
Journal of Information Processing Vol.26 98–110 (Feb. 2018)

[DOI: 10.2197/ipsjjip.26.98]

Regular Paper

Monitoring-Based Method for Securing Link State Routing
against Byzantine Attacks in Wireless Networks

Babatunde Ojetunde1,a) Naoki Shibata1,b) Juntao Gao1,c)

Received: May 9, 2017, Accepted: November 7, 2017

Abstract: Secure communications is essential in many areas such as disaster management and battlefield communica-
tions. To detect and prevent attacks in such applications, most existing protocols adopt a cryptography-based approach,
trust-based approach (reputation of nodes), or incentive-based approach. However, such protocols still have drawbacks,
such as expensive overhead, difficulty in maintaining secure key and session management, or leaving routes unsecured
against Byzantine attacks. In this paper, we introduce a monitoring-based method in the link state routing protocol to
secure the packets’ route against Byzantine attacks. The goal of our proposed scheme is to guarantee communication
among connected benign nodes in the network. Specifically, each node monitors the action of neighboring nodes and
compares the optimal packet route against the packet route history. Nodes in the network create a packet history field
which is used to record all activities of an intermediate node when receiving and forwarding packets. Our scheme
provides mutual monitoring in which nodes in the network can validate the packet history field of other nodes and
report malicious activities. Also, our scheme uses a statistical method to know if a node is dropping packets inten-
tionally by analyzing the packet dropping behavior of each node. The proposed scheme provides protection against
colluding attacks and other Byzantine attacks. The proposed monitoring-based method achieves an average of 89% to
96% packet delivery ratio when 11% to 21% active malicious links are excluded from the network.

Keywords: secure routing, routing protocol, routing attack, monitoring, Byzantine attacks, link state routing

1. Introduction

The need to ensure routing security in wired and wireless net-
works has kept growing over the years with the development
of various secure routing protocols. Secure routing allows easy
packet transmission between nodes without any fear of compro-
mise. However, routing protocols are still vulnerable to security
challenges. One of the foremost challenges to routing protocol
is Byzantine attacks. In such attacks, a node can interrupt route
discovery, impersonate a destination node, corrupt routing infor-
mation, completely drop packets, or inject fake packets into the
network. These attacks prevent timely delivery of packets from
the source to the destination. These types of attacks can be car-
ried out by a malicious node either outside the network or within
the network. Even though these types of attacks can be easily
detected in a wired network, ad-hoc networks are still very vul-
nerable to such threats.

Most work already carried out on route security has adopted
one of three main approaches: the cryptography-based approach,
the trust-based approach, or the incentive-based approach [1]. In
the cryptography-based approach, various cryptography mecha-
nisms such as private and public key encryption schemes, digital
signatures, hash functions, and/or end-to-end authentication are
adapted to secure the packet in the routing protocols. The major

1 Nara Institute of Science and Technology, Ikoma, Nara 630–0192, Japan
a) ojetunde.babatunde.nq3@is.naist.jp
b) n-sibata@is.naist.jp
c) jtgao@is.naist.jp

drawbacks of this approach are the high computation overhead,
and the difficulties of maintaining secure key management and
session management. In the trust-based approach, nodes partici-
pating in the routing of packets are assumed to be trustworthy as
the assigned trust value is used to determine each node’s reputa-
tion, so the security mechanism provided focuses more on the
information being exchanged among nodes. In this approach,
lost packets are often attributed to poor link quality which may
not be the case when malicious nodes may drop packets. In the
incentive-based approach, nodes participating in routing are given
some form of incentive to report malicious nodes. However, this
approach is often combined with other approach such as a trust-
based approach to be successful. In addition, tamper resistant
hardware is added in this approach as a security measure and this
is not generally applicable in all scenarios.

In our research, we proposed the monitoring approach to se-
cure the link state routing protocol against Byzantine attacks [2].
This paper differs from our previous paper in which we only
highlight the security goals our proposed monitoring approach
achieves. In this paper, we give detailed explanations about the
implementation of our monitoring-based method and show the
results as validated by simulation. Our monitoring-based method
secures the link state routing protocol against Byzantine attacks
except Denial of Services (DoS) attacks. Here, a DoS attack is
an attack where one or more malicious nodes transmit an over-
whelming number of packets or jamming signal to clog some
links. The goal of our proposed scheme is to guarantee commu-
nication among connected benign nodes in the network. Our ap-

c© 2018 Information Processing Society of Japan 98

Journal of Information Processing Vol.26 98–110 (Feb. 2018)

proach focuses on using the link state routing protocol to analyze
and record the actions of each node within the network. Specif-
ically, each node monitors the actions of neighboring nodes and
compare the optimal packet route against the route history. This
allows monitoring nodes in the network to track the past events of
packets sent. Our monitoring scheme adopts three main methods:
(1) Hello message verification - where a node collects hello mes-

sages and digital signatures of neighboring nodes, which are
used to verify the validity of hello messages and to identify
inconsistent information when a malicious node tries to cor-
rupt routing table information.

(2) Packet history field monitoring - here the source node calcu-
lates the optimal path and stores it in each packet (like Dy-
namic Source Routing), and then neighboring nodes check
whether packets are forwarded correctly according to the
stored optimal path. Also, the event history is recorded in
each packet at each intermediate node.

(3) Statistical hypothesis testing - while some packets may be
dropped due to poor link quality, we need to know if a node is
intentionally dropping packets. To determine this, we adopt
a statistical measure in which monitoring nodes observe the
packet-dropping behavior of other nodes, and then calculate
the probability (P-value) of an intermediate node dropping a
packet.

To detect malicious nodes, the P-value is compared to a signif-
icance level value (reflecting the number of dropped packets that
can be tolerated), while packet history field monitoring is used to
identify at which node a malicious action is carried out.

The rest of this paper is organized as follows. Section 2 re-
views related work on securing routing protocols. In Section 3,
we present an overview of routing protocols and Byzantine at-
tacks. Then in Section 4, we introduce our proposed monitoring
scheme to secure the link state routing protocol against Byzantine
attacks, and in Section 5 describe our evaluation of the proposed
scheme. Section 6 concludes the entire paper.

2. Related Work

In this section, we review previous work on securing routing
protocols and Byzantine attacks.

Geetha et al. [1] classified routing protocols into three dis-
tinct types: proactive, reactive, and hybrid protocols. They de-
scribed proactive protocols as protocols where nodes frequently
exchange network topology information and construct routing ta-
bles to send packets from the source to the destination. Examples
of such protocols include the Optimized Link State Routing pro-
tocol, and the Destination-Sequenced Distance-Vector protocol.
Reactive protocols are described as protocols that ensure pack-
ets are sent from the source to the destination only when needed.
Ad-hoc On-Demand Vector (AODV) and Dynamic Source Rout-
ing are examples of reactive protocols. Finally, hybrid protocols
are produced by combining both proactive and reactive protocols.
For example, route discovery makes use of a proactive protocol
scheme while a reactive protocol scheme is adopted for sending
packets. The Zone Routing Protocol and Fisheye State Routing
are both examples of hybrid protocols.

Harshavardhan [3] surveyed security issues in ad-hoc routing

protocols and identified ways to mitigate such security threats.
Harshavardhan first defined the properties of an ad-hoc routing
protocol as providing distributed operation, loop free, demand-
based operation, unidirectional link support, security, quality-of-
service support, multiple routes, and power conservation. Then
they used findings from related work to summarize different ad-
hoc routing protocols before analyzing various security threats
and techniques to mitigate them. Some of the security threats
they included were: impersonation or spoofing, black-hole attack,
sinkhole attack, and wormhole attack. They classified solutions
to these attacks into categories including: trust values, wormhole
detection method, intrusion detection systems, credibility man-
agement and routing test, and multi-factor authentication tech-
niques.

Ali et al. [4] also surveyed security challenges in mobile ad-hoc
networks (MANETs). They introduced three important security
parameters, and further divided security aspects into two areas,
which are security services and attacks. They classified security
services into five important services which are used to protect the
network before attacks happen, while attacks are the threats to the
network. In addition, they analyzed and discussed various miti-
gating approaches against attacks in MANETs. Mojtaba et al. [5]
also investigated routing attacks and various solutions to such at-
tacks. They highlighted security attacks that MANET routing
protocols are vulnerable to and identified mechanisms such as
cryptography schemes, key management, and special hardware
using GPS as some possible solutions to such attacks. Simi-
larly, Kannhavong et al. [6] surveyed routing attacks in MANETs.
They investigated various security issues in MANETs and exam-
ined routing attacks, such as flooding, black holes, wormholes,
replays, link spoofing, and colluding attacks, as well as solu-
tions to such attacks in MANETs. They identified the advantages
and drawbacks of the reviewed solutions, then recommended im-
provement of the effectiveness of the security schemes they had
surveyed.

Jhaveri et al. [7] surveyed various DoS attacks that are secu-
rity concerns in MANETs and some of the proposed solutions to
identify and prevent such attacks. They describe various routing
protocols, and DoS attacks such as a wormhole, black hole, gray
hole attacks and their operations. Zapata et al. [8] introduced a
security mechanism to secure AODV routing information. First,
they identified integrity, authentication, confidentiality, and non-
repudiation as security goals for routing. Then they proposed two
mechanisms to secure AODV packets, hash chains and digital sig-
natures. Specifically, the hash chain is used to verify that the hop
count was not decreased by a malicious node, while the digital
signature is used to safeguard the integrity of other information
in the packets besides the hop count.

Alajeely et al. [9] proposed a new detection scheme for ma-
licious nodes to detect packet faking by a malicious node. In
this type of attack, malicious nodes drop one or more pack-
ets and inject another packet to replace the dropped packet.
They introduced a hash chain technique to detect the attack and
trace the malicious nodes. They compared their approach to an
acknowledgment-based mechanism and a network coding based
mechanism. Baadache et al. [10] proposed a scheme to check if

c© 2018 Information Processing Society of Japan 99

Journal of Information Processing Vol.26 98–110 (Feb. 2018)

packets are routed correctly in the network. They adopt the ac-
knowledgement of packets at each intermediate node which is
used to construct a Merkle tree. Packet dropping is detected if the
root of the Merkle tree is not the same with a precalculated value.

Papadimitratos et al. [11] proposed a secure link state protocol
(SLSP) for MANETs to secure neighbor discovery and adopted
a neighbor lookup protocol to further strengthen their system
against DoS attacks. In addition, the proposed SLSP restricted
the forwarding of packets within a cluster, and adopted the use
of public and private keys to validate that the packets are only
forwarded within the cluster. Unlike our proposed monitoring
scheme, their protocol only focused on securing the topology dis-
covery and protected the link state update packets, but did not
secure the routing of packets. Our proposed scheme addresses
routing security using a monitoring mechanism to protect packets
and also guarantees the communication of benign nodes. Another
main difference found in our work is that our proposed scheme se-
cures the routing protocol against colluding attacks where a group
of nodes collaborates to carry out an attack.

To secure the packet route and provide secure message trans-
mission in MANETs, Papadimitratos et al. [12] proposed a dif-
ferent mechanism from their previous work. Their mechanism is
based on four main schemes: secure end-to-end transmission of
packets and feedback, dispersion of a packet, multi-path routing
of packets, and adaptation to topology changes. In their proto-
col, the source node will first select several disjointed paths that
are valid, referred to as an active path set (APS). Then the node
splits the packet into a number of pieces, which are transmitted
simultaneously across the selected APS. After receiving a suffi-
cient number of pieces of the divided packet, the destination node
will then reconstruct the packet, even when some fraction of the
pieces are dropped or invalid. Whenever a piece of the packet is
not received by the destination, that route is considered broken or
compromised. In addition, their mechanism also introduced path
rating based on feedback from the destination node. Paths that fall
below a given threshold are discarded from the network. Their se-
cure protocol focused on detecting unsecured routes, unlike our
approach in which the actual malicious nodes in a selected route
are detected and discarded to prevent further relaying of packets.

Although some of the proposed schemes successfully miti-
gate routing attacks, they are either too expensive for resource-
constrained networks or the solution provided is not applicable to
mitigate colluding attacks from malicious nodes. Also, it is possi-
ble for malicious nodes to drop packets and attribute the cause to
poor communication links. Therefore, we propose a mechanism
to analyze the action of all nodes in the network. Specifically,
our scheme focuses on mitigating Byzantine attacks in link state
routing protocols.

3. Overview of Byzantine Attacks

In this section, we describe Byzantine attacks.

3.1 Byzantine Attacks
Byzantine attacks can be described as attacks in which mali-

cious nodes take control of one or more network nodes and dis-
rupt the network functions [1]. Malicious nodes can selectively

drop packets, corrupt routing information, or send packets on
non-optimal paths. When carried out by a fully authenticated
node in the network, these types of attacks are difficult to detect.
Some of the Byzantine attacks are described below.
3.1.1 Corruption of Routing Table Attacks

In these attacks, the goal of a malicious node is to corrupt the
routing table, either by falsifying neighbor information, or by
capturing and modifying the neighbors’ link information broad-
cast by a benign node. Doing this can cause the routing protocols
to maintain the wrong information in the routing tables, which
now include the malicious nodes in almost all routes to destina-
tions. Figure 1 (a) shows an example of corruption of routing
table attack.
3.1.2 Falsifying Location Information Attacks

In this attack, a malicious node forges a position in the net-
work which is completely different from its actual position, and
reports the forged position to other nodes in the network. This
causes benign nodes in the network to calculate the wrong status
and cost of the malicious node’s links, which leads to invalid in-
formation in the routing table and packet loss. Figure 1 (b) shows
an example of a falsifying location information attack.
3.1.3 Black Hole Attacks

In this form of attack, a malicious node injects fake routing in-
formation to attract all packets to itself, and then either drops all
of the packets, modifies some packets, or selectively drops pack-
ets. To avoid detection, such malicious nodes sometimes actively
participate in routing packets to the destination in a normal way.
This makes it difficult for other nodes in the network to detect
such malicious node action. Figure 1 (c) shows an example of a
black hole attack.
3.1.4 Sink Hole Attacks

Similar to the black hole attack is a sink hole attack, in this
attack a malicious node attracts all packets to itself by claiming
to have shortest path to all destinations in the network. Other in-
termediate nodes then relay their packets through the malicious
node. The malicious node can then either modify, fabricate, or
eavesdrop on the packets.
3.1.5 Wormhole Attacks

In this form of attack, a malicious node advertises an artifi-
cial route as the best path to the destination node, and tunnels
the packets to another malicious node, thereby causing the source
node to ignore the genuine route. Such malicious nodes can either
drop all packets, or selectively drop packets, preventing timely
delivery of packets and causing packet loss in the network. This
is also a form of colluding attack. Figure 1 (d) illustrates an ex-
ample of a wormhole attack.
3.1.6 Colluding Attacks

In a colluding attack [13], a group of nodes collaborates to
carry out an attack by dropping or modifying packets. One of
the nodes will advertise itself as having the shortest path to the
destination. The shortest path may or may not include other col-
laborating nodes to complete the attack. This form of attack is
hard to detect, especially when the nodes align with each other
as neighbors. For example, Fig. 1 illustrates two example scenar-
ios for colluding attacks. As shown in Fig. 1 (e), the first collud-
ing scenario is when a malicious node M1 is part of the selected

c© 2018 Information Processing Society of Japan 100

Journal of Information Processing Vol.26 98–110 (Feb. 2018)

Fig. 1 Various types of Byzantine attacks.

packet route, but decides to forward the packets to another col-
luding malicious node M2 on a non-optimal path.

The second colluding scenario, shown in Fig. 1 (f), is when the
source node S decides to send a packet to destination D. The best
shortest path is S - A - D. However, since node M1 is malicious
and colluding with another malicious node M2, both malicious
nodes advertise the wrong link costs, e.g., 1 and 2 respectively,
so the best route appears to be S - M1 - M2 - E - D. Then the
malicious nodes M1 and M2 forward the packet from the source
node S at the actual link cost, which causes packet delays to node
E. The colluding malicious nodes can also drop packets.

These types of Byzantine attacks are difficult to detect or pre-
vent, especially when carried out by an insider attacker. There-
fore, as described in the next section, we adopt a monitoring
scheme to secure routing in the LSR protocol.

4. Proposed Secure Routing Protocol with a
Monitoring Scheme

In this section, we first describe the link state routing pro-
tocols and its features. Then we explain our secure routing
protocol and monitoring scheme designed to protect a network
against Byzantine attacks. We explain how a valid routing table
is formed, then we describe the statistical method used to detect
malicious nodes and the monitoring scheme used to secure the
LSR protocols. Finally, we explain how our proposed scheme
mitigates Byzantine attacks.

4.1 Link State Routing Protocols (LSR)
Link state routing (LSR) protocols [14] are proactive protocols

in which a node exchanges Hello messages with other surround-
ing nodes to know the entire network information. Based on the
information acquired from other nodes, the node first creates a
topology of the network and positions itself at the root of the
spanning tree, then uses a Shortest Path First algorithm, such as
Dijkstra’s Algorithm, to find the best path to a destination. Ex-
amples of LSR protocols are open shortest path first (OSPF) and
intermediate system to intermediate system (IS-IS).

Each node needs to discover neighboring nodes. In order to
do this, a node sends a Hello message periodically (e.g., every 10

Fig. 2 Exchange of Hello messages by nodes.

seconds). The Hello message contains the node’s unique ID. By
receiving Hello messages from other nodes, a node can determine
which nodes it is directly connected to. The Hello messages are
only sent to directly connected neighbors, for example, as shown
in Fig. 2. Hello message from node S is only sent to node A, while
Hello message from node A is sent to both nodes (node S and
node D) which are its direct neighbors. Also, Hello messages are
used to detect link failures and node availability in the network.
A link failure is detected if a Hello message is not received from a
particular neighbor within a time interval (e.g., 30 seconds). The
time interval in which a node is not able to send/receive a Hello
message to/from its neighbor is also called a dead interval.

After a node has learned all the information about the network
topology, the node can now distribute its local link information
(i.e., its view of the network) to other nodes in the network. This
will assist other nodes in forming their own view of the whole
network. To distribute its local view, a node needs to build a
link-state packet (LSP) which contains: node’s ID, LSP age, LSP
sequence number, LSP links (i.e., links advertised by another
neighbor node which include the neighbor’s ID and link cost).
A flooding algorithm is adopted for the distribution of the LSP
to all nodes in the network. Also, each node maintains a link-
state database (LSDB) to store the recent LSP received from other
nodes. Once a new LSP is received, each node verifies it against
the one that is stored in the LSDB. If the LSP did not match any
of the LSP stored in the LSDB, then the node will forward it to all
nodes except for the node it receives it from. Figure 3 highlights
an example of LSP flooding.

In addition, acknowledgments and retransmission are used to

c© 2018 Information Processing Society of Japan 101

Journal of Information Processing Vol.26 98–110 (Feb. 2018)

Fig. 3 An example of link-state packet flooding.

ensure that all LSPs are received by all nodes in a situation where
there is a link failure. It is possible that a link failure is de-
tected by one of the nodes directly connected to each other. In
that case a new LSP is generated and the failed link is removed
from the LSP. The new LSP is then flooded to all nodes in the
network. Each node can then replace the previous LSP with the
new one. After receiving all LSPs in the network, each node can
compute the complete network topology. Then, using Dijkstra
shortest path algorithm, each node computes a spanning tree and
positions itself as the root of the tree. The routing table is auto-
matically formed from the spanning tree. Packet from a particular
node in the network is routed to the specified destination based on
its routing table. Each node consumes energy while broadcasting
and receiving Hello messages from neighbor nodes. Also, as the
number of transmitting packet increases, the power consumption
of a node will also increase.

4.2 Assumptions and Preliminaries
In this paper, we make the following assumptions.
• All benign nodes are connected in the network topology. i.e.,

there is always a route only consisting of benign nodes be-
tween any pair of benign nodes in the network.

• Each node in the network maintains low mobility.
• All nodes can generate pairs of public and private keys.
• A key pair is kept secret by a benign node.
• A benign node only generates one pair of public/private

keys.
• Links are not stable, i.e., not all packets are received by

neighboring nodes.
• All benign nodes know the link states of all neighboring

nodes.
• Due to wireless channel fading during transmission between

two nodes, a packet may be dropped with probability q.
We assume a benign node can estimate the probability q of
packet dropping between itself and a neighbor node.

• All packets are forwarded in First-In-First-Out order.
• There is time synchronization between benign nodes.
• Each node knows the upper limit of the time synchronization

error.
Any node can join the network without pre-registration. We

adopt the use of symmetric and asymmetric keys for the encryp-
tion/decryption of packets. The asymmetric key scheme is used
to generate/verify a digital signature, while a session key, gener-
ated using symmetric key algorithms, is used to encrypt/decrypt

the data of a packet. A unique key pair can be safely created
from random numbers by any node. The public and private keys
are unique to each benign node and the private key is kept secret
by each node. Benign nodes create and exchange public keys be-
forehand. In addition, nodes authenticate each other with a digital
signature. A node will sign its signature on the ID which can be
verified by other nodes. Our method adopts the digital signature
algorithm (DSA) described in Ref. [15].

To generate a digital signature, a node applies a one-way se-
cure hash function to a message (e.g. ID or packet), then encrypts
the hash value with its private key to form a signature (i.e., the
encrypted hashed ID is the signature of the node). The calcula-
tion of encrypting and decrypting the hash value of a message
by a public key cipher is faster than the calculation of encrypting
and decrypting the message directly by a public key cipher. Other
nodes can verify a node signature by first decrypting the signature
using the signing node’s public key to reveal the hash values (i.e.,
hashed message), then applying the same one-way secure hash
function to the signing node’s original message to generate a new
hash value. Finally, the verifying node compares the two hash
values to validate if it matches. The signature is valid if the two
hash values are the same.

Moreover, to encrypt/decrypt a packet, a source node creates
a session key, then encrypts the data of the packet with the ses-
sion key. The session key is encrypted with the destination node’s
public key using the asymmetric key algorithm such as RSA. The
encrypted packet and the encrypted session key are sent through
the selected route to the destination node. After receiving the
packet, the destination node decrypts the encrypted session key
with its private key, then decrypts the data with the session key to
reveal the data sent from the source node.

4.3 Routing Table Formation
A malicious node might possibly corrupt routing table infor-

mation by sending inconsistent information to other nodes in the
network. To prevent this and ensure that each node can verify the
validity of a Hello message, in our proposed method we make a
slight modification to the Hello message of standard LSR proto-
col by introducing security parameters in the Hello message as
shown in Fig. 4.

In addition to the information in the standard LSR hello mes-
sage, the hello message of our protocol includes the node’s ID,
digital signature, number of packets dropped, number of packets
sent, number of packets received, number of packets forwarded,
a timestamp, and a list of neighbors. Also, each node appends
to their own hello message information in the collected hello
messages from their neighbors which includes the neighbor’s ID,
neighbor’s link cost, timestamp, and the neighbor’s digital sig-
nature. Figure 4 shows an example of typical information in the
hello message of an LSR protocol, which is 48 bytes when a node
is connected to one neighbor (with a 24-bytes header and a 24-
bytes hello message) and the information in our protocol which
we specifically introduced to achieve routing security with addi-
tional information of 272 bytes when RSA signature is adopted.
The size of the hello message of a node varies depending on the
number of neighbors.

c© 2018 Information Processing Society of Japan 102

Journal of Information Processing Vol.26 98–110 (Feb. 2018)

Fig. 4 An example of Hello message.

Fig. 5 Packet route in a network.

Each node floods the link state information of its neighbor to
other nodes in the network. As part of this flooding, we use ac-
knowledgment and retransmission because links are not reliable.
Each node maintains its routing table using the neighbor informa-
tion in the hello message. Since benign nodes are connected, all
neighbor information of benign nodes reaches all benign nodes.
For each link, the quality of that link is reported twice from two
nodes. If the information from two nodes is different, we adopt
the worse one. After a node collects all topology information,
each benign node calculates the best logical path to every pos-
sible destination with the information collected from the hello
messages. Then it uses the best paths to each destination to form
its routing table.

After neighbor nodes receive a hello message, each neighbor
node responds to the hello message by sending an acknowledg-
ment to confirm receiving the hello message. Within the replies,
each neighbor node identifies itself with its node ID and digital
signature. The node that initiates a hello message can use the in-
formation from the neighbors to confirm that the hello messages
were received. Also, when a node receives a new hello message
from its neighbor, after authenticating the neighboring node with
its signature and node’s ID, the node will then check the times-
tamp to confirm that an old hello message has not been replayed.

4.4 Monitoring Scheme for LSR Protocol
In a LSR protocol, to send a packet from a source to a destina-

tion, the routing protocol finds the shortest path to the destination
using the information in the source node’s routing table. How-
ever, a malicious node that is included in the route to the destina-
tion may attack the route. To prevent such attacks, we introduce
a statistical method and a mutual monitoring scheme.
4.4.1 Overview of Proposed Scheme

Let’s consider a situation such as that in Fig. 5, in which node S
is sending a packet to destination D with S - A - D as the shortest
path to the destination.

In our method, we only ensure communication among benign

nodes. The first thing we should avoid is forwarding packets
along a wrong route, or dropped by malicious nodes. In order to
prevent this, first, surrounding nodes compare the optimal packet
route against the route history. The optimal path is calculated at
the source node and stored in each packet in our protocol. Pre-
vious nodes and other neighbor nodes in the network overhear
when the packet is forwarded by each node. Then, the nodes
checks if the packet is forwarded on a wrong route or dropped.
The monitoring node checks the packet history to verify if it is
correctly signed by the forwarding node, the packet signing and
verification uses the same process explained in Section 4.2.

If the node fails to correctly sign the packet, the results of the
monitoring are reported to other nodes in the network. Recording
the packet route history of packets allows other nodes to track the
past events of packets sent. In order to confirm that the packet
is delivered to the destination, the destination node sends an ac-
knowledgement packet through the reverse route. If the source
node does not receive this acknowledgement packet after a cer-
tain amount of time elapses, the source node asks the nodes along
the route to show the signature from the next node.

In addition, it is possible that some packets may be dropped due
to poor link quality. A malicious node may also drop the packet,
and state poor link quality as the reason for the packet loss, as
a result of this we need to know if a node is intentionally drop-
ping packets. Therefore, we use a statistical method explained in
the next section to determine if a node is intentionally dropping
packets.

When some node reports another node to be malicious, we
need to handle the cases where a malicious node is reporting a
benign node to be malicious. Our goal, that is to maintain com-
munication among benign nodes, can be achieved by separating
malicious nodes from benign nodes. When some node reports
one of its neighboring node to be malicious, we can be sure that
at least one of them is malicious. Thus, we separate those two.
In our protocol, the link between two nodes is advertised to the
whole network, and it will not be used in the future.

In a situation when a malicious node decides to keep rejoin-
ing the network with a new address after being excluded from the
network, then such malicious node is not immediately included
in the routing of packets. We wait for some time after a new node
joins the network, during this period this node is not used as a
part of a route. In addition, a malicious node might intentionally
delay packets, expecting that the packet delay would be hidden
by delays due to transmission conflicts with other nodes. Also, if
one of the neighboring nodes is communicating with other nodes,
that node cannot start sending out packets. This cannot be ob-
served by other nodes because of the hidden/exposed terminal
problem. We introduce a signed Request to Send/Clear to Send
(RTS/CTS) mechanism (explained in Section 4.4.4) to detect if a
node intentionally delays packet forwarding and to solve the hid-
den/exposed terminal problem in this case. Before sending a data
packet, each node first sends an RTS packet to the next hop node
and only transmits the data packet after a CTS packet has been
received from the next hop node. Other nodes, overhearing the
RTS/CTS, refrain from sending any packets to the node until an
acknowledgment packet is overheard. Then a node that is sus-

c© 2018 Information Processing Society of Japan 103

Journal of Information Processing Vol.26 98–110 (Feb. 2018)

pected of intentionally delaying packets can show the RTS/CTS
packets as a proof that there is no packet delay.

Since our protocol allows any node to create a pair of keys, a
malicious node can pretend there are many nodes around it. Even
some of the links are advertised to be invalid, there are still many
links usable for malicious node. In order to handle cases like
this, a node retransmits its packet using a 2-hop reactive mode.
Using this reactive mode, a node will create a new packet his-
tory field indicating that the packet is being retransmitted with a
reactive mode scheme and broadcast its packet to 2-hop neigh-
bors. On receiving the packet, any node that is neighbor to both
the source and the 2-hop destination node can forward the packet
to the destination node. If a malicious node is trying not to for-
ward the packet by pretending there are many nodes around it,
all these links can be invalidated at the same time. The 2-hop
reactive mode is only used when a packet has been dropped and
the malicious node has been reported to other benign nodes in the
network.
4.4.2 Monitoring Packet Dropping

A monitoring node observes the packet dropping behavior of a
monitored node and adopts the approach of statistical hypothesis
testing to determine if the monitored node is a malicious node.

The statistical hypothesis testing approach: First, the moni-
toring node makes a hypothesis H0 that the node being monitored
is a benign node and sets the value of significance level α (as a
common practice α = 5%). Second, the monitoring node ob-
serves the monitored node for N packets and counts the number
nd of packets dropped by the monitored node. Third, the moni-
toring node calculates the P-value p using the following formula

p =
N∑

i=nd

(
N
i

)
qi(1 − q

)N−i
. (1)

where p is the right-tailed P-value, and nd denotes the number
of packets dropped among N packets where N is the number of
packets being monitored at each link. Since some packets may
be dropped due to poor network connection between nodes, we
need to identify packets that are dropped in this manner as against
packets that are dropped intentionally by malicious nodes. There-
fore, we set a probability that a packet will drop due to channel
fading and denote it by q.

If p ≤ α, the monitoring node rejects the hypothesis H0, mean-
ing that the monitored node is identified as a malicious node.
Otherwise, the monitoring node accepts the hypothesis H0. The
whole process is summarized in Algorithm 1.

All nodes are first identified as benign nodes, which means no
packet is expected to be dropped intentionally by a benign node.
In such case, the P-value is calculated such that p > α > 0.
Contrarily, a malicious node is expected to drop more packets to
reduce network performance. Therefore, the more the number of
packets dropped, the more p→ 0. With this approach intentional
dropping of packets can be easily detected on every link in the
network using the calculated P-value p.
4.4.3 Packet History Field Monitoring

Each data packet contains a route history in the packet his-
tory field of the packet header, which records all events occur-
ring to the packet, such as receiving or forwarding of a packet.

Algorithm 1 Monitoring packet dropping
Input: q : the probability of a packet being dropped

α : level of significance

N : sample size of observed packets

Variables: nd : the number of dropped packets

p : P-value

j : counter

Output: Reject H0 or Accept H0

1: nd ← 0;

2: j← 1;

3: while j ≤ N do

4: The monitoring node observes how the monitored node handles a re-

ceived packet not destined for himself;

5: j← j + 1;

6: if The monitored node drops the received packet then

7: nd ← nd + 1;

8: end if

9: end while

10: Calculate p according to Eq. (1);

11: if p ≤ α then

12: return Reject H0;

13: else

14: return Accept H0;

15: end if

To achieve this, a node creates a packet history field which is
added to the packet header. The packet history field consists of
the packet route and node signature. Intermediate nodes on the
route to the destination append their signatures to the packet his-
tory field when they receive the packet. The signature serves as
a confirmation for accepting a packet. Similarly, the destination
node appends its signature on the packet route history field and
replies to the source node with an acknowledgment packet which
is used to confirm end-to-end transmission delivery.

The packet history field also contains the source node signa-
ture. Each field used for signatures of the intermediate nodes is
time stamped. This allows the neighboring nodes to determine
the delays at each node and to prevent modifications. The fol-
lowing information are stored in the packet history: time stamp,
packet route and node signature.
4.4.4 Detecting Intentionally Delayed Packets

When receiving a packet, a benign node will insert the packet at
the end of a packet queue that is served in First-In-First-Out man-
ner (FIFO). However, a malicious node may intentionally delay
inserting or removing the received packet into/from the queue, re-
sulting in additional packet delay at that node. Packet delay at a
node is defined to be the time interval from the time a packet is
received by the node to the time that packet is transmitted.

Nodes that overhear packets can determine the packet queue
order of their neighbors by checking the timestamp each time a
packet is forwarded by a neighboring node to another node. If the
packet is not delayed, the order of the packets will not change.
However, if a node intentionally delays a packet, the order of
packets in the queue changes. This can easily be detected by a
neighboring node that is overhearing packets. Our method also
ensures that there is time synchronization between benign nodes.
Neighbors with unsynchronized time are treated as malicious.

To detect a node that is intentionally delaying packets, the

c© 2018 Information Processing Society of Japan 104

Journal of Information Processing Vol.26 98–110 (Feb. 2018)

Fig. 6 An example of RTS/CTS transmission process.

RTS/CTS mechanism is used. The RTS/CTS packets contain
information about the transmission duration of the data packet.
This is used by other nodes to determine the estimated comple-
tion time of data transmission. If a CTS packet is overheard, other
nodes wait until data packet, and ACK transmission are com-
pleted. Also, even if some links are busy and a node cannot send
out packets, it can still receive a packet from another node.

In a situation where a node deliberately holds onto a packet af-
ter indicating its availability to receive and forward the packet by
responding with a CTS packet. The previous node will not over-
hear the packet and then report such node as malicious. Hence,
transmission collisions can be avoided and malicious nodes in-
tentionally delaying packets are detected. Figure 6 shows an ex-
ample of RTS/CTS transmission.

In addition, a malicious node delay responding to an RTS
packet might force the sending node to hold onto a packet,
thereby delaying transmission. The sending node after the spec-
ified time elapses for receiving a CTS packet will select another
route to send its packet.

4.5 Preventing Various Kinds of Attacks
In this section we explain how our monitoring scheme prevents

Byzantine attacks. Specifically, we focus on preventing corrup-
tion of the routing table, wormhole attacks, colluding attacks,
blackhole attacks, and delaying packets.
4.5.1 Corruption of Routing Table

A malicious node may try to corrupt the routing table infor-
mation by advertising the wrong link delay to its neighbor or not
adding a node as a neighbor in its hello message. In a situation
where a node advertises a link delay that is better than the actual
situation as described in Fig. 1 (a), where malicious nodes M ad-
vertises the link delay to node C to be 1, while node C advertises
its link delay to the malicious node M as 10. Other benign nodes
in the network will get conflicting information from the nodes
connected to such a malicious node. In such a situation, nodes in
the network will adopt the worse link delay. Similarly, if a node
advertises a link delay that is worse than the actual situation while
a neighbor node to such node advertise the actual delay cost, other
nodes in the network will still adopt the worse link delay. This is
not a problem since the link between these two nodes is a link
that should be invalidated.
4.5.2 Wormhole Attack

As shown in Fig. 1 (d), if a node selected to take part in the

routing of packets from the source to the destination decides to
carry out a wormhole attack, it will do this by tunneling packets
to another malicious node in the network which eventually drops
the packets or selectively drops some packets. To prevent this, the
neighboring node S overhears the packets, and detects the mali-
cious action by observing how malicious node M1 handles the
received packet. Neighboring nodes such as node S also check
the packet history field signed by the malicious node M1 to deter-
mine the past activities of the packet, and check if node M2 is part
of the packet route by comparing the sending node address to the
packet route information stored in the packet history field (e.g.
node ID or MAC address in the packet header to the one stored
in the packet history field). If node M2 is not stored as part of the
packet route information, the neighboring node reports that node
M1 is a malicious node to other nodes in the network. So record-
ing and checking the route information prevents packet tunneling
and wormhole attacks.

When this occurs, Node S will report that node M1 is malicious
to other benign nodes in the network, and the link between node
S and malicious node M1 will be excluded. Again, node S will af-
terwards select another path and retransmit its packets using the
two hop reactive mode.
4.5.3 Black Hole Attack

As shown in Fig. 1 (c), if a node decides to drop or ignore pack-
ets, thereby carrying out a black hole attack, the source node S

and node A will not overhear the packet. In this case, after a
predetermined time interval without node S and node A overhear-
ing the packet, and the statistical method described earlier detects
that node M is malicious. Then the links between node S and
node A to node M are excluded from the network, and the nodes
report that node M is malicious to other nodes in the network.
Afterwards, source node S selects another path for its packets and
retransmits its packets using the two hop reactive mode.
4.5.4 Preventing Colluding Attacks

In our scheme, there are two main types of colluding attacks
we address. The first colluding attack scenario is when only one
node M1 of the colluding nodes is part of the selected path and it
forwards the packet to the second colluding node M2 on a non-
optimal path. This type of colluding attack is similar to the worm-
hole attacks discussed in Section 4.5.2 and can be prevented in a
similar way as described above, that is neighboring nodes such as
the source node S can check if the colluding node M2 is part of
the packet route by comparing node M2 address (e.g., node ID or
MAC address) to the packet route information stored in the packet
history field. If node M2 is not stored as a part of the packet route
information, the neighboring node S reports that node M1 is a ma-
licious node to other nodes in the network and the link between
node S and node M1 is excluded from the network. Thereby this
form of colluding attack is prevented.

In the second colluding attack scenario, suppose node S se-
lected a route S - A - M1 - M2 - D which includes two malicious
nodes M1 and M2 and the packet is dropped at node M2 but node
M1 fails to report such malicious action. After a predefined time
for receiving the ACK from the destination node D by node S has
passed and the ACK is not received, node S requests from node
A the overheard packet which includes the signed packet history

c© 2018 Information Processing Society of Japan 105

Journal of Information Processing Vol.26 98–110 (Feb. 2018)

Fig. 7 Colluding attacks using fake overheard detection.

field that confirms that packet from node S is forwarded to the
next hop by node M1. In this situation, if node M1 fails to show
the overheard packet from node M2, then node M1 is reported
as malicious and the link between node A and node M1 will be
excluded from the network.

Additionally, to prevent a situation in which node M1 colludes
with M2 such that node M1 gets node M2’s private key and uses
it to make a fake overheard packet (i.e., node M1 signs the packet
history field as node M2) and shows the fake overheard packet
to node S as proof that the packet was forwarded from node M2.
Each node showing the overheard packet must also show the CTS
packet received from the next hop node, which can be compared
to the previous overheard RTS/CTS packets. After receiving the
fake overheard packet, the source node S will request the desti-
nation node D to resend the ACK to confirm that the destination
node D receives the packet from node M2, then the destination
node D can report not receiving the packet (see Fig. 7). Also,
monitoring nodes can detect such packet dropping behavior by
node M2 by using the statistical hypothesis testing method. If
the statistical hypothesis testing method confirms that node M2 is
malicious and there is no ACK received by the destination node
D, then the link between node M2 and the destination node D will
be excluded from the network.
4.5.5 Preventing Intentional Packet Delay Attacks

In this situation, a malicious node M deliberately delays pack-
ets in the network, e.g., using the network in Fig. 1 (c). When
this happens, source node S will overhear the packet, and check
the order of packets in the packet queue for node M. Node S

also checks whether it has previously overheard RTS/CTS pack-
ets from node M. If the queue order of the packets has changed
and node M has not been sending and receiving RTS/CTS pack-
ets, then node S determines that node M is maliciously delaying
packets. Node S reports node M as a malicious node to other
nodes in the network.

5. Evaluation

In this section we first highlight the security goals that our pro-
posed system achieves. Then we evaluate the performance of
our proposed monitoring scheme for securing Link State Rout-
ing against Byzantine attacks using a custom simulator.

5.1 Security Goals
When our proposed monitoring scheme is run successfully, it

achieves the following security goals.
• Authentication: In our scheme, there is no certificate author-

ity, therefore each node creates its unique public and private

keys in advance. The unique key pair is safely created from
random numbers by any node. The unique key pair is used
to generate and verify a digital signature which is used for
authentication in our schemes. When a node sends/forward
packets, the node will sign its ID which can be verified by
other nodes to authenticate the sender of such packets. Also,
the packet history field used to store the route history infor-
mation is digitally signed with source node S’s private key.

• Confidentiality: All data in the packet are encrypted and
digitally signed by users. When the source node S sends a
packet to destination node D, the data message in the packet
is encrypted with a session key created using the symmetric
key algorithm and the session key is encrypted with the desti-
nation node D’s public key so none of the intermediate nodes
on the route to the destination in the network can decrypt the
message. Hence, confidentiality of the message between the
source node S and the destination node D is maintained.

• Non-repudiation: When a packet is sent by a source node
S to a destination node D, each intermediate node appends
their signature to the packet history field as a confirmation
of receiving the packets and records a timestamp when the
node forwards the packet to confirm forwarding the packet.
To achieve non-repudiation in the network, each intermedi-
ate node digital signature and timestamp is verified when-
ever the previous node overhears packet forwarding by the
intermediate nodes. An intermediate node cannot deny ap-
pending its signature to the packet history field.

• Integrity: To ensure that the packet and the packet history
field are not tampered with by a malicious node or an in-
termediate node, the source node S signs its signature on the
packet history field which can be verified wherever the pack-
ets are overheard. The digital signature and timestamp from
the source node S ensure the integrity of the packets and the
information in the packet history field.

5.2 Simulation Configuration
The performance of our proposed monitoring scheme is evalu-

ated using a custom simulator. In our simulation, we implement
all parts of our proposed protocol and focus our evaluation on the
packet dropping attacks such as black hole attacks, wormhole at-
tacks and colluding attacks, where a malicious node selectively
or completely drops received packets. The main objectives of our
simulation are to validate (i) that our monitoring scheme guaran-
tees communication among benign nodes, and (ii) detect if a node
is dropping packets deliberately.

The simulated scenario is implemented to enable benign nodes
to connect with each other easily within the transmission range,
given that mutual monitoring is an important aspect in our pro-
tocol. Nodes are first evenly placed in a 3 km × 3 km area as
shown in Fig. 8 with malicious nodes randomly selected to main-
tain a uniform position in the network. We varied the number
of malicious nodes from 2 to 12 out of the 20 network nodes.
The skeleton map represents the network topology. Each node
maintains low mobility in the network. The route is based on
Dijkstra’s shortest path algorithm. Each node randomly selected
a destination node and calculates the shortest path to the desti-

c© 2018 Information Processing Society of Japan 106

Journal of Information Processing Vol.26 98–110 (Feb. 2018)

Fig. 8 Network topology for simulation.

Table 1 Simulation parameters.

Parameter Value
Simulation time 3,600 seconds
Bandwidth 1 Mbps
Buffer Size 100–500 KB
Transmission range 250 m
Network size 3 km x 3 km
Mobility Static
Number of nodes 20
Number of malicious nodes 2–12
Level of significance (α) 0.0001
Probability of packet dropped due to fading (q) 0.001
Probability of packet dropped by malicious nodes 0.5
Sample size of observed packets (N) 1,000
Total number of packet generated 50,000

nation node. Then each node generates a packet every second,
the packet is routed to the selected destination node using the our
secured link state routing protocol. The total number of packets
generated in the network is 50,000 packets. In our simulation,
we eliminate sending packets on selected paths with just 1 or 2
hops. We used paths with 3 hops and above to route packets. All
nodes have the same buffer size and transmission range. We as-
sume 802.11g wireless WiFi (802.11g comes with ad-hoc mode)
is used for communication. The network bandwidth of our simu-
lation is set to 1 Mbps. We set the logical packet size to 5 KB, a
logical packet is a combination of several physical frames.

The probability that a packet is being dropped due to network
fading is set to 0.001 while the probability that malicious nodes
dropped a packet is set to 0.5. Each link in the network is mon-
itored for 1,000 packets. Links between nodes are identified as
a malicious link if the calculated P-value p is less than the level
of significance α which is set to 0.0001. All simulated results
in the figures below are the averages of 30 simulation runs. The
summary of the default values used in our simulation is shown in
Table 1.

The following metrics will be measured in our simulation.
Packet delivery ratio: This is the ratio between the number

of packets successfully delivered to destinations and the number
of packets generated by sources. Not all packets can be success-
fully delivered to destinations due to reasons like malicious node
dropping packets, buffer overflow, etc.

False positive ratio: This is the ratio between the number of
links between benign nodes that are falsely removed as malicious
and the number of all network links. It is desirable to have a low
false positive ratio.

Malicious link detection ratio: This is the ratio between the
number of successfully detected malicious links and the number
of all malicious links in the network.

Malicious node packet dropping ratio: This is the ratio be-
tween the number of packets dropped by malicious nodes and the

number of packets generated by the sources.
5.2.1 Packet Delivery Ratio

In our simulation, to show that our system guarantees com-
munication among benign nodes in the network we estimate the
packet delivery ratio. We set the probability that a packet is
dropped due to channel fading to 0.1% and the probability that
a packet is dropped deliberately by a malicious node is set at
50%. Each monitoring node observes the link between two nodes
for 1,000 packets and counts the number of packets that is being
dropped before calculating the P-value that such node is mali-
cious or not. If the P value is greater than the level of significance,
the link between the two nodes is further monitored for another
1,000 packets until a malicious node on the path is detected and
the link is excluded. In our method, malicious links require 1,000
packets to be detected. We evaluate the number of packets that
are successfully delivered to the destination node. As shown in
Fig. 9 (a), our proposed monitoring scheme achieved an average
of 89% to 96% packet delivery ratio. The packet delivery ratio re-
duces as the number of malicious nodes in the network increases.
The reason for the higher packet delivery ratio when the number
of malicious nodes is set between 2–6 as compared to 12 mali-
cious nodes is that the benign nodes have more alternative routes
to send their packets to the destination nodes. Hence, more pack-
ets are delivered. The more the number of malicious nodes, the
more the number of packets that are dropped and vice versa. In
addition, our proposed scheme still achieved 89% packet delivery
ratio even when more than half of the network nodes (i.e., 12 out
of the 20 nodes in the network) are malicious.

Moreover, the proposed scheme is compared to a case with-
out the proposed scheme. In such a situation, malicious nodes
drop packets without being detected. As shown in the figure, the
packet delivery decreases as the number of malicious nodes in-
creases when there is no secure scheme adopted in the network.
The proposed scheme achieves a better performance in packet
delivery compared to when no secure scheme is used. Using
the proposed scheme, the packet delivery ratio is increased by
17%, 32%, 42%, 52%, 64% and 62% compared to when no se-
cure scheme is used with 2, 4, 6, 8, 10, and 12 malicious nodes
respectively.
5.2.2 False Positive Ratio

In our scheme, each node monitors how the received packet is
being handled by the intermediate node. When a monitoring node
overhears a packet, the monitoring node calculates the P value p

and compares it with the level of significance α. If the P value
is less than the level of significance, the node being monitored is
detected as malicious and reported to other nodes in the network.
Therefore, the link between the malicious and the benign node is
excluded from the network. However, it is possible that a mali-
cious node reports other benign nodes as being malicious, thus
we set the frequency of malicious nodes reporting other benign
nodes as being malicious in the simulation to 0. Any malicious
node with a frequency greater than 0 is excluded in the network.
Therefore, such malicious node behavior is quickly detected and
further influence of such malicious behavior is prevented.

In our simulation, we evaluate the false positive ratio of links
among benign nodes that are falsely detected as being malicious

c© 2018 Information Processing Society of Japan 107

Journal of Information Processing Vol.26 98–110 (Feb. 2018)

Fig. 9 Simulation results for the network.

links. Figure 9 (b) shows that the false positive in our scheme is
significantly lower with an average of 0.1% false positive ratio
when 2 and 10 of the network nodes are malicious.
5.2.3 Malicious Link Detection Ratio

Figure 9 (c) shows the detection ratio of malicious links that
are excluded from the network after being detected as malicious
links. The overall average malicious links in our network is 16
links. Our proposed monitoring scheme achieved an average of
11% to 21% malicious link detection ratio. The malicious link
detection ratio decreases as the number of malicious nodes in-
creases. The goal of our method is to detect malicious links that
are utilized in routing a packet from a source node to a destination
node and guarantee secure communication among benign nodes.
By excluding 11% to 21% of the active malicious links in the net-
work, our method achieves higher packet delivery ratio as shown
in Fig. 9 (a). In addition excluding all malicious links all at once
in the network may result in network partition.
5.2.4 Malicious Nodes Packet Dropping Ratio

As shown in Fig. 9 (d), the packet dropping ratio of malicious
nodes increases as the number of malicious nodes increases. In
our simulation, 10% of the packets are dropped when 8 out of the
20 nodes in the network are malicious while 11% of packets are
dropped even when more than half of the nodes in the network
are malicious (12 out of the 20 nodes). The reason for the lower
packet drop rate in the network is due to the early exclusion of
some malicious links which further isolates other malicious nodes
from being selected in packet routing without causing a network
partition among benign nodes.

5.3 Communication Overhead
In this section we discuss the overhead cost introduced by our

monitoring scheme using the speed benchmark for cryptographic
algorithm: River Shamir Adelman (RSA) with 1,024 bit key size

and ECDSA 192 bit key size digital signature algorithm [16], run
on an Intel Core 2 1.83 GHz processor under Windows Vista in
32-bit mode x86/MMX/SSE2.

The packet overhead of our scheme is divided into three parts:
the first is the packet history field size required to send a packet
from a source node to a destination node. The second is the hello
message size a node exchanged with its neighbor nodes and the
last part is the computational cost of signing and verifying the
digital signature of intermediate nodes by the monitoring nodes.
5.3.1 Packet History Fields Size

In our proposed scheme, for a node to transmit a packet to a
destination, the node needs to create packet history fields which
are used for monitoring if the packet is forwarded on the right
route. Each intermediate node appends its signature on the packet
history field, therefore, we need to calculate the additional over-
head introduced by our monitoring scheme to transmit a packet
from a source node to a destination node. First, we find the num-
ber of signatures appended to the packet history field between the
source node to the destination node (NS), and then the size of the
signature appended by the intermediate node (s).

In addition, each source node stored the optimal path for send-
ing its packet to the destination node in the packet route fields of
the packet history. We also calculate the overhead introduced by
this route specification (RS) in our protocol. The size of each next
hop ID stored in the packet route fields from the source node to
the destination node is 4 bytes. Therefore, the total overhead cost
needed to route a packet to destination in our scheme is calculated
as: Toverhead = (NS × s) + RS . The size of the packet history field
increases as the number of nodes increases. We compare the size
of the packet history field using the RSA (128 bytes) and ECDSA
(24 bytes) signature. The average total overhead in term of size of
our packet history field is 1,320 bytes and 380 bytes respectively,
when the number of nodes in the route is 10.

c© 2018 Information Processing Society of Japan 108

Journal of Information Processing Vol.26 98–110 (Feb. 2018)

Each packet needs to store extra information about interme-
diary nodes, which are the node ID of 4 bytes and signature of
24 bytes for ECDSA which form a total overhead of 28 bytes per
hop. Let’s say there are 10 hops between a source and destination.
We assume that the packet size is 5 KB, therefore, the additional
traffic generated will utilize 5.5% (28×10

5×1024) of the bandwidth. Fig-
ure 9 (e) shows the overhead of our secure monitoring scheme
when the number of hops from source to destination is varied
from 2 to 12. The scheme achieves better performance with an
average of 7% maximum bandwidth utilization. There is a 4%,
8%, 12%, 17%, 21% and 25% decrease in bandwidth utilization
using the ECDSA signature algorithm as compared to the RSA
signature with hop numbers of 2, 4, 6, 8, 10, and 12, respectively.
5.3.2 Hello Message Size

In our protocol, each node exchanges hello messages with its
neighbor nodes and appends to its hello message the information
from its neighbor hello message such as neighbor ID, link cost,
neighbor signature and timestamp of the hello message. There-
fore, we evaluate the size of the hello messages in our protocol as
compared to a typical hello message size of LSR protocol. The
size of the hello message depends on the number of nodes in the
network, each node distance, the number of hello message broad-
cast by neighbor nodes and their link status. To determine the size
of the hello message at each node we estimate the size of the hello
message in our scheme and compare it with that of the standard
LSR without any security measure. The average size of a standard
LSR hello message is 48 bytes when only one node is advertised
as a neighbor while the hello message in our scheme is 320 bytes
and 112 bytes using RSA and ECDSA signatures. Figure 9 (f)
shows that the LSR hello message size increases from 52 bytes to
92 bytes as the number of nodes advertised as neighbor increases.
Comparatively, the hello message size of our scheme increases
from 461 bytes to 1,871 bytes when the RSA signature is used.
However, by adopting the ECDSA signature we reduce the hello
message size of our scheme by 67% to 72% when we varied the
advertised neighbors from 2 to 12 nodes.

In addition, there are four additional packets (i.e. database de-
scriptor, link state request, link state update and link state ac-
knowledgment) in LSR protocol, that use a common 24-bytes
header as the hello message. We adopt the implicit acknowledg-
ment where a neighbor that received a packet makes a duplicate
and encode it to its ACK, then send the ACK back to the send-
ing node. Multiple neighbors can be acknowledged in a single
multicast ACK packet.
5.3.3 Computation Overhead

Each node on the selected route generates its signature, which
is appended to the packet history field and verified by monitoring
nodes in the network. The average computation time for gen-
erating a signature by each node on the route is 0.002 seconds
while the verification time by monitoring nodes that overhears the
packet is less than 0.0001 seconds. Using the network in Fig. 5,
with 5 nodes on the packet route, the total processing time used
for generating signatures by each node on the route is 0.01 sec-
onds while a total verification time used by nodes to verify the
packet history field is 0.0003 seconds. Hence, the computational
overhead of our scheme is adequately low.

5.4 Current Open Issues of Interest
In this paper, we described how our proposed monitoring

scheme prevents Byzantine attacks. However, we did not con-
sider DoS attacks such as overwhelming amount of traffic or jam-
ming signals. In jamming signal attacks, a malicious node dis-
rupts the communication of benign nodes by blocking the trans-
mission of radio signals in the network. A jamming signal attack
is an active attack, which can be carried out by an outside attacker.
There is no way to prevent these kind of attacks.

6. Conclusion

In this paper, we propose a monitoring scheme to secure link
state routing against Byzantine attacks. We adopt the statistical
hypothesis testing to determine if a node is intentionally dropping
packets. In addition, our monitoring scheme also uses hello mes-
sage verification to validate the hello messages and to identify
inconsistent information when a malicious node tries to corrupt
routing table information, and packet history field. The moni-
toring node checks whether packets are forwarded correctly ac-
cording to the stored optimal path. Also, our monitoring scheme
uses RTS/CTS to identify when a node is intentionally delaying
packets in the network.

Our approach guarantees communication among benign nodes
as validated by simulation with an average of 89% packet deliv-
ery ratio even when 12 out of the 20 nodes in the network are
malicious. Also, simulation results show a significantly lower
false positive ratio with an average of 0.1% while the malicious
link detection ratio is between 11% to 21%. Active malicious
links to benign nodes are detected and excluded from the net-
work, thereby guaranteeing communication among benign nodes.
In addition, our monitoring scheme achieves relatively low com-
munication overhead with an average of 299 bytes packet history
field size and 519 bytes hello message size. Also, the commu-
nication overhead for generating and verifying signature by each
node is less than 1 second (0.002 seconds and 0.0001 seconds
respectively).

Acknowledgments This work is supported by the Otsuka
Toshimi Scholarship Foundation reference number 17-S72 and
JSPS KAKENHI Grant Numbers JP16K12421, JP15K15981,
JP16K01288.

References

[1] Geetha, A. and Sreenath, N.: Byzantine Attacks and its Security Mea-
sures in Mobile Adhoc Networks, Int’l Journal of Computing, Com-
munications and Instrumentation Engineering (IJCCIE 2016), Vol.3,
No.1, pp.42–47 (2016).

[2] Ojetunde, B., Shibata, N. and Gao, J.: Securing Link State Routing
for Wireless Networks against Byzantine Attacks: A Monitoring Ap-
proach, Proc. IEEE 41st Annual Computer Software and Applications
Conference (COMPSAC 2017), Turin Italy, pp.596–601 (2017).

[3] Harshavardhan, K.: A Survey on Security Issues in Ad Hoc Routing
Protocols and their Mitigation Techniques, International Journal of
Advanced Networking and Application, Vol.3, No.5, pp.1338–1351
(2012).

[4] Ali, D., Seyed, K. and Esmaeil, K.: Security Challenges in Mobile Ad
hoc Networks: A Survey, International Journal of Computer Science
and Engineering (IJCSES 2015), Vol.6, No.1, pp.15–29 (2015).

[5] Mojtaba, S., Imran, G., Aida, H. and Seung, J.: Routing Attacks in
Mobile Adhoc Networks: An Overview, Science International (La-
hore), Vol.25, No.4, pp.1031–1034 (2013).

[6] Kannhavong, B., Nakayama, H., Nemoto, Y., Kato, N. and Jamalipour,

c© 2018 Information Processing Society of Japan 109

Journal of Information Processing Vol.26 98–110 (Feb. 2018)

A.: A survey of routing attacks in mobile ad hoc networks, IEEE Wire-
less Communications, Vol.14, No.5, pp.85–91 (2007).

[7] Jhaveri, R.H., Patel, S.J. and Jinwala, D.C.: DoS Attacks in Mobile
Ad Hoc Networks: A Survey, Proc. 2012 Second International Con-
ference on Advanced Computing and Communication Technologies,
Rohtak, Haryana, pp.535–541 (2012).

[8] Zapata, M.G. and Asokan, N.: Securing ad hoc routing protocols,
Proc. 1st ACM Workshop on Wireless security (WiSE ’02), pp.1–10,
ACM, New York, NY, USA (2002).

[9] Alajeely, M., Ahmad, A. and Doss, R.: Malicious Node Detection in
OppNets using Hash Chain Technique, 2015 4th International Con-
ference on Computer Science and Network Technology (ICCSNT),
Harbin, pp.925–930 (2015).

[10] Baadache, A. and Belmehdi, A.: Fighting against packet dropping
misbehavior in multi-hop wireless ad hoc networks, Journal of Netw.
Comput. Appl., Vol.35, No.3, pp.1130–1139 (2012).

[11] Papadimitratos, P. and Haas, Z.J.: Secure link state routing for mobile
ad hoc networks, Proc. IEEE Workshop on Security and Assurance in
Ad hoc Networks, in conjunction with the 2003 Symposium on Appli-
cations and the Internet, pp.379–383 (2003).

[12] Papadimitratos, P. and Haas, Z.J.: Secure data transmission in mobile
ad hoc networks, Proc. 2nd ACM Workshop on Wireless security (WiSe
’03), pp.41–50, ACM, New York, NY, USA (2003).

[13] Bhuiyan, M.Z.A. and Wu, J.: Collusion Attack Detection in Net-
worked Systems, Proc. 2016 IEEE 14th Intl. Conf. on Depend-
able, Autonomic and Secure Computing, 14th Intl. Conf. on Per-
vasive Intelligence and Computing, 2nd Intl Conf on Big Data
Intelligence and Computing and Cyber Science and Technology
Congress (DASC/PiCom/DataCom/CyberSciTech), Auckland, pp.286–
293 (2016).

[14] Bonaventure, O.: Computer Networking: Principles, Protocols and
Practice, pp.41–45 (2011), available from 〈http://inl.info.ucl.ac.be/
cnp3〉.

[15] Johnson, D., Menezes, A. and Vanstone, S.: The Elliptic Curve Digital
Signature Algorithm (ECDSA), International Journal of Information
Security, Vol.1, No.1, pp.36–63 (2001).

[16] Al Imem, A.: Comparison and evaluation of digital signature schemes
employed in NDN network, International Journal of Embedded Sys-
tem and Applications (IJESA), Vol.5, No.2, pp.15–29 (2015).

Babatunde Ojetunde received his HND
degree in Computer Science from Osun
State Polytechnic, Iree, Osun, Nigeria in
2003 and also received his PGD in Com-
puter Science from Lagos State Univer-
sity, Ojo, Lagos, Nigeria in 2006. He
received his M.E in Information Science
from Nara Institute of Science and Tech-

nology, Japan in 2015. Currently, he is a Ph.D. student at the
Graduate School of Information Science, Nara Institute of Sci-
ence and Technology, Japan. His research interests include mo-
bile computing, and ubiquitous computing.

Naoki Shibata received his Ph.D. degree
in Computer Science from Osaka Univer-
sity, Japan, in 2001. He was an assistant
professor at Nara Institute of Science and
Technology from 2001 to 2003 and an as-
sociate professor at Shiga University from
2004 to 2012. He is currently an associate
professor at Nara Institute of Science and

Technology. His research areas include distributed systems, inter-
vehicle communication, mobile computing, multimedia commu-
nication, and parallel algorithms. He is a member of IPSJ, ACM
and IEEE/CS.

Juntao Gao received his B.S. and M.S.
degrees both in Computer Science from
Xidian University, Xi’an, China, in 2008
and 2010, respectively, and received his
Ph.D. degree from Graduate School of
Systems Information Science at Future
University Hakodate, Japan, in 2014.
He is an assistant professor at Graduate

School of Information Science at Nara Institute of Science and
Technology, Japan. His research interests are in the areas of
performance modeling and analysis, stochastic optimization and
control in wireless networks, queueing theory and its applica-
tions.

c© 2018 Information Processing Society of Japan 110

