-

P
brought to you by i CORE

View metadata, citation and similar papers at core.ac.uk

provided by NAIST Academic Repository

2148

IEICE TRANS. INF. & SYST., VOL.E88-D, NO.9 SEPTEMBER 2005

[PAPER

Java Birthmarks ——Detecting the Software Theft——

Haruaki TAMADA'?, Student Member, Masahide NAKAMURA", Akito MONDEN",

SUMMARY To detect the theft of Java class files efficiently, we pro-
pose a concept of Java birthmarks, which are unique and native charac-
teristics of every class file. For a pair of class files p and g, if ¢ has the
same birthmark as p’s, g is suspected as a copy of p. Ideally, the birth-
marks should satisfy the following properties: (a) preservation — the birth-
marks should be preserved even if the original class file is tampered with,
and (b) distinction — independent class files must be distinguished by com-
pletely different birthmarks. Taking (a) and (b) into account, we propose
four types of birthmarks for Java class files. To show the effectiveness
of the proposed birthmarks, we conduct three experiments. In the first
experiment, we demonstrate that the proposed birthmarks are sufficiently
robust against automatic program transformation (93.3876% of the birth-
marks were preserved). The second experiment shows that the proposed
birthmarks successfully distinguish non-copied files in a practical Java ap-
plication (97.8005% of given class files were distinguished). In the third ex-
periment, we exploit different Java compilers to confirm that the proposed
Java birthmarks are core characteristics independent of compiler-specific
issues.

key words:
mark

copyright protection, software protection, watermark, birth-

1. Introduction

Today, an enormous number of software products are devel-
oped and distributed all over the world. The recent advance-
ment of the Internet dramatically has improved easy and fast
distribution of software. Unfortunately, however, there are
many cases of software theft reported [1]. Software theft
copies the original software, then uses the copy for other
purposes without keeping the copyright notice. Typical sce-
narios include:

e Defeat of a license check, duplicating a whole product,
and selling or distributing the copies (called software
piracy).

e Stealing a part of a product (e.g. modules and code
fragments) and reusing it in other products without per-
mission.

In software theft, many incidents have been re-
ported, for example, distribution of WAREZ (pirated
software) whose license checks were defeated[2], SCO
Group’s lawsuit against IBM for ownership violation [3],

Manuscript received November 5, 2004.
Manuscript revised March 22, 2005.

"The authors are with the Graduate School of Information Sci-
ence, Nara Institute of Science and Technology, Ikoma-shi, 630—
0101 Japan.

a) E-mail: harua-t@is.naist.jp
DOI: 10.1093/ietisy/e88-d.9.2148

and Ken-ichi MATSUMOTO", Members

GPL infringement [4], and copyright infringement of free-
ware/shareware [5]. Software theft can cause severe damage
to the software industries; hence, companies must protect
their own intellectual properties from theft.

However, protecting software from such theft is not
easy. Since enormous amounts of software products are dis-
tributed today, even detecting “suspected copies” is quite
difficult, unless the product is well-known to the public.
Moreover, each product generally consists of many mod-
ules and data files. Suppose that an adversary steals only
some modules, builds them into his or her own code, and
distributes this “new” code without the source code. De-
tection of the theft becomes much more difficult because,
proving the new code is a copy using manual binary analy-
sis generally requires a significant amount of skill and high
costs.

This situation has become worse in the recent trend of
Java applications [6],[7]. A Java application is composed of
a collection of class files. A class file is an atomic execution
module containing platform-independent binary data (called
bytecode). Due to its portability, a number of class files are
distributed for various platforms. Also, rigorous specifica-
tion of the Java VM [8] leads to the development of powerful
decompilers (e.g. jad [9]). Therefore, software crackers can
relatively easily reverse-engineer and steal class files, and
then reuse these class files as if they were the original devel-
opers themselves. Thus, the theft of Java class files is easy
to perform, but difficult to detect.

To cope with this problem, this paper presents an easy-
to-use method to provide reasonable evidence for the theft
of Java programs. Specifically, we propose Java birthmarks
to support the efficient detection of class files that are quite
similar to (or exactly the same as) each other. Intuitively, a
birthmark of a Java class file is the set of unique character-
istics that the class file originally possessed. If class files p
and g have the same birthmark, ¢ is very likely to be a stolen
copy of p (and vice versa).

Ideally, the birthmark should tolerate a certain extent of
program transformation [10] since the clever crackers may
alter or modify the original class file to hide the fact of theft.
Hence, the birthmark must have characteristics that cannot
be modified easily. In other words, changing the birthmark
should make the class file malfunction, or make it com-
pletely different from the original. On the other hand, for
class files that are independently implemented, the birth-
mark must be able to distinguish among them even when

Copyright © 2005 The Institute of Electronics, Information and Communication Engineers

https://core.ac.uk/display/154939348?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

TAMADA et al.: JAVA BIRTHMARKS ——DETECTING THE SOFTWARE THEFT——

there is no theft.

Taking these issues into account, we propose four kinds
of birthmarks: (1) constant values in field variables (CVFV
birthmark), (2) a sequence of method calls (SMC birth-
mark), (3) an inheritance structure (IS birthmark), and (4)
used classes (UC birthmark). These birthmarks are essen-
tial characteristics of each class file, which can be extracted
without a source code. Based on the proposed method,
we have implemented a birthmark extraction tool, called
jbirth[11].

This paper conducts three experiments to show the ef-
fectiveness of the proposed birthmarks. In the first experi-
ment, we evaluate the tolerance against the program trans-
formation by exploiting practical Java optimizers and ob-
fuscators (CodeShield[12], jarg[13], SmokeScreen[14]
and ZKM[15]). Introducing a notion of similarity of birth-
marks, we demonstrate that the proposed birthmarks can-
not be altered easily. The result shows that the similarity of
birthmarks of every class file before and after the transfor-
mation is as high as 93.3876% on the average.

The second experiment evaluates the distinction prop-
erty of the birthmarks with practical Java applications
(Ant[16], BCEL [17], JUnit[18]). These well-known ap-
plications are assumed to be built by open-source commu-
nities whose members do not engage in theft. The proposed
birthmark distinguished 97.8005% of all class files. The re-
maining class files were either tiny classes or classes written
by “copy and paste”.

The third experiment investigates class files obtained
by different Java compilers (javac, jikes[19], kjc[20])
to see the effect of reverse-engineering on the birthmarks.
The result shows that the similarity of birthmarks of every
class file generated by a different compiler is 90.1959% on
average.

As a result, the proposed birthmarks are shown to be
simple but powerful native signatures of Java class files,
which can be extensively utilized for the detection of theft
of Java applications. This paper was originally published as
a conference paper presented in [21]. Changes were made
to this version, most significantly, the addition of the new
experiment and the qualitative discussion on the applicabil-
ity and limitation of the proposed birthmark. We believe
that these new results clarify the practical applications of
the proposed birthmarks.

2. Related Work

Software watermarking (often called software fingerprint-
ing) is a well-known technique used to provide a way to
prove ownership of stolen software. Therefore, it may be
used for our objective. Watermarking is basically used to
embed stealthy information in a piece of software, such as
a software developer’s copyright notation or a unique iden-
tifier of software, in a static manner [22]-[24], or in a dy-
namic manner [25]-[27]. Unfortunately, watermarking is
not always feasible because it requires software developers
to embed a watermark before releasing the software. Thus,

2149

proofs cannot be given for already-released software with-
out watermarks. In addition, strictly speaking, to protect all
the modules in a software package, we need to embed water-
marks into all of these modules. This is generally difficult to
meet when the number of modules is large. Our birthmark
approach provides a way to detect stolen software without
embedding any additional information beforehand.

The most commonly used technique to detect a sus-
pected copy is software similarity computation [28]—[31],
which is generally used for plagiarism detection in program-
ming classes. A plagiarized program is defined as a pro-
gram that has been reproduced from another program with
only a small number of editions, and with no detailed un-
derstanding of the program required [32]. In order to de-
tect plagiarized programs, various methods for similarity
computation have been proposed based on attribute count-
ing [33], structure metrics [28], [30], [31], and Kolmogorov
complexity [29]. Unfortunately, since these methods re-
quire the source code of software to compute the similarity,
they are not applicable in our problem setting where soft-
ware products are usually distributed without a source code.
Moreover, these techniques did not consider attacks by prac-
tical code transformation tools, such as software optimiz-
ers [13] and obfuscators [12],[14], [15]. Our birthmarks are
intended to be used for Java class files without their source
code, and to be resilient against code transformation attacks.
We also define the similarity of birthmarks to utilize our
birthmarks.

Another way to detect software theft is to find code
clone pairs between two software products [34], [35]. Code
clones are exact or nearly exact duplicate lines of code
within the source code. In [35], by using a code clone
detection tool called CCFinder, Kamiya et al. found that
sys/net/zlib.c of FreeBSD and drivers/net/zlib.c
of Linux are almost identical. Such code clone techniques
are useful for detecting suspected copies; however, they are
also susceptible to code transformation attacks.

Finally, we consider authorship analysis methods [36],
[37]. In [36], programming style metrics and programming
layout metrics are used to identify the author of a source
code. In [37], Spafford and Weeber suggest that it might
be feasible to analyze code remnants in executable code,
such as data structures and algorithms and choice of sys-
tem and library calls made by the programmer, which are
typically the remains of a virus or Trojan horse, and iden-
tify its author. Such identifying information are called a
“software birthmark” by Grover [38] although we propose
its formal definition in Sect. 3.1. These previously-proposed
birthmarks are rather out of date and are not feasible in to-
day’s Java class files; nonetheless, we took them into ac-
count to propose our birthmarks, e.g. the choice of library
calls in [37] are a part of our SMC (Sequence of Method
Calls) birthmark.

2150

3. Java Birthmarks
3.1 Definition

To make our discussion clearer, this subsection formulates a
notion of a birthmark. We start with formulation of the copy
relation of programs.

Definition 1 (Copy Relation): Let Prog be a set of given
programs. Let =., denote an equivalent relation over Prog
such that: for p, g € Prog, p =, q holdsiff g is a copy of p
(vice versa). The relation =, is called a copy relation.

The criteria for whether or not ¢ is a copy of p can vary
depending on the context. For example, each of the follow-
ing criterion is relatively reasonable for general computer
programs:

(a) g is an exact duplication of p,

(b) ¢ is obtained from p by renaming all identifiers in the
source code of p, or

(c) g is obtained from p by eliminating all the comment
lines in the source code of p.

To avoid confusion, we suppose that =, is originally
given by the user. Since =, is an equivalent relation, the
following proposition holds.

Proposition 1: For p,q € Prog, the following properties
hold. (Reflexive) p =, p, (Symmetric) p =¢, ¢ = g =¢, p,
(Transitive) p=cp g A G =cp 7 = p Zcp T

All the above properties meet well the intuition of a
copy. Next, if g is a copy of p, the external behavior of ¢
should be identical to p’s.

Proposition 2: Let S pec(p) be a (external) specification
conformed by p. Then, the following property holds: p =,
q = S pec(p) = S pec(q).

Note that the reverse of this proposition does not nec-
essarily hold since we can see, in general, different program
implementations conforming to the same specification. Now
we are ready to define a birthmark of a program.

Definition 2 (Birthmark): Let p, g be programs and =, be
a given copy relation. Let f(p) be a set of characteristics ex-
tracted from p by a certain method f. Then f(p) is called a
birthmark of p under =, iff both of the following conditions
are satisfied.

Condition 1: f(p)is obtained from p itself without any ex-
tra information.

Condition2: p=., ¢ = f(p) = f(q)

Condition 1 means that the birthmark is not extra in-
formation and is required for p to run. Hence, extracting
a birthmark does not require extra code as watermarking
does. Condition 2 states that the same birthmark has to be
obtained from copied programs. By contraposition, if birth-
marks f(p) and f(g) are different, then p #., g holds. That

IEICE TRANS. INF. & SYST., VOL.E88-D, NO.9 SEPTEMBER 2005

is, we can guarantee that g is not a copy of p.
Hopefully, a birthmark will satisfy the following prop-
erties.

Property 1 (Preservation): For p’ obtained from p by any
program transformation, f(p) = f(p’) holds.

Property 2 (Distinction): For p and g such that S pec(p) =
S pec(q), if p and q are written independently, then f(p) #
f(@).

These properties strengthen Condition 2 of Defini-
tion 2. Property 1 specifies the preservation property of the
birthmark against program transformation [10]. We believe
that clever crackers may try to modify birthmarks by trans-
forming the original program into an equivalent one to hide
the fact of theft. There are several automated tools used to
perform the transformation, involving program obfuscators
and optimizers (e.g., [13], [15]). These tools can be used as
a means of attack against the birthmarks. Property 1 spec-
ifies that the same birthmark must be obtained from p and
converted to p’. However, there exist many ways to trans-
form a program into an equivalent one. Hence, in reality, it
is difficult to extract strong enough birthmarks to perfectly
satisfy Property 1.

Property 2 specifies the distinction property of the
birthmark, stating that: even though the specification of p
and g is the same, if implemented separately, different birth-
marks should be extracted. In general, the detail of two in-
dependent programs is almost never completely the same.
However, in the case that p and g are both tiny programs,
extracted birthmarks could become the same, even if p and g
are written independently. Those properties should be tuned
within an allowable range at the user’s discretion.

The question is how to develop an effective method f
for a set Prog of Java class files and the copy relation =,.

3.2 Proposed Birthmarks

We outline how the proposed method works. First, from a
given pair of class files p and g, we extract birthmarks f(p)
and f(q) with a method f. Next, we compare f(p) and f(g).
If f(p) # f(q), then p %., g, so we conclude that g is not a
copy of p.

As for the above f, this subsection presents four meth-
ods which extract the following four types of birthmarks:
constant values in field variables (CVFV), sequence of
method calls (SMC), inheritance structure (IS), and used
classes (UC).

Simply for added comprehension, we use a Java source
code in Fig. 1 to show an example for each birthmark. Note
that in our problem setting, the source code of given class
files is not necessarily available.

3.2.1 Constant Values in Field Variables (CVFV)

A class in Java often has field variables to store static and/or
dynamic attributes. If the field variables are initialized to

TAMADA et al.: JAVA BIRTHMARKS ——DETECTING THE SOFTWARE THEFT——

package jp.ac.aist_nara.se.tama.ant.taskdefs;

import org.apache.tools.ant.Task;
import org.apache.tools.ant.Project;
import org.apache.tools.ant.BuildException;

public class Echo extends Task{
public String message = "";
public int logLevel = Project.MSG_DEBUG;

public void setMessage(String message){
this.message = message;

}

public String getMessage(){
return message;

}

public void setLevel(String level){
level = level.toLowerCase();
if (level.equals("debug"))
loglevel = Project.MSG_DEBUG; // 4
else if(level.equals("verbose"))
logLevel = Project.MSG_VERBOSE; // 3
else if(level.equals("info"))

logLevel = Project.MSG_INFO; // 2
else if(level.equals("warn"))

loglevel = Project.MSG_WARN; // 1
else if(level.equals("error"))

logLevel = Project.MSG_ERR; // 0
else

loglevel = Project.MSG_DEBUG; // 4
}

public int getLevel(){
return loglevel;

}

public void execute()
throws BuildException{
log(message, getLevel());
}
}

Fig.1 Example of Java source code (simple echo task for Apache Ant).

be certain constant values upon their declaration, then these
initial values are essential information for determining the
way of object instantiation. Modifying these values is dan-
gerous since the modification may change the output of the
program. Therefore, the initial values can be used as a good
signature that characterizes the class.

Definition 3 (CVFV Birthmark): Let p be a class file and
Vi, V2,...,V, be field variables declared in p. Also, let ¢
(1 < i < n) be the type of v; and a; (1 < i < n) be the
initial value assigned to v; in the declaration. (If a; is not
present, we regard a; as “null”). Therefore, the sequence
(t1,a1), (tr, a2), . .., (t,,a,)) is called a CVFV birthmark of
p, denoted by CVFV(p).

The CVFV birthmark of the program in Fig. 1 is:

(java.lang.String, *”)

2151

(int, 4)
3.2.2 Sequence of Method Calls (SMC)

In Java, general-purpose functions are already implemented
as methods of well-known classes, such as J2SDK [7] and
the Jakarta project[39]. A class often calls one or more
methods of these well-known classes. We assume that the
sequence of the method calls characterizes the class well due
to the following two reasons:

First, modifing the sequence automatically is difficult
for crackers because the modification crashes the dependen-
cies between the methods. Second, replacing a method in
the sequence with another takes significant effort because
creating the new method requires as much effort as making
the well-known class from scratch.

Definition 4 (SMC Birthmark): Let p be a class file and C
be a given set of well-known classes. Let m;,my, ..., m, be
a sequence of method m;’s appearing in p in this order (this
is not necessarily the execution order), where m; belongs to

a class in C. Hence, the sequence (m,my, ..., m,) is called
a S MC birthmark of p, denoted by S MC(p).

Let C be a set of all classes in J2SDK or the Jakarta
Project. In this case, the SMC birthmark of the program in
Fig. 1 is:
org.apache.tools.ant.Task(),

String String#toLowerCase(),

boolean String#equals(Object),

boolean String#equals(Object),

boolean String#equals(Object),

boolean String#equals(Object),

boolean String#equals(Object),

void org.apache.tools.ant.Task#log(String, int)

3.2.3 Inheritance Structure (IS)

Java is an object oriented programming language. Every
class in Java has a hierarchy of inheritance structures except
java.lang.Object, which is the root class of all classes.
Hence, by traversing the superclasses from a given class p to
java.lang.Object, we can obtain a sequence of classes.
This sequence can be used as a unique characteristic of p.
However, the sequence of classes may contain both well-
known classes and user-made classes. Since the user-made
classes are relatively easy to alter, we discard them from the
sequence and use the resultant sequence as a birthmark.

Definition 5 (IS Birthmark): Let p be a class file and C be
a given set of well-known classes. Let ¢y, ¢z, ..., c, be a se-
quence of classes such that ¢; = p, ¢;(2 < i < n) is a super-
class of ¢;_;, and ¢, is the root of a class (java.lang.Object).
If ¢; does not belong to a class in C, we replace ¢; with
“null.” Therefore, the resultant sequence (¢, c3,...,Cy) 1S
called an IS birthmark of p, denoted by 1S (p).

Let C be a set of all classes in J2SDK or the Jakarta Project.
Then the IS birthmark of the program in Fig. 1 is:

2152

org.apache.tools.ant.Task,
org.apache.tools.ant.ProjectComponent,
java.lang.Object

3.2.4 Used Classes (UC)

A class (say p) generally uses other classes to implement
new functions by combining existing features of the other
classes. These external classes in p appear as a superclass,
a return type, argument types of methods, or method calls.
Modifying those classes used in p is not easy because of de-
pendencies between the classes. Moreover, if the classes are
well-known classes, it is difficult for crackers to alter them.
Hence, the set of used (well-known) classes is considered to
be a unique signature characterizing p.

Definition 6 (UC Birthmark): Let p be a class file and C be
a given set of well-known classes. Let U be a set of classes,

or u’s, such that u isused in p and u € C. Let uy, us,...,u,
(u; € U) be a sequence obtained by arranging all elements in
U in alphabetical order. Then, the sequence (u,us, ..., u,)

is called a UC birthmark of p, denoted by UC(p).

Let C be a set of all classes in J2SDK or the Jakarta
Project. Then, the UC birthmark of the program in Fig. 1 is:
java.lang.String,
org.apache.tools.ant.Task,
org.apache.tools.ant.Project,
org.apache.tools.ant.BuildException.

3.3 Similarity of Birthmark

Each of the proposed birthmarks is in the form of a se-
quence. Suppose that we have a pair of birthmarks f(p) =
(p1s-..,pn) and f(q) = (q1,-..,qn) for class files p and
q. Basically, we say that f(p) is the same as f(q) (i.e.,
f(p) = f(@), iff p; = g; foralli (1 < i < n). In other
words, even when only a single pair of p; and ¢; is different
and other pairs are the same, we have to say f(p) # f(q).
Thus, the birthmark concludes that ¢ is not a copy of p, al-
though f(p) and f(g) are very similar to each other.

Thus, the comparison of birthmarks with equivalence
only is somewhat overly strict, which may make the birth-
marks too sensitive against the attack of program transfor-
mation. To cope with this problem, here we introduce the
similarity of birthmark. The similarity is a percentage of el-
ements matched among f(p) and f(g) in the total elements
in the birthmark (sequence).

Definition 7 (Similarity): Let f(p) = (pi,...,p,) and
f(g@) = (qi1,---,qn) be birthmarks with length n, extracted
from class files p and ¢q. Let s be the number of pairs
(pi»qi)’s such that p; = ¢; (1 < i < n). Then, similarity
between f(p) and f(q) is defined by: s/n x 100.

4. Evaluation

In this section, we evaluate the proposed birthmarks from

IEICE TRANS. INF. & SYST., VOL.E88-D, NO.9 SEPTEMBER 2005

the following viewpoints: (a) distinction property, (b)
preservation property, and (c) dependency on compilers. As
a tool support, we have implemented a software application
called jbirth[11]. In following experiments, we set the set
C of well-known classes (see Definition 4) to be all classes
in J2SDK SE 1 4.

4.1 jbirth: A Tool for Java Birthmarks

jbirth is a tool for extracting and comparing the pro-
posed Java birthmarks [11]. It is written in Java (J2SDK
SE 1.4[7]) with Byte Code Engineering Library (BCEL
5.1[17]), comprising about 13,000 lines of code. Figure 2
shows a screenshot of jbirth. The main features are:

e extraction of the four types of birthmarks directly from
Java class files (without source code),

e pairwise birthmark comparison of Java class files,

e Jar file support, and

e plug-in architecture for future birthmarks.

As a performance indicator, we have measured the ex-
ecution time taken for extracting the proposed four kinds
of birthmarks from practical Java packages: bcel-5.1 jar,
ant.jar, and jbirth.jar. The measurement was performed on a
Windows PC with Pentium 4-3.00 GHz and 496 MB RAM.
Table 1 shows the result. It can be seen that the time taken
for extracting the birthmarks is sufficiently short from the
practical viewpoint (0.0180s per a class file in this experi-
ment). Thus, using jbirth, one can extract the birthmarks
from any Java class files quite easily and efficiently. jbirth
is freely available at [11].

4.2 Experiment 1: Preservation Performance

Using jbirth, we first evaluate the preservation property
(See Property 1 in Sect. 3.1) of the proposed birthmarks. Ac-
cording to their definitions, the proposed birthmarks are ro-
bust enough to tolerate such simple cases (a)-(c) mentioned
below Definition 1. However, clever crackers may use cer-
tain automatic tools and convert p to an equivalent ¢ in a
more sophisticated way. Our concern here is how much of
the original birthmarks is altered by the program transfor-
mation tools.

In this experiment, we exploited the following
tools: ZKM[15], Smokescreen|[14], CodeShield[12], and
jarg[13]. Each of the tools performs a unique program
transformation for given Java class files. The first three are
known as the program obfuscator, which converts the orig-
inal class file into an equivalent one that is more difficult to
analyze. jarg is a program optimizer, which optimizes the
redundant part of the class file.

More specifically, all of the tools implement the name
obfuscation and elimination of debug information for Java
class files. The name obfuscation changes meaningful sym-
bol names (i.e., class, field and method names) to mean-
ingless ones, which makes the decompiled source code
harder to understand. ZKM, Smokescreen and CodeShield

TAMADA et al.: JAVA BIRTHMARKS ——DETECTING THE SOFTWARE THEFT——

2153
o —
£ Birthmar cli\jar S e [
E:leclipse'workspaceijhirth 2 il chi-1.0,jar [org.apache.. [oro.apache... Jorg.apache..[org.apache.. Jorg.apache..[org.apache. Jora.ap
org apache commans cli AlreadySelectedEx 100
org.apache.commons.cli.ParseException 11111 100
org.apache.commaons.cli.CommandLine a a 100
org.apache.commans.cli.Option a a 20,952 100
org.apache.commans.cli.Options a 3.128] 5223 33.063 100
org apache.commaons.cli. OptionGroup a 4167 30848 27678 47 856 100
org apache.commaons cli Parser a 25 485132 27 841 53947 47 931
org.apache.commons.cli.MissingOptionExc. 88.8680) 11.111 a a a 0
org.apache.commons.cli.GnuParser 5.556 a 10 a 10 125
org.apache.commaons.cli.HelpFormatterfSir.. a 7407 25.794 25 30873 32.803
org.apache.commans.cli.HelpFormatter§1 a a 25 25 28125 29167
gud org apache commons. ol Helpf ormatter o o 26221 30687 25816 26725
Birth " org apache commans cli MissingArgument 85.884 11.111 1] 1] 1] 0
irthmarl rg.apache.commons. oli. PatternOptianBuil [[32428 34.851 34586 30556
[v] SMC [T EMSMC [v] CVFY VIS org.apache.commons.cli.PosizParser 3.846 0 125 5.813 18118 7853
org.apache.commans.cli.TypeHandler a a 2549 266 25826 2741
¥ uc D vmp [ai ['emall org.apache.commans.cli.UnrecognizedOpti... 77.778 a 1) 1) 1) 0
org.apache.commans.cli.OptionBuilder a a 428189 3.522 37107 34333
Extract | Compare | org apache commons cli BasicParser 524 0 0 0 0 0
N i i EEEEE = [»
[Birthmarks:commons.cli-1.0jar 5 o & [# I Number of Class Files Number of Comparisons Distinction Ratio
Number of Birthmarks: 19 18 il i
Birthmarks Similarity Percentage
@ [ary apache commons cliAlreadySelectedExe Average Minimum Maximum
o3 org apache commans.cli ParseBxception(d) E: 15.230079362747118 0.0 88.88838888888889
@ [org.apache.commans.cli.CommandLineid) |
o] smciss) . Save Graph
& 5 curvid :
¢ CAisi 4
[javalang Object [
e Fucis)
©- [org.apache.commons.cli.Option{0)
e arg.apache.commans.cli.Options{0)
o3 org apache commans cli. OptionGraup(0)
- [org apache.commans cli.Parser(0) —
P] o . =
Save Compare
Fig.2 A screenshot of jbirth.
Table 1 Execution performance.
| Package | # of classes | Size | Execution time
beel-5.1.jar | 339 classes 515,920 bytes | 4.675s
ant.jar 487 classes | 958,858 bytes | 8.240s
jbirth.jar 134 classes | 213,594 bytes | 2.239s
Table 2 The result of Experiment 1.
ZKM Smokescreen jarg CodeShield
P Average 94.4096% 90.9628% | 98.9016% 89.2766%
Similarity —
Percentage Minimum 50% 27% 82% 57%
g Maximum 100% 100% 100% 99%
adopt flow obfuscation, which scrambles the control flow
without changing the original runtime behavior. jarg and
Smokescreen support optimization of unreachable code 1.2
and unused fields and methods. ZKM has unique features, O zkm
. 1 H
such as string encryption, which encrypt string literals in B smokescreen
class files, and then add code fragments to decrypt the string 0.8 {9
. O codeshield
at runtime. 06
We applied each tool to a package Apache Ant (version ’
1.5.4, ant.jar) [16] with the strongest obfuscation (or opti- 04
mization) level, and obtained its transformed package. Next, 02
we executed jbirth to measure the similarity of birthmarks I o i
for all pairs of a class file in ant. jar and the transformed 0 - - = eenl U
. 1 2 4 7 1
version. 0 0 0 30 0 50 60 0 80 90 100
Table 2 summarizes the result. We compared 376 pairs
of the original and the transformed class files by means of Fig.3 Birthmark similarity between original and transformed class files.

the proposed four types of birthmarks. Figure 3 depicts the

2154

frequency distribution, where the horizontal axis represents
the similarity, and the vertical axis plots the number of pairs
of class files with the corresponding similarity, normalized
by the total number of comparisons. In the results for all
the tools, the majority of the original birthmarks were still
preserved even after the sophisticated program transforma-
tions. Thus, the proposed birthmark achieved a practically
strong robustness against program transformation in this ex-
periment. Also, the similarity varies slightly, depending on
the obfuscation tool applied. It appears that the method of
program transformation has different effects on the birth-
marks.

Although the combined use of the four birthmarks re-
flects a stronger characteristic of a class file, it is also in-
teresting to evaluate each birthmark individually. Figure 4
shows the preservation performance in Experiment 1, with
respect to the individual birthmarks. In the figure, X-axis
represents the birthmarks, Y-axis depicts the frequency of
each birthmark, and Z-axis plots the similarity. From the
figure, it can be seen that most birthmarks achieve 100%
similarity.

However, we can see that the UC birthmark is a
bit fragile against the transformation with CodeShield.
Through the investigation, we found that CodeShield
translates the conditional branches specified by if (or for)
into try and catch, by adding dummy exception classes.
For example, the statement 1 f(EXP1){ s1; } else{ s2;
} is transformed into try{ throw e; } catch(exp_1
el){ sl1; } catch(exp2 e2){ s2;}. These exception
classes add extra used-classes to the original bytecode,
which decreases the performance of UC birthmark. In gen-
eral, an exception class can be easily altered with another

TEm @ CodeShield CVFV

0_19 H : : : W CodeShield SMC
08 L | N [WI]] |Dcodeshies
07 L = W[|ocodeshie uc
0.6 ‘ I I | M (] M SmokeScreen CVFV
Frequency 0.5, [| i e @ SmokeScreen SMC
0.4 [| i = AN W SmokeScreen IS
03 [1 I L [SmokeScreen UC
0.2 1 1 HHE [mzxmcvey
0'; = -l BV lmzmsme
[S) S e all! ==
S5 T8 e i
8 2 s 8 T 3 Similarity | ~°
& < S 2 ° M jarg CVFV
% ﬁ % M jarg SMC
</E> 3 % Wjarg IS
o W jarg UC

Fig.4 Similarity w.r.t. individual birthmark.

IEICE TRANS. INF. & SYST., VOL.E88-D, NO.9 SEPTEMBER 2005

exception class. Therefore, we should have excluded any
exception class from the set of well-known classes C. If we
exclude any exception class from C, the per