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RESUME

Dans cet article on propose une nouvelle méthode de sélection de mo-
deles linéairement regressifs. Un algorithme génétique (AG) basé sur
une petite population est introduit. Le codage simple des parametres
et la convergence rapide rend la complexité modeste. La premiere
application montre comme des modeles autoregressifs et des modeles
polynomiaux nonlinéaires peuvent étre correctement selectionnés. La
complexité est donnée en fonction du nombre de générations et du
nombre d’évaluations nécessaires jusqu’a la convergence de I’algo-
rithme. Ensuite, I’AG est appliqué en tant qu’algorithme d’entraine-
ment pour des réseaux a fonctions radiales de base. La stratégie de
sélection des centres est comparée a I’algorithme d’entralnement par
moindres carrés. Pour des sous—ensembles a difffentes dimensions,
I’ AG fournit de meilleurs modeles que I’algorithme des moindres car-
rés.

1 Introduction

Various problems in signal processing consist in finding
solutions to a linear regression model. Moreover, an adequate
subset selection for the regressors is often a crucial factor for
adequate prediction.

In this paper we show how a simple genetic algorithm
(GA) using a simplex reproduction scheme can efficiently
be applied to regression model selection. We investigate the
number of necessary iterations to find the correct regressors
of an autoregressive model. Then, we expand the model to
nonlinear polynomials. The number of model evaluations is
computed until the GA converges to the correct synthetical
model. As a further example we apply the GA to the problem
of selecting centers of radial basis functions (RBF). RBF
networks are a particular class of neural networks where the
parameters in the hidden called centers undergo a learning
procedure. The GA presented here determines the dimension
and the location of the subset of centers building the model.
The method is compared to the orthogonal least squares
(OLS) learning algorithm. For both methods the mean square
error (MSE) provided by a selected model is computed and
compared to the complexity of the model. Therefore, the
minimum description length (MDL) criterion is applied that
validates a model according to its coding cost.

ABSTRACT

In this paper a novel method for linear regression model selection
is proposed. A reproduction genetic algorithm (GA) suited for small
populations is introduced. The simple encoding of the parameters and
fast convergence provide modest computational complexity. The first
applications show how linear autoregressive models and nonlinear
polynomial models are correctly selected. The complexity is given
in terms of number of generations and number of necessary model
evaluation until convergence. Furthermore, the GA is applied as a
learning algorithm for radial basis function (RBF) networks. The
center selection strategy is compared to the well-known orthogonal
least squares learning (OLS) algorithm. For center subsets of various
dimensions, the GA provides better models than the OLS algorithm.

2 The Genetic Algorithm

GA’s have been developed to mimic some of the processes
observed in natural evolution. They are based on the principle
of the selection of the fittest constellations out of a basic
ensemble. In other words, they can perform adequate subset
selection for various optimization problems. Basically, a GA
is applied to a set of chromosomes that constitute a population.
During the process of reproduction, a population evolves from
the current generation to the next generation.

In this study, we apply a three-operator GA consisting of
reproduction, mutation and crossover. In [2], an approach for
the successful use of small populations has been introduced.
The algorithm presented here has been derived from the
simplex reproduction algorithm in [6]. Here, a chromosome
is a binary string where each position represent a specific
regressor in a linear regression model. The binary value
indicates the presence or the absence of this regressor for the
considered model.

The important steps of the algorithm are summarized
below :

— Initialization : Generate N chromosomes randomly
where N is a small odd number.

— Evaluation of each chromosome fitness.

— Application of the operators :
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— Reproduction : Select the chromosome providing
best fitness. It goes unchanged into the next gene-
ration.

— Mutation : (N-1)/2 mutations from the fittest are
passed to the next generation. One bit randomly
selected in the chromosome changes per mutation.

— Crossover : Each chromosome competes with its
neighbor. The losers are discarded whereas the
winners are crossed and placed in the next genera-
tion. The competitors always consist of a mutated
and crossed chromosome respectively.

— The iterations continue until convergence is achieved.
The population is considered to have converged when
none of the chromosomes in the current population
differs from the fittest by more than two bits.

— At convergence the fittest chromosome is retained and
N-1 chromosomes are randomly generated. The trials
continue until a satisfactory solution is obtained.

One advantage of this approach is that the best solution
is carried unchanged into the next generation. This elitist
reproduction ensures that no better solution has been found
up to that point.

The fitness of the chromosomes is evaluated is using the
minimum description length (MDL) criterion [11] :

MDL(k) = N -In(o}) + k - In(N) (1

where k is the number of parameters, 0,3 is the residual mean
square error (MSE) and N is the number of samples of the
input signal. This criterion is based on a compromise between
model coding cost and residual coding cost. The first term
on the right side corresponds to the encoding of the residuals
and decreases with an increasing k whereas the second term
corresponds to the encoding of the model and increases with k.
Thus a minimum exists for the MDL function, and eventually,
the selected k is the value corresponding to this minimum.

3 Applications

3.1 Polynomial Fitting Models

A polynomial fitting model can be expressed as

M
y(n):Zampm(n)—i—e(n) n=1,...,N 2)
m=0
where a,, are the parameters, p, the regressors or predictors
and e(n) is the fitting error. The regressors are polynomials
over delayed signal samples. Classical exhaustive methods
to explore the significant regressors are often time consu-
ming [8]. On the other hand a comparison with the genetic
approach looks promising [5].

Each position inside a chromosome indicates the presence
of a regressor with its binary value. In the case of an auto-
regressive (AR) model, the length of the chromosomes is the
maximum sample delay. Initially, each position in the chro-
mosomes is set randomly to a binary value. Then, the fittest
chromosome according to the MDL criterion is retained and

the next generation is created. When the fittest chromosome
has not changed for a certain number of generations the algo-
rithm stops.

Table 1 shows the average number of iterations until
convergence is reached as a function of the population and the
length of a chromosome. The simulations have been run 100
times for the following example :

yn) =a,-y(n—-4)+a, -yn—28) +e) 3)

We observe that the total number of evaluations is much
lower than what an exhaustive search on all possible regressor
combinations would require. It is obvious that the number of
iterations increases as a function of the chromosome length.
On the other hand, larger population sizes require in general
fewer generations. The GA can also be applied to more

Chromosome length
Population 10 20 30
9 7.67£3.7 | 18.5+6.7 | 31.05+9.0
11 5.8442.3 | 14.234£5.2 | 29.484+8.3
13 6.85+£3.3 | 12.96+4.3 | 23.80+7.8

TAB. 1 — Average number of iterations

complex polynomial models as given below :
y(n) = al-x(n—3)+az-x(n—1)-x(n—3) 4)
+ ay-xn—2)-xn—4)
+ a,-xn—3)-xn—>5)+en)
y(n) is the output of a nonlinear polynomial filter where

the input signal x(n) is white noise with zero mean and
unity variance. Again, the task of the GA is to converge

Population | Iterations | Evaluations
7 24.97+8.8 150.82
9 17.88+6.2 144.04
11 15.33£5.1 154.30
13 14.57+4.6 175.84

TAB. 2 — Average number of iterations and evaluations

to the given model selecting the correct regressors. The
chromosome lengths corresponds to the maximum number of
possible regressors. If all linear and second order models are
considered with a maximum delay of 5 samples the resulting
chromosome length is 20. Figure 2 shows the number of
iterations and evaluations for a given population size. The
number of evaluations indicates how many models have been
evaluated until convergence. We observe that the optimal
GA configuration is obtained for a population size of 9
chromosomes. Again, the computational complexity required
by an exhaustive model search is incomparably higher.

3.2 Radial Basis Functions

An RBF network may be considered as a three layer feed
forward neural network. The input layer is made up of source



nodes. The second layer is a hidden layer and the output
layer supplies the response of the network to the activation
patterns. An RBF network output with Gaussian functions can
be expressed as

M
y) =Y a1 E fem) n=1,...N. (5

where x is the input vector, ¢; is a center, B, is a real constant
(width) and M the number of centers. The transformation
from the input space to the hidden-unit space is nonlinear
whereas it is linear in the parameters. In prediction problems
the task is to select the centers and the widths such as to
minimize the resulting MSE. Different training methods have
been developed [4, 1] for this purpose.

In our approach, we simply recall the regressive model
given in (2) where the radial functions can be considered as
regressors. For initialization, a number of centers is selected
randomly from the input space. This number corresponds to
the length of the chromosomes which are encoded into binary
values. At evaluation, each / in a chromosome enables the
corresponding center to participate in the RBF output layer
whereas centers with a designated 0 are not taken into account.
The fitness of each chromosome is again computed according
to the MDL criterion. The GA selects subsets of these centers
and computes the MSE after each generation. For a given set
of centers, the widths are computed as

1 & .
ﬁf:ﬁznci_xfn i=1,...M. (6)
e

In [12] a cooperative-competitive GA has been presented
which encodes the center and widths into binary streams.
However, our method is much simpler since the centers are
directly selected from the input space. In our approach, the
task of the GA is to select adequate subsets providing a MSE.

In a first attempt we compared the GA to the Kohonen
self—organizing map [7] where the GA found significantly
better models than the clustering algorithm. Here, we compare
the GA with the orthogonal least squares (OLS) learning
algorithm [1]. This method selects the centers from the input
space as the GA does and may therefore be better suited
for comparison. The RBF network is also considered as a
regressor model where the regressors are changed into a
orthogonal basis. This allows us to add centers to a given set
where the MSE of the new model depends only on the new
centers added and is computed easily. Here, the same search
method is applied as introduced in [3] : The best model with
one center only is expanded to a model with two centers where
all the centers of a subset are tested. More centers are added
and the expansion continues until optimal model complexity
is reached according to the MDL criterion.

Figure 1 compares the GA with the OLS algorithm for
the data set of sunspot series. It depicts simultaneously the
number of selected centers, the residual MSE and the MDL
as a function of the number of centers in the subset. The
simulations have been run 100 times for each initial subsets
of 10, 30, 50, 80 and 100 centers. The centers of a subset
consist of randomly selected input data. In Fig. 1 we see the
mean of the number of selected centers and the corresponding
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RBF Center Selection: GA —=> 0, OLS —> x
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F1G. 1 — Comparison of the GA and the OLS

MSE. For an increasing dimension of the subset the GA also
selects an increasing number of centers for the best model.
On the other hand, the number of centers selected by the OLS
algorithm seems to be independent of the dimension of the
subset. We observe that the MSE provided by the GA is lower
than the MSE of the models trained by the OLS algorithm.
It is therefore necessary to validate the models by using a
model selection criterion. This is done here using again the
MDL criterion given in Equ.(1). We observe that the coding
cost for the models found by the OLS algorithm is higher than
for the models provided by the GA. Therefore, we conclude
that the latter is more suited for model selection than the OLS
algorithm.

3.3 Further Applications

The presented model selection algorithm may be applied to
further applications. In a piecewise linear model for example,
one linear sub-model is associated with each region of a state-
space decomposition. Existing methods are mainly based on
adaptive algorithms and geometric interpretations [10, 9]. The
problem can be reformulated as a regressor model where the
sub-models are selected with the proposed GA.

The same ideal holds for signal segmentation. A signal may
be divided into linear segments where the GA is used to find
the segment borders.

Piecewise linear modeling and signal segmentation are
subjects of further studies.

Conclusion

We have shown how a simple genetic algorithm using a
simplex reproduction scheme can be efficiently used to select
the regressors of a linear regression model. The performance
has been measured in term of iterations and number of evalua-
tions until convergence on a simple linear autoregressive mo-
del and on a nonlinear polynomial model. The computational
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complexity is much lower than an exhaustive search method
would require. In a second application, we have applied the
GA as a center learning algorithm of a RBF network. Model
complexity and residual mean square error have been com-
pared to the well-known OLS learning algorithm. The model
complexity provided by the GA depends linearly on the num-
ber of centers available for selection whereas the number of
parameters given by the OLS algorithm remains constant. On
the other hand the GA selects models with a lower residual
MSE. However, according to the MDL criterion that assumes
that the best models are those who permit the shortest enco-
ding of the data, the GA performs better model selection than
the OLS algorithm.

Finally, we propose to use the GA for further applications
such as linear sub-model selection in piecewise linear mode-
ling or signal segmentation.
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