterministic values and by Lemma 40, R(C) = StepC(R(C)) and so satisfies the

conditions above.

Now, we just need constructions for forming deterministic seed pre-types

corresponding to the type constructors → and ∀. Since both → and ∀ are negative

types, it makes sense to define a general strategy for building the core of a

negative type from a set of deterministic co-values. The idea is that for any set

of deterministic co-values S, Neg(S) will contain all of the deterministic values that

are strongly normalizing with anything in S and all the deterministic co-values

that are strongly normalizing with those. Consequently, starting from a set of

deterministic co-values representing core observations of a type we can build up

a complete set of deterministic generators for that type.

Definition 11. For a set of co-values S, the pre-type Neg(S) is given by:

v ∈ Neg(S)⇔ v ∈ DV ∧ ∀E ∈ S, 〈v||E〉 ∈‚
e ∈ Neg(S)⇔ e ∈ DV ∧ ∀v ∈ DV ,

(∀E ∈ S, 〈v||E〉 ∈‚)⇒ 〈v||e〉 ∈‚

Note: when S is empty, the result strategy of Neg(S) is taken from context.

Lemma 45. If S is a set of deterministic strongly normalizing co-values in S then
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1. ∀E ∈ S,E ∈ Neg(S) and

2. Neg(S) = Neg(S)⊥s.

Proof. 1. Since E is assumed to be deterministic and strongly normalizing if it is

in S it is in Neg(S) by definition.

2. That Neg(S) v Neg(S)⊥d follows since Neg(S) is simple by definition and

any two elements of Neg(S) must be strongly normalizing when put together

by construction. That Neg(S)⊥d v Neg(S) follows since S is a subset

of the values of Neg(S) while the set of co-values already is the simplified

orthogonal of the set of values.

To define a specific negative type like →S we then only need to gather up a

sufficiently descriptive set of deterministic co-values. For functions, that is a set of

call-stacks.

Definition 12. If A and B are pre-types then FunCoreS(A,B) is the pre-type

Neg({V S E | V ∈ A, E ∈ B})

Lemma 46. If A and B are reducibility candidates then FunCoreS(A,B) =

FunCore(A,B)⊥d.

Proof. {V S E|V ∈ A, E ∈ B} is a set of deterministic co-values so this follows by

Lemma 45.

However, it is not enough to have a reducibility candidate which contains all

the observations of a function type. We need it to contain the values as well. This

follows since pattern-matching terms are simple values and are included in the seed

so long as they are orthogonal with the initial co-values.
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Lemma 47. If A and B are both reducibility candidates and c is a command such

that for any V ∈ A and E ∈ B, c{VS/xS , ET /αT } ∈‚ then µ[xS R αT .c] ∈

FunCoreR(A,B)

Proof. We know that xS ∈ A and αT ∈ B so c = c{xS/xS , αT /αT } ∈‚. Thus

µ[xS R αT .c] ∈ SNd
R. Now, for any V ∈ A and E ∈ B we have

〈µ[xS R αT .c]||V R E〉 7→0 c{V/xS , E/αT } ∈‚

so by Lemma 36 〈µ[xS R αT .c]||V R E〉 ∈‚. Thus, µ[xS R αT .c] ∈

FunCoreR(A,B)

We can define the semantic type constructor corresponding to the universal

quantifier in much the same way. Note that while syntax representing types

appears in terms and is important to type checking, we do not require that the

syntactic representation of types be connected in any way to their semantic

representation when defining the valid elements of a type.

Definition 13. If S is a set of pre-types in S then ForallCoreTR(S) is the pre-type

in R Neg({AT R E | ∃B ∈ S,E ∈ B})

Lemma 48. If S is a set of reducibility candidates in S then ForallCoreTR(S) =

ForallCoreTR(S)⊥d.

Proof. {AT R E|∃B ∈ S,E ∈ B} is a set of deterministic co-values so this follows by

lemma 45.

Lemma 49. If S is a inhabited set of reducibility candidates in S and c is a

command such that given any syntactic type AT , reducibility candidate B ∈ S and

co-value E ∈ B we have c{AT /tT , E/αS} ∈‚ then µ[tT R αS .c] ∈ ForallCoreTR(S).
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Proof. Since S is inhabited there is some B ∈ S and since B is a reducibility

candidate, αS ∈ B. Thus, c = c{tT /tT , αS/αS} ∈‚ so µ[tT R αS .c] ∈ SNd
R.

Moreover, given any AT , B ∈ S, and E ∈ B we know that

〈µ[tT R αS .c]||AT R E〉 7→0 c{AT /tT , E/αS} ∈‚

and so, by Lemma 36 〈µ[tT R αS .c]||AT R E〉 ∈‚.

The previous lemma required an inhabited set of reducibility candidates. But,

if there are no reducibility candidates then this statement is vacuous. Luckily, we

have all the machinery in place to ensure that at least one reducibility candidate

exists as we know every set of deterministic co-values yields a candidate, including

the empty set of co-values.

Lemma 50. The set of reducibility candidates in a strategy is inhabited.

Proof. Neg(∅) = Neg(∅)⊥d by 45 and so by Lemma 44 R(Neg(∅)) ∈ CRS .

Soundness

We now have all the machinery to define the semantics of types. Our

semantic function J−K will convert syntactic types to semantic reducibility

candidates, given a partial function φ mapping syntactic type variables to

reducibility candidates.

JaK(φ) , φ(a)

JA→ BK(φ) , R(FunCore(JAK(φ), JBK(φ)))

J∀a.AK(φ) , R(ForallCore({JAK(φ, a 7→ B)|B ∈ CR}))

182



Lemma 51. If φ is defined and yields a reducibility candidate on all free type

variables in A then JAK(φ) ∈ CR

Proof. By induction on AS .

– The case of a type variable is immediate.

– In the case of JAS1 →S BS2K(φ) we know by the inductive hypothesis that

JAS1K(φ) ∈ CRS1 and JBS2K(φ) ∈ CRS2 . Thus by Lemma 46 that

FunCoreS(JAS1K(φ), JBS2K(φ)) = FunCoreS(JAS1K(φ), JBS2K(φ))⊥d and so

by Lemma 44 that JA→S BK(φ) ∈ CRS .

– In the case of J∀SaS1 .AS2K(φ) we know by the inductive hypothesis that

given any B ∈ CRS1 , JAS2K(φ, aS1 7→ B) ∈ CRS2 . Thus {JAS2K(φ, aS1 7→

B)|B ∈ CRS1} is a set of reducibility candidates and so by Lemma 48

we know that ForallCoreSS1({JAS2K(φ, aS1 7→ B)|B ∈ CRS1}) =

ForallCoreSS1({JAS2K(φ, aS1 7→ B)|B ∈ CRS1})⊥d and so J∀SaS1 .AS2K(φ) ∈

CRS by Lemma 44.

We extend our meaning function to sequents. As is standard, sequents classify

substitutions mapping term variables to values, co-variables to co-values, and type

variables to syntactic types in such a way that if x : A in a sequent then the

substitution classified by that sequent under φ maps x to a value which has the
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semantic type given by JAK(φ).

J`K(φ) , the Set of Substitutions

J`Θ,aK(φ) , {ρ ∈ J`ΘK(φ)|ρ(a) a syntactic type}

J`Θ α : A,∆K(φ) , {ρ ∈ J`Θ ∆K(φ)|ρ(α) ∈ JAK(φ)}

JΓ, x : A `Θ ∆K(φ) , {ρ ∈ JΓ `Θ ∆K(φ)|ρ(x) ∈ JAK(φ)}

Lemma 52. If Γ `Θ ∆ is well formed and φ is defined and yields a reducibility

candidate on all type variables in Θ, then JΓ `Θ ∆K(φ) is well defined and contains

the identity substitution (id).

Proof. By induction over length of the sequent using 51 for the cases of variables

and co-variables.

We can now give the semantic interpretation of each of the typing judgments.

c : (Γ �Θ ∆) , ∀(φ ∈ Θ→ CR),∀ρ ∈ JΓ `Θ ∆K(φ),

c{ρ} ∈‚
Γ �Θ v : A|∆ , ∀(φ ∈ Θ→ CR),∀ρ ∈ JΓ `Θ ∆K(φ),

v{ρ} ∈ JAK(φ)

Γ|e : A �Θ ∆ , ∀(φ ∈ Θ→ CR),∀ρ ∈ JΓ `Θ ∆K(φ),

e{ρ} ∈ JAK(φ)
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With the definitions out of the way, we can state our primary theorem: any

judgment which is provable according to the proof rules corresponds to a

semantically true statement in our model.

Theorem 15 (Soundness). – If there is a proof of c : (Γ `Θ ∆) then c : (Γ �Θ

∆),

– if there is a proof of Γ `Θ v : A|∆ then Γ �Θ v : A|∆, and

– if there is a proof of Γ|e : A `Θ ∆ then Γ|e : A �Θ ∆.

Proof. By mutual induction on the typing derivation. The Cut rule follows from

orthogonal soundness of candidates and Lemma 51. While Lemma 37, Lemma 38,

Lemma 47, Lemma 49, and Lemma 50 are used for the other rules.

Corollary 3 (Strong Normalization). If c : (Γ `Θ ∆) is provable then c is strongly

normalizing.

Proof. If c : (Γ `Θ ∆) is provable then it is well formed. Moreover, since by

Lemma 50 the set of reducibility candidates is inhabited, there must exist some

φ : Θ → CR. Further, by Lemma 52 id ∈ JΓ `Θ ∆K(φ). Therefore, by Theorem 15

c{id} ∈‚.

Extensions

Our proof can be quite readily extended to account for additional typing

constructors, such as a positive sum type defined by two constructor terms ι1(v)

and ι2(v). As observed in the previous chapter, unlike the function and universal

co-data type constructors, defined by their co-value formers, sums are data types.

Moreover, they represent an additive type constructor (where there are multiple
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options) while, so far, we have only considered multiplicative types (where there are

multiple components).

Adding the sum types presents no major challenge to the proof; only a

small number of modifications are needed. First, we must extend our notion of

head reduction to account for the additional positive ς reductions and neutral

β reductions. The central commutation lemma (Lemma 34) continues to hold.

Moreover, we can extend the unfocalization lemma (Lemma 38) with the two new

constructor forms: if A and B are reducibility candidates such that ι1(V ) ∈ B for

every value V ∈ A, then it must be that ι1(v) ∈ B for all terms v ∈ A.

Constructing seeds for data types is dual to co-data types: starting with a

set of simple values and finding first the simple co-values which are orthogonal to

those and then all the simple values which are orthogonal to the co-values. All the

remaining cases of the soundness proof follow similarly.

Analogously, the system can be extended with negative sums as well as

positive and negative products and a type for existential quantification. The

changes are restricted to places which explicitly mention specific types and their

constructors: namely the unfocalization lemma, the interaction of head and regular

reduction, and in the handling of the specific typing rules for the soundness proof.

Variations and Applications
Untyped Sub-Theories

A more exotic alteration of our proof emerges from a desire to better

understand the untyped µµ̃ calculus. It turns out that the µ, µ̃ and ς rules alone,

without β, represent a core language of substitution and focusing which is strongly

normalizing.
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Theorem 16. The →µE ,µ̃V ,ηµ,ηµ̃,ς reduction theory is strongly normalizing on

untyped programs for any stable and focalizing strategy.

That the →µE ,µ̃v theory is strongly normalizing was already established in

Polonovski (2004). Using our technique we can also include reductions like ς.

The idea is that, in absence of β reduction, “type” stops being a useful concept.

Instead, there is really just one type and so we require only a single reducibility

candidate. Specifically, our proof can proceed as before, only without the β

reductions in the theory. As such, there are no neutrally charged reductions at

all. Otherwise though, the definitions and lemmas of the proof are unchanged and

there are fewer cases to consider in the commutation lemma. The single reducibility

candidate we need, X , is built via the fixed-point from the seed containing all

strongly normalizing simple (co-)terms. Then by induction on the syntax tree, it

can be shown that if σ is a substitution mapping variables to values in X and co-

variables to co-values in X , that

1. For any term v, v{σ} ∈ X

2. For any co-term e, e{σ} ∈ X

3. For any command c, c{σ} ∈‚.

Moreover, variables and co-variables are in X , meaning all commands are strongly

normalizing in this reduced system.

Strong normalization of the µµ̃-calculus is unique to the two sided sequent

calculus. If variables and co-variables are interchangeable we get no such result

as we can encode infinite loops by double self-application. This suggests that

distinguishing terms and co-terms is a sort of type system, albeit a minimal one.

Strong normalizing of the µµ̃ component of the syntax was shown in Polonovski
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(2004) using symmetric candidates. The argument above extends that result to

the full syntax and accounts for the ς rules. Because it is strategy parametric, it

works for the non-deterministic strategy where every (co-)term is a (co-)value,

which is exactly the same as the core µµ̃ calculus without any value restriction

in substitution. This goes to show that studying the models of types can teach us

things even about reduction in untyped languages.

A Fixed Point Characterization of Candidates

In this chapter we defined reducibility candidates as pre-types which satisfied

two conditions. First, they were required to not be too big by insisting that they

be orthogonally sound. Second, they were required to not be too small by insisting

that they be saturated. All properties of interest came from that definition and it

seems one that works well in practice. However we might instead want a simpler

definition. Namely, we proved in Theorem 14 that all reducibility candidates were

fixed-points of the saturation function. Here we observe that we could take this as

definition as well.

Theorem 17 (Fixed Point Characterization). A pre-type A is a reducibility

candidate if and only if A = Sat(A)

Proof. The only if direction was proved in Theorem 14. For the if direction we

observe that the empty pre-type 0 containing no terms or co-terms is forward

closed and

0 v 0⊥d.

Thus whenever

A = Sat(A) = Step0(A)
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we have met the conditions in Lemma 44 taking 0 as the seed and so know that A

is a candidate.

Characterizing candidates as fixed-point solutions of the Sat(−) function

has a certain elegance since we also construct candidates as fixed-point solutions

to a slightly more complicated function. Moreover, we can use it to derive some

interesting facts about the space of candidates. Namely, that the set of candidates

under subtyping has all meets and joins.

Theorem 18. The set of reducibility candidates in a strategy forms a complete

lattice when ordered by subtyping (≤).

Proof. Candidates are fixed-points of Sat(−) by Theorem 17. And, Sat(−) is a

monotonic function with respect to ≤. So the existence of a complete lattice of

fixed-points is given by Tarski’s fixed-point theorem.

Generalized Orthogonality

Through our proof we have used operations like (−)⊥ and (−)⊥d which share

some common structure.

We can generalize the orthogonal operation to a general class of similar

operations on pre-types that all share the same properties. We say that an

operation Op on pre-types in S is a negation operation inside D if and only if D

is a fixed pre-type in S and there exists predicates P and Q on term, co-term pairs

such that:

v ∈ Op(A) ⇐⇒ v ∈ D ∧ ∀e ∈ A.P (v, e)

e ∈ Op(A) ⇐⇒ e ∈ D ∧ ∀v ∈ A.Q(v, e)
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We write Op? for the adjoint negation operator to Op which is formed by reversing

P and Q, namely:

v ∈ Op?(A) ⇐⇒ v ∈ D ∧ ∀e ∈ A.Q(v, e)

e ∈ Op?(A) ⇐⇒ e ∈ D ∧ ∀v ∈ A.P (v, e)

It follows that Op?? = Op and that Op? is a negation operation inside D whenever

Op is.

Furthermore, Op is a symmetric negation operation inside D when Op =

Op? which holds if and only if for all v, e ∈ D, P (v, e) ⇐⇒ Q(v, e). Note that

orthogonality is a symmetric negation operation inside SNS .

It follows that all such negation operations enjoy the standard basic

properties of orthogonality.

Lemma 53 (Monotonicity). For any negation operation Op inside D, A ≤ B

implies Op(A) ≤ Op(B).

Proof. Suppose v ∈ Op(A), so we know that v ∈ D and for all e ∈ A, P (v, e).

Then, given any e ∈ B, we know that e ∈ A because A ≤ B, and so P (v, e).

Therefore, v ∈ Op(B) as well.

Suppose e ∈ Op(B), so we know that e ∈ D and for all e ∈ B, Q(v, e). Then,

given any v ∈ A, we know that v ∈ B because A ≤ B, and so Q(v, e). Therefore,

e ∈ Op(A) as well.

Lemma 54 (Contrapositive). For any negation operation Op inside D, A v B

implies Op(B) v Op(A).
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Proof. Suppose v ∈ Op(B), so we know that v ∈ D and for all e ∈ B, P (v, e). Then,

given any e ∈ A, we know that e ∈ B because A v B, and so P (v, e). Therefore,

v ∈ Op(B) as well.

Suppose e ∈ Op(B), so we know that e ∈ D and for all v ∈ B, Q(v, e). Then,

given any v ∈ A, we know that v ∈ B because A v B, and so Q(v, e). Therefore,

e ∈ Op(B) as well.

Lemma 55 (Double Negation Introduction). For any negation operation Op inside

D, A v D implies A v Op?(Op(A)).

Proof. For any v ∈ A and e ∈ Op(A), Q(v, e) by definition of Op(A), so P (v, e)

as well since Op is symmetric. Therefore, A v D implies that v ∈ D, so that

v ∈ Op?(Op(A)). The case of e ∈ A implies e ∈ Op?(Op(A)) is dual.

Lemma 56 (Triple Negation Elimination). For any negation operation Op inside

D, A v D implies Op(Op?(Op(A))) = Op(A).

Proof. Note that Op(A) v D because Op is a negation operation inside

D. Therefore, by double negation introduction (Lemma 55), Op(A) v

Op(Op?(Op(A))). Additionally, because A v D, we know that A v Op?(Op(A))

by double negation introduction (Lemma 55), and so Op(Op?(Op(A))) v Op(A) by

contrapositive (Lemma 54). Therefore, Op(Op?(Op(A))) = Op(A).

These properties of a symmetric negation operation are exactly the properties

of a Galois injection. Indeed, Lemmas 54 and 55 together are exactly the statement

that Op and Op? are adjoint contravariant functors with respect to v. This

suggests a fundamental connection with the theory of abstract interpretation which

we will not pursue at this time. Further, it suggests the next theorem.
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Lemma 57 (De Morgan Law). For any symmetric negation operation Op inside D,

if A v D and B v D then Op(A tB) = Op(A) uOp(B).

Proof. Our proof proceeds by inclusion in both directions. Since A v A t B we

know by contrapositive (Lemma 54) that Op(A t B) v Op(A). Symmetrically,

Op(A t B) v Op(B). Thus, Op(A t B) v Op(A) u Op(B). Op(A) u Op(B) v

Op(A) and so by contrapositive, Op?(Op(A)) v Op?(Op(A) u Op(B)). So, by

double negation introduction (Lemma 55) A v Op?(Op(A)) v Op?(Op(A) u

Op(B)). Symmetrically, B v Op?(Op(A) u Op(B)). So, A t B v Op?(Op(A) u

Op(B)) and so by contrapositive and double negation elimination Op(A)uOp(B) v

Op(Op?(Op(A) uOp(B))) v Op(A tB).

A restriction operation is one of the form Res(A) = A u B for some

fixed pre-type B. All such operations are monotonic with respect to both orders.

Moreover, if Op(−) is a negation operation inside D and Res(A) = A u B for all

A then Op(Res(−)) is a negation operation inside D and Res(Op(−)) is a negation

operation inside DuB. Moreover, if Op(−) is a symmetric negation operation inside

D then Res(Op(Res(−))) is a symmetric negation operation inside D u B.

When we consider both negations and restrictions together, however, they

admit some additional properties. In particular, given a symmetric negation

operation Op(−) and a restriction operation Res(−), we have the following

restricted versions of double negation introduction and triple negation elimination:

– restricted double negation introduction:

A v Op(Res(Op(A)))
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Proof. Note that we know A v Op(Op(A)) by unrestricted double negation

introduction. Furthermore, we have Res(Op(A)) v Op(A) by inclusion and

thus Op(Op(A)) v Op(Res(Op(A))) by contrapositive. Therefore, A v

Op(Op(A)) v Op(Res(Op(A))).

– restricted triple negation elimination:

Res(Op(Res(Op(Res(Op(Res(A))))))) = Res(Op(Res(A)))

Proof. First, observe that

Res(A) v Op(Res(Op(Res(A))))

by restricted double negation introduction, and so monotonicity and

idempotency of Res(−),

Res(A) v Res(Op(Res(Op(Res(A)))))

therefore, by contrapositive of Op(−)

Op(Res(Op(Res(Op(Res(A)))))) v Op(Res(A))

and so by monotonicity

Res(Op(Res(Op(Res(Op(Res(A))))))) v Res(Op(Res(A)))
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Second, observe that

Res(Op(Res(A))) v Op(Res(Op(Res(Op(Res(A))))))

also by restricted double negation introduction, and so

Res(Op(Res(A))) v Res(Op(Res(Op(Res(Op(Res(A)))))))

by monotonicity and idempotency of Res(−). Therefore,

Res(Op(Res(Op(Res(Op(Res(A))))))) = Res(Op(Res(A))) .

Note that the unrestricted double negation introduction and triple negation

elimination principles follow from the above restricted variants, since the identity

operation on pre-types is a restriction operation.

We will also use the following notation for constructing a new pre-type by

“cutting” together two existing ones:

v ∈ 〈A||B〉 ⇐⇒ v ∈ A e ∈ 〈A||B〉 ⇐⇒ e ∈ B

As usual, the cut operation on pre-types has its own properties based on the two

orderings of pre-types:

– self-cut : A = 〈A||A〉

– cross-cut : 〈A||B〉 v 〈A′||B′〉 and 〈C||D〉 v 〈C ′||D′〉 implies 〈A||D〉 v 〈A′||D′〉

– order exchange: 〈A||B〉 v 〈C||D〉 iff 〈A||D〉 ≤ 〈C||B〉
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Observe that as a consequence of self-cut and cross-cut for refinement, we have the

additional cross-cut property that A = 〈B||B′〉 and A = 〈C||C ′〉 implies that A =

〈B||C ′〉. Also note the additional properties of how cutting semantic types interacts

with arbitrary negation operations Op(−) and restriction operations Res(−):

– cut negation: Op(〈A||B〉) = 〈Op(B)||Op(A)〉

– cut restriction: Res(〈A||B〉) = 〈Res(A)||Res(B)〉

Lemma 58. Given C = Cv v A = A⊥ = Av⊥, then C⊥v v C⊥v⊥ iff A = C⊥v⊥.

Proof. First we show the “only if” direction, so assume that C⊥v v C⊥v⊥. We

get A = A⊥ v C⊥ by refinement contrapositive of C v A with the negation

operation ⊥, and likewise C⊥v v C⊥v⊥ v Av⊥ = A by refinement contrapositive

of A v C⊥ with the negation operation v⊥. Thus, we get A = A⊥ v C⊥v⊥ by

refinement contrapositive of C⊥v v A with ⊥ again. Therefore, A = C⊥v⊥ since

both A v C⊥v⊥ and C⊥v⊥ v A hold.

Second, we show the “if” direction, so assume that A = C⊥v⊥. By

assumption, we have that Av = Av⊥v = C⊥v⊥v⊥v, so Av = C⊥v by restricted triple

negation elimination with v⊥v. Therefore, C⊥v = Av v A = C⊥v⊥ by refinement

inclusion of v.

Lemma 59. For any C, C⊥v v C⊥v⊥ whenever either (1) 〈C⊥v||C〉 v C, or

(2) 〈C||C⊥v〉 v C.

Proof. 1. We have C⊥v v 〈C⊥v||C〉⊥v = 〈C⊥v||C⊥v⊥v〉 by contrapositive and cut

negation with ⊥v on the assumption 〈C⊥v||C〉 v C. Thus, for any V,E ∈ C⊥v,

we also know that E ∈ C⊥v⊥v, so 〈V ||E〉 ∈‚. Therefore, C⊥v v C⊥v⊥.

2. Analogous to the proof of part 1 by duality.
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Related Work

Our strong normalization proof builds on powerful techniques already existing

in the literature. By combining them into a coherent whole we find an approach

suitable for proving our strategy parametric theorem. In this section, we review the

development of these techniques and how we build on them.

Reducibility Candidates

The approach to strong normalization where types are interpreted as

candidates traces back to Tait (1967) and Girard (1972). Moreover, such strong

normalization proofs are closely related to other lines of research including logical

relations (Wadler (1989)) and realizability (Kleene (1945)). The candidates-based

approach is compelling in part because it easily accommodates impredicative

polymorphism, as we have in this paper, by defining the set of potential candidates

from the start before any particular type, allowing that set to be quantified over in

the definition of polymorphic types as elements of that set.

Orthogonality

Tait’s method as originally constituted is not suitable in our setting because

we need types to classify co-terms in addition to terms. The idea of orthogonality

appears in multiple places, including Girard’s development of linear logic (Girard

(1987)), Krivine’s analysis of classical realizability (Krivine (2009)), and Pitts’

>>-closed logical relations (Pitts (2000)). A pure orthogonality-based proof of

strong normalization is suitable for certain strategies. For example, if we wished

to prove strong normalization only for call-by-name, we could start by defining the

types in terms of their observations—so for functions, valid call stacks—and then
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define their set of terms orthogonally as anything which runs with any of these

observations, and, finally, their set of co-terms as the double orthogonal. A dual

approach, starting with the constructions of values, would work for call-by-value.

Munch-Maccagnoni (2009) identified a key feature of the construction of

a type from its orthogonal: all types are generated by their values. That is, the

denotation of a type is the orthogonal of its (co-)values. In our language, A = Av⊥.

This property is not needed to make soundness go through in our proof, but it

seems to hold practically “for free” in the construction. Indeed, soundness would

have been provable with the weaker condition in the definition of reducibility

candidates that every candidate contain its own Head, instead of having every

candidate be Sat. However, all candidates we actually generate are Sat and so we

have included this as part of the definition for clarity. Moreover, the fact that all

types are generated by their values allows us to relate our fixed-point construction

to orthogonality. Specifically, we observe that the reducibility candidates we

produce in the case of the call-by-value and call-by-name strategies are uniquely

defined similar to the direct definitions from the orthogonal construction of types.

We could show this by showing that the types generated by orthogonality are the

(unique) solutions to our fixed-point equations, but completeness means that it is

enough to know that we have generated candidates which include their seed.

Theorem 19. Suppose that head reduction in the chosen strategy is deterministic.

Then, for any reducibility candidate A and C = C⊥d v A, it must be that A = C⊥v⊥.
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Proof. We prove the case where all values are simple terms as the other case is

dual. We know that C = C⊥d. Thus,

C = 〈C||C〉

= 〈C⊥s||C〉

= 〈C⊥v||C〉

The last step following from the assumption that all values are deterministic.

Therefore, by Lemma 59 it must be that C⊥v v C⊥v⊥ and so by Lemma 58 that

A = C⊥v⊥.

Corollary 4. For any pre-type C = Cv of (co-)values,

– ({V |V ∈ C}, {E|E ∈ C⊥})⊥ is a reducibility candidate if C is in V, and

– ({V |V ∈ C⊥}, {E|E ∈ C})⊥ is a reducibility candidate if C is in N .

Proof. 1. Note that this can be restated as saying 〈C||C⊥〉⊥ is a reducibility

candidate whenever C is in V .

Let A = 〈C||C⊥v〉⊥v⊥. Because V head reduction is deterministic, we already

know that A is a reducibility candidate by Theorem 19. Furthermore, because

every co-term is a co-value in the V strategy, we also know that 〈D||Ev〉 =
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〈D||E〉 for any pre-types D and E in V . Therefore, it follows that:

A = 〈C||C⊥v〉⊥v⊥ by definition

= 〈C⊥v⊥||C⊥v⊥v⊥〉 by cut negation and restriction

= 〈C⊥v⊥||C⊥v⊥v⊥v〉 by V

= 〈C⊥v⊥||Cv⊥v⊥v⊥v〉 by assumption C = Cv

= 〈C⊥v⊥||Cv⊥v〉 by restricted triple negation elimination

= 〈C⊥v⊥||C⊥〉 by V and C = Cv

= A⊥ = 〈C⊥v⊥||C⊥〉⊥ by reducability candidacy of A

= 〈C⊥⊥||C⊥v⊥⊥〉 by cut negation

= 〈C⊥⊥||C⊥〉 by cross cut

= 〈C||C⊥〉⊥ by cut negation

2. Analogous to part 1 by duality.

Thus, we see that the reducibility candidates generated by the fixed-point in

our method for call-by-value and call-by-name could also be generated purely using

repeated use of orthogonality and the restrictions to (co-)values. Moreover, the

solution is unique: any orthogonality-based construction which ends in a candidate

and includes all the expected deterministic (co-)terms from the seed is ultimately

producing the same object.

We might wonder then about the purpose of the fixed-point construction.

It seems orthogonality is simpler and more direct, giving an exact construction of

candidates without relying on a potentially non-constructive fixed-point theorem.
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However, the basic orthogonality approach is not strategy agnostic, so that

the model is constrained by the chosen strategy. Worse, it appears that it alone

is simply not strong enough to handle all strategies of interest. The problem is

clearest in the non-deterministic strategy U where everything is a (co-)value. In

such a setting we can try to define the type constructors starting with either

constructions or observations and then by orthogonality. However, we run into

a problem when we seek to prove the soundness of the µ and µ̃ rules. In the

soundness proof, we have the inductive hypothesis that for any term v in the

candidate, c{v/x} is strongly normalizing. Unfortunately, with orthogonality, it

does not follow that µ̃x.c is in the candidate. That is because the co-term might

contain a µα.c′ where c{µα.c′/x} is strongly normalizing but c′{µ̃x.c/α} isn’t. This

is avoided in the case of call-by-name since µ̃x.c is not a co-value. However, the

problem seems fundamental in the case of the non-deterministic strategy (Lengrand

and Miquel (2008)), and is difficult to tame in more complicated strategies like call-

by-need.

Thus, while the basic orthogonality method corresponds to a special case of

our proof technique for the call-by-value and call-by-name strategies, it is strictly

less general. The call-by-need case is particularly interesting: Theorem 19 gives us

a method for directly constructing call-by-need candidates from an initial set of

(co-)values by using orthogonality a total of four times together with intermediate

restrictions down to a set of values. Unlike in the case of call-by-name and call-by-

value, we have neither that all terms are values or all co-terms are co-values, and

so none of these uses appear to cancel out. We discovered and know this direct

construction yields candidates because we have proven it equal to the result of
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our strategy agnostic method, however, on its own its behaviour seems rather

inscruitable and it seems notable that it was not previously discovered.

Symmetric Candidates

The symmetric candidates method introduced by Barbanera and Berardi

(Barbanera and Berardi (1994)) to prove strong normalization for the symmetric

λ-calculus—a system using the non-deterministic strategy U—avoids the problem

with orthogonality by defining types via a function on sets of terms which explicitly

includes the problematic syntactic constructs such as µ. Types are then interpreted

as fixed-points of these functions.

We have attempted to simplify the presentation of the fixed-point

construction in the present work by modeling types as pairs of sets of terms and

sets of co-terms, where Barbanera and Berardi used only sets of terms. Where they

used a pair of anti-monotone maps, whose composition is guaranteed to have a

fixed-point, we use a single map which is monotone with respect to the sub-typing

order. As a consequence their original presentation concealed the role of behavioral

sub-typing in ensuring that fixed-point solutions for candidates exist.

A more fundamental difference with Barbanera and Berardi has to do with

how the function whose fixed-point we take is defined. While Barbanera and

Berardi’s definition is syntactic, our definition is in terms of how (co-)terms behave

under (head) reduction. This change is important not only for simplicity and

conceptual elegance, but also for extensibility. While Barbanera and Berardi, as

well as Lengrand and Miquel (2008) who use the same technique, consider only the

non-deterministic strategy U where everything is a (co-)value, we are interested also

in strategies that have non-(co-)values. Having non-(co-)values enables additional
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reductions, namely ς, and this presents a problem both in defining the type and

in the soundness proof if a purely syntactic definition is used. The problem is that

a (co-)term which is not a µ or µ̃ abstraction, such as a call-stack, might reduce

to one which is. Thus, we need to be sure that we only include such (co-)terms

which only reduce to things which would otherwise be in the type, and we have no

syntactic criteria for ensuring this. Instead, by using how terms behave under head

reduction, we are able to ensure we encode all of the (co-)terms we need in a type.

However, in the case of U where everything is a co-value, the ς rules never

fire and so the saturation in our fixed-point construction exactly corresponds to

symmetric candidates. Thus, we can see our proof as generalizing that proof as

well.

Ultimately, we see a trade-off, while the orthogonality method works

behaviorally and so handles the lifting rules and unfocalization without issue

it breaks down in handling activation in more exotic strategies. Conversely,

symmetric candidates always handles activation but not unfocalization in strategies

where there are non-(co-)value. As call-by-need exposes both problems, it

alone demands a proof technique which gets the benefits of both. Moreover, by

synthesizing these techniques into a cohesive whole we have a singular model

construction and proof which works across a whole range of strategies.
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CHAPTER VII

CONCLUSION

In this dissertation we have studied languages inspired by a Curry-Howard

correspondence with classical sequent calculus. This setting which emphasizes the

dual-sided nature of computation has been instructive in several ways. Perhaps

most importantly, it has helped draw attention to the idea, which we have returned

to again and again through out the dissertation, that functions are a co-data,

defined by how they are used. The idea of functions as pattern matching on call-

stacks provides the opening for the alternative implementation of functions in

Chapter III in terms of projection operations. That alternative view allows us

to wrestle with the tension between lazy extensionality and control by way of a

confluent rewriting system equivalent to our desired equational theory. It also came

to use in Chapter IV even without control in directing us towards an approach

to closed head-reduction and thus a solution to the conflict between weak head

reduction and extensionality that happens even in the pure λ-calculus.

The dual-sided approach has continued to be helpful as we turned our

attention to typed systems and strategies other than just call-by-name. In

particular, our reducibility candidates based proof is based on the idea of seeing

types semantically as two-sided entities, classifying both terms and co-terms. Our

proof suggests that it isn’t enough to look at just what terms inhabit a type.

Indeed, it was observed more than 40 years ago that “types are not sets” Morris

(n.d.). While term models interpreting types as just sets of terms are appealing

in their simplicity, they fail to tell the full story, so more precise approaches are

needed. Partial equivalence relation (PER) models are one compelling solution
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which recognizes that a type tells us not only what terms it classifies but also when

those terms are equal. The lesson we would like to draw from this dissertation is

that orthogonality and related methods suggest yet a third perspective where we

recognize types as classifying both terms and contexts. Our view is that this is not

just a technical convenience to make proofs work, but something essential about

what “types” are. It is highly suggestive that the dualization in orthogonality—

that more terms means less co-terms and vice versa—corresponds so neatly to

sub-typing. And, we find it even more suggestive that this notion of behavioral

sub-typing is exactly what lets us solve the recursion at the heart of symmetric

candidates.

Building a single, strategy-parametric proof of strong normalization allowed

us to extract a proof, and so eventually even a more direct orthogonality based

proof, for call-by-need as a special case. This demonstrates the utility of treating

the strategy as a parameter to the reduction theory as in Downen and Ariola

(2014): call-by-need, call-by-value, and call-by-name all give rise to their own

separate theories, but the parametric approach allows us to abstract out what is

the same in all of them.

Our emphasis on directly accounting for many strategies differs somewhat

from tradition in the λ-calculus where call-by-name is emphasized above all.

As we have seen, there is no single “best” strategy which encompasses all the

others. Even in the pure λ-calculus, it’s not always enough to think of strategies

like call-by-value as just restrictions of the seemingly most-general strategy call-

by-name, so that β-reduction only fires on values. As the study of call-by-value

calculi has brought to light Herbelin and Zimmermann (2007); Sabry and Felleisen

(1992), β alone isn’t complete for these alternative strategies. As such, proving
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strong normalization only for β might not be enough; we should instead strive for

more complete reduction theories and account for all their necessary rules. Our

parametric mixed strategy system allows us to do just that while also allowing us

to mix strategies.

It also though raises questions about relating our work back to the λ-calculus.

Surely, given how present languages already have features (such as seq in Haskell

or a lazy keyword in some strict languages) for mixing lazy and eager evaluation,

it would be desirable to have λ-calculi which support mixing strategies akin to our

multi-strategy sequent calculus. However, this is more of a challenge since when

we write v v′ in λ-calculus it is not clear from the syntax what the strategy of the

entire resulting expression should be even if we know the strategies for both v and

v′. While in the sequent calculus we could annotate the call stack constructor ·

with a strategy, in λ-calculus it is odd to annotate an application with the strategy

of the entire resulting term. Still, such annotations are certainly possible. As

such, a multi-strategy λ-calculus, which could be proven strongly normalizing by

compilation to our sequent calculus, is left as future work. In particular, while

we expect no particular difficulties in handling a fixed set of strategies (including

call-by-name, call-by-value, call-by-need, and the non-deterministic strategy) the

criteria for stable and focalizing strategies seem specific to a sequent calculus and it

would be interesting to see if they could be given a λ-calculus presentation.

As we saw in Chapter V the projection based approach to rewriting with

extensionality does not scale beyond lazy functions. An interesting question for

future work is to see if there are other computational interpretations of extensional

axioms which can be used to address the challenge of extensional rewriting for

other systems, such as the call-by-value λ-calculus or languages with additional

205



types besides functions. At the very least the systems of Chapter III should be

a reminder that finding a rewriting theory corresponding to a specific equational

theory can be significantly more involved than simply orienting the equations.

The technical contributions of Chapter’s III, IV, and VI are each directly

relevant to compiler writers. Together they suggest the possibility of a compiler

intermediate language that supports control, multiple strategies, and which has

desirable properties including confluence which gives freedom in the order of

rewrites applied by the compiler, strong normalization which ensures the absence

of spurious infinite loops, and head reduction as a potential code generation scheme

consistent with extensionality. It would be particularly interesting to see a compiler

based on head reduction instead of the weak head reduction used now.

In terms of the model for strong normalization in Chapter VI, there are many

avenues for future work which present themselves. As we proved in Theorem 18,

our model already incorporates semantic types which we could interpret as “union”

and “intersection” types for all strategies. A now classic result for the call-by-

name λ-calculus is that intersection typeability characterizes the set of strongly

normalizing terms (Ghilezan (1996)). However, it is also the case that even the

basic typing rules for intersection and union types are not strategy agnostic in

the presence of effects, with natural seeming rules sound in one strategy but not

another (Davies and Pfenning (2000)). Thus, it would be interesting to try to

develop general rules for intersection and union types which somehow take strategy

into account, and to see if the characterization of normalization could be extended

to such a system.

Our normalization proof was presented for a system featuring impredicative

polymorphism and multiple kinds (for the multiple strategies). Because of how
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polymorphism is modeled, there should be no significant challenges in extending

it to a system with function kinds, akin to Fω (Girard (1972)). A classical sequent

calculus over such a system could also be thought of as a presentation of classical

higher order logic as is implemented in the Isabelle/HOL proof assistant (Nipkow,

Wenzel, and Paulson (2002)) as such our proof method can be seen as answering a

strategy-refined version of the statement that higher order classical sequent calculus

has cut elimination. of classical mathematics, including extensionality and various

choice principles, still require computational interpretations which do not follow

directly from our framework and would require further work.

Going further, our sequent calculi and strong normalization proof could

serve as a stepping stone to building a dependently typed proof assistant in the

style of Coq (INRIA (2017)) but extended with classical logic in the universe of

propositions. In present Coq, assuming axioms is unsatisfactory as one is left with

”programs” which do not compute and so properties such as canonicity or decidable

type checking are lost. The computational interpretation of classical logic suggests

that this problem may be solvable. However, the solution is still somewhat elusive.

In Coq, one can use a proof at the level of construction, and, in particular, use

a proof of well-foundedness of a relation to justify a recursive procedure. The

problem is that it is not immediately apparent how to use a classical realizer

witnessing termination of a function to run that function. As such, bringing the full

power of classical reasoning to the world of constructive proof assistants remains an

open problem.
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