
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.1 JANUARY 2016
151

PAPER

LSA-X: Exploiting Productivity Factors in Linear Size Adaptation
for Analogy-Based Software Effort Estimation

Passakorn PHANNACHITTA†, Nonmember, Akito MONDEN††a), Member, Jacky KEUNG†††, Nonmember,
and Kenichi MATSUMOTO†, Member

SUMMARY Analogy-based software effort estimation has gained a
considerable amount of attention in current research and practice. Its ex-
cellent estimation accuracy relies on its solution adaptation stage, where
an effort estimate is produced from similar past projects. This study pro-
poses a solution adaptation technique named LSA-X that introduces an ap-
proach to exploit the potential of productivity factors, i.e., project variables
with a high correlation with software productivity, in the solution adapta-
tion stage. The LSA-X technique tailors the exploitation of the productivity
factors with a procedure based on the Linear Size Adaptation (LSA) tech-
nique. The results, based on 19 datasets show that in circumstances where
a dataset exhibits a high correlation coefficient between productivity and a
related factor (r ≥ 0.30), the proposed LSA-X technique statistically outper-
formed (95% confidence) the other 8 commonly used techniques compared
in this study. In other circumstances, our results suggest using any linear
adaptation technique based on software size to compensate for the limita-
tions of the LSA-X technique.
key words: software development effort estimation, analogy, adaptation,
productivity factor, empirical experiments

1. Introduction

Analogy-based software development effort estimation
(ABE) is a widely accepted estimation method. It derives
an estimated effort value from the total amount of effort used
on already completed similar software projects, following a
hypothesis: projects with similar characteristics will require
similar amounts of effort to complete development [1], [2].
Numerous empirical studies such as [2]–[4] have reported
that ABE is an excellent method in terms of accuracy, as
well as being intuitively easy to understand.

To establish a robust effort estimation process based on
ABE, solution adaptation is one of the most imperative pro-
cedures. Its functions are to capture the degree of difference
between the new project case and the similar cases or ana-
logues, and to refine the estimated effort based on the degree
of difference [5]. Solution adaptation is necessary because
even the most similar past project available in a repository
will deviate somewhat from the new case.

Manuscript received June 19, 2015.
Manuscript revised September 14, 2015.
Manuscript publicized October 15, 2015.
†The authors are with Graduate School of Information Science,

Nara Institute of Science and Technology, Ikoma-shi, 630–0192
Japan.
††The author is with Graduate School of Natural Science and

Technology, Okayama University, Okayama-shi, 700–8530 Japan.
†††The author is with Department of Computer Science, City

University of Hong Kong, China.
a) E-mail: monden@okayama-u.ac.jp

DOI: 10.1587/transinf.2015EDP7237

Various adaptation techniques have been proposed in
the literature such as the Linear Size Adaptation (LSA) tech-
nique [5], and many others [6]–[10]. However, despite being
essential to analogy-based estimation, there is no generally
accepted “best” solution adaptation technique. As suggested
by a recent empirical assessment study by Azzeh [11], most
techniques revisited in their studies only performed well on
some specific selected datasets, while not performing well
for others. Hence, we see that one of the major shortcom-
ings in analogy-based estimation is the absence of a robust
and stable solution adaptation technique that is readily suit-
able for various effort estimation datasets.

According to the observations addressed by Azzeh [11],
the LSA and the Regression Towards the Mean (RTM)
techniques can provide more accurate performance than
any other techniques. These techniques adjust the ef-
fort based on productivity function: Productivity =

Effort/Software size [12]. In this study, we further explored
the potential of exploiting productivity factors and propose
a solution adaptation technique based on this exploitation.
The proposed technique extends the adaptation phase of the
LSA technique by exploiting productivity factors, project
variables having the highest value of correlation with pro-
ductivity, in the adaptation procedure. We named this tech-
nique eXtended Linear Size Adaptation (LSA-X). Specifi-
cally, LSA-X determines the productivity factor for a given
dataset. It then calibrates the productivity value based on
a linear extrapolation between productivity and the produc-
tivity factor. Finally, it applies the productivity function to
the calibrated productivity and software size to produce the
estimated effort value.

Our hypotheses behind the LSA-X are that (1) if a
dataset exhibits a high correlation between productivity and
its factor variable, we will be able to precisely refine the es-
timated productivity of the new case prior to adjusting its
effort, (2) calibrating the productivity prior to adjusting the
effort will produce a more robust estimate, as shown by the
RTM technique [11], and (3) calibrating the productivity us-
ing linear extrapolation with its factor variable will gener-
ate a more significant estimate, in the same way that linear
extrapolation was successfully performed between software
size and effort in the LSA technique [11].

This paper is organized as follows. Section 2 pro-
vides the essential background such as the solution adap-
tation techniques of ABE. Section 3 introduces the LSA-X
technique and explains its procedures. Section 4 describes

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers

152
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.1 JANUARY 2016

the evaluation methodology used in this paper, including
the evaluation measures, datasets, and configuration param-
eters. Section 5 presents the results which were tested for
statistical significance. Section 6 further discusses the re-
sults and threats to the validity of this study. Finally, we
describe the conclusions of this paper in Sect. 7.

2. Background

2.1 Analogy-Based Software Development Effort Estima-
tion (ABE)

ABE is a promising effort estimation method, commonly
used in both the industry and research communities. We
select ABE over other alternative model-based methods to
study productivity factors because (1) it is widely used,
widely studied, and consistently ranked among the best-
performing methods in terms of accuracy [1], [5], [11], [13],
and (2) various approaches to improve its accuracy by ex-
ploiting productivity measures have been proposed as ways
to refine the estimates in the solution adaptation stage.

Using ABE to estimate the software development effort
involves a 4-stage case-based reasoning process [14], con-
sisting of: Retrieve the project cases most similar to the new
case, Reuse the information from the retrieved past cases to
propose a solution to the new case, Revise the proposed so-
lution to better adapt to the new case, and Retain the solved
case for future problem solving.

Figure 1 shows the computing processes of ABE that
are commonly implemented as a software development ef-
fort estimation framework. As shown in Fig. 1, the solution
adaptation process is the final stage that captures the differ-
ence between the retrieved project cases and the new case,
and revises the estimated effort value based on the degree of
difference.

Fig. 1 The estimation process of analogy-based estimation

2.2 Solution Adaptation Techniques for ABE

In a study by Azzeh [11], 8 commonly used solution adapta-
tion techniques were replicated and evaluated to provide an
empirical assessment of their effectiveness. Azzeh [11] re-
ported that all the revisited techniques were still a long way
from reaching the optimal solutions. Nonetheless, we found
2 interesting observations made for estimation techniques
that exploited productivity as a function of Productivity =
Effort/Software size in Azzeh’s study, which are:

• A technique named Linear Size Adaptation (LSA),
which adjusts the effort using a linear extrapolation
between size and effort, often generated significantly
better (95 % confidence) estimate than any other
techniques.

• A technique named Regression Toward the Mean
(RTM), which calibrates the productivity value across
project cases in a dataset by using a statistical phe-
nomenon called regression towards the mean, was
most frequently selected as most accurate technique for
moderate size datasets with a coherent control group.

We speculate that an exploitation of either software
size or productivity was the major factor in the performance
achieved by the LSA and RTM techniques. These 2 findings
motivated us to further explore exploitation of productivity
in the solution adaptation stage of the ABE by examining its
factor variables.

Table 1 lists and summarizes the 8 adaptation tech-
niques compared in this study. In Table 1, LSA, MSA and
RTM are the techniques that utilize the software size. Due
to space limitations in this paper, we only provide a detailed
explanation for these 3 techniques, along with a brief expla-
nation of the other 5 techniques.

Linear Size Adaptation (LSA) is based on linear extrapo-
lation of the size differences between a new case and its ana-
logues, to determine an effort value for the new case based
on the effort values of the analogues [5]. In this calcula-
tion, the software size variable may be measured in terms
such as adjusted Function Points, raw Function Points, or
lines of code. Walkerden and Jeffery [5], based on their

Table 1 The 8 adaptation techniques selected in this study.

Abbrev. Adaptation Techniques
Adjustment

function
Adjustment

feature

1 UAVG [15] Unweighted mean of Mean Effort
the k analogues

2 IRWM [16] Inverse-ranks weighted mean Mean Effort
of the k analogues

3 LSA [5] Linear size adaptation Linear Software size
4 MSA [6] Multiple size adaptation Linear Software size(s)
5 RTM [7] Regression towards the mean Linear Software size

6 AQUA [8] Similarity-based adaptation Linear All features
7 GA [9] Adaptation based on Linear All features

Genetic algorithm
8 NNet [10] Non-linear adaptation Non-linear All features

based on Neural network

PHANNACHITTA et al.: LSA-X: EXPLOITING PRODUCTIVITY FACTORS IN LINEAR SIZE ADAPTATION
153

observation, suggested that an effort adaptation using only a
software size variable is rational, because any size variables
are always strongly correlated with the effort. Furthermore,
adjusting the effort using a size variable also allows an es-
timation to scale the estimated effort value between pairs of
analogues based on differences in size. Equation (1) depicts
the formula of the LSA technique.

Eff (Pnew) =
SS(Pnew) ∗Mean(Eff (Panalogs))

Mean(S S (Panalogs))
, (1)

where SS indicates a single software size variable, and Eff
indicates an effort value. This equation can be explained as
a function of Productivity = Effort/Size, where Pr(Panalogs)
is the productivity values of the analogue projects:

Eff (Pnew) = SS(Pnew) ∗Mean(Pr(Panalogs)), (2)

Multiple Size Adaptation (MSA) extends the LSA tech-
nique to handle the case where the software size is elabo-
rated with multiple arbitrary attributes, such as in web appli-
cation development [6]. MSA aggregates multiple size vari-
ables using the mean and applies the mean software size to
Eq. (1). This aggregation of size variables can be considered
as calibrated productivity since this function retains the ratio
between outputs and inputs [12].

Regression Toward the Mean (RTM) calibrates the pro-
ductivity of a project case to be more consistent with other
project cases [7]. The productivity calibration follows the
statistical phenomenon known as regression toward the
mean, which states that any extreme instance found on its
first measurement will tend to move toward its population
mean on its second measurement. In this estimation pro-
cess, the productivity of each project is adjusted towards
the mean productivity of the projects in the same coherence
group. Project cases are divided into groups using a single
categorical variable selected prior to the estimation. The ad-
justed productivity is then calculated for the estimated effort
following Productivity = Effort/Software size. The formula
of the RTM technique is depicted in Eq. (3):

Eff (Pnew) = SS(Pnew) ∗
(
Mean(Pr(Panalog))

+(M−Mean(Pr(Panalog))) × (1−r)
)
, (3)

where M is the mean productivity of the projects in the same
coherence group, and r is the correlation between the pro-
ductivity of the project analogues and the actual productivity
of the projects in the same group.

For the remaining 5 techniques in Table 1, UAVG is
the fundamental technique used in the basic ABE frame-
work [1], [4]. It aggregates the effort values selected from
the k analogues using a simple unweighted mean. IRWM
applies different weight values to different project ana-
logues, assuming that project analogues that are closer to
the new case are more important [16]. AQUA adjusts the
estimated effort by aggregating the degree of similarity be-
tween pairs of project features of the new case and its ana-
logues. The aggregation formula involves the sum of the

product of the normalized similarity degree between all the
project features being selected for the estimated effort. GA
adopts a genetic algorithm to adjust the retrieved effort val-
ues based on the similarity degrees between all pairings
of project cases. Finally, NNet trains artificial neural net-
works to capture the degree of difference of the project fea-
tures between pairings of project cases, and applies the cap-
tured degree of difference to the retrieved effort from the
k analogues.

3. The Proposed LSA-X Technique

From Eq. (1), the LSA technique estimates the term
Effort/Size as the objective variable of an ABE system in-
stead of the effort. It then applies a linear adjustment based
on a software size variable of the new case to produce its
final estimated effort value.

As an extension to the LSA technique, the proposed
eXtended Linear Size Adaptation (LSA-X) technique intro-
duces a procedure to utilize productivity (Pr) and an in-
fluential factor variable (PrFactor) in the solution adapta-
tion stage of the analogy-based estimation. LSA-X adds one
more adaptation step to the LSA technique by calibrating the
productivity of the retrieved similar project cases before ad-
justing the effort using a software size. Specifically, LSA-X
applies a basic analogy-based estimation framework to es-
timate the term Pr/PrFactor as well as Effort/Software size
for the new case using the PrFactor and software size of the
new case to produce the required effort value.

3.1 The Procedure

The LSA-X technique has three adaptation steps:

Step 1 is a search for the PrFactor. We define the PrFactor
as any single continuous project variable of a dataset that
has the highest positive degree of Pearson correlation with
the productivity (Pr). This single criteria is extended from
the essence of the LSA technique, where software size is the
variable of choice because it commonly exhibits the highest
correlation to the effort, as empirically observed in the study
by Walkerden and Jeffery [5]. In addition, since the Pearson
correlation assumes a normal distribution, we apply a loga-
rithmic transformation to all the continuous variables prior
to perform the correlation test, as suggested by Kitchenham
and Mendes in [17].

In Step 2, after the PrFactor is identified, the Pr of the new
case is calibrated using linear adjustment:

Pr′(Pnew) = PrFactor(Pnew)

×
(

Mean(Pr(Panalog))

Mean(PrFactor(Panalog))

)
(4)

where Pr′ is the calibrated productivity.

In Step 3, LSA-X adjusts the term Pr′ using a software size
variable from the new case. This is done by replacing the

154
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.1 JANUARY 2016

Case Size
Required
Reliability

Lang Arch
Actual
Effort

Pnew 100 4/10 Java Stand Alone 100
Panalog 200 8/10 Java Stand Alone 400

Estimated Effort
UAVG LSA LSA-X

400 400 × 100LOC
200LOC = 200 400 × 100LOC

200LOC × 0.4
0.8 = 100

Fig. 2 An example comparison

term Pr in Eq. (2) of the LSA technique with the Pr′, cal-
culated in Step 2. Equation (5) depicts the third adaptation
step of LSA-X.

Eff (Pnew) = SS(Pnew) × Pr′(Pnew) (5)

3.2 The Rationale Behind the LSA-X Technique

Compared to the basic UAVG technique, the LSA technique
generally produces a higher accuracy [5], [6], [16] because
it can capture and exploit the degrees of difference between
project cases with similar features, but different software
sizes. LSA applies the degree of the difference in software
size to the estimated effort value and scales the estimated
effort to match the characteristics of the new case.

The proposed LSA-X technique can further identify and
exploit the productivity differences between a new project
case and its analogues by first adjusting the productivity,
followed by the software size. Figure 2 provides an exam-
ple case where adjusting both software size and productivity
using the PrFactor allows LSA-X to be more accurate than
either LSA or UAVG.

In this example, the new case is an expected 100 LOC
Java standalone program with a required reliability of 4 on
an ordinal scale of 10 levels. We also know that the devel-
opers spent 100 man hours to complete the new case. After
performing a search of the past project cases, the most sim-
ilar project found was a case with a 200 LOC Java stan-
dalone program, and a required reliability level of 8/10.
This analogue consumed 400 man-hours to complete its
development.

Applying the UAVG technique to this example, the
ABE framework only reuses the effort value from the ana-
logue case and estimates the new case will take 400 man-
hours as the required amount of effort for its development.
On the other hand, an estimated effort adjusted using the
LSA technique results a more accurate estimate. From this
example, the LSA technique captures the information that
the new case is about 50% smaller in software size. LSA then
scales down the estimated effort value to 200 man-hours,
which is more accurate than the UAVG result.

Following the adaptation mechanism of LSA that the
effort value of the analogue should be adjusted by a soft-
ware size ratio to match the characteristics of the new case,
the proposed LSA-X technique further adjusts the estimated
effort value by exploiting one additional variable. In this ex-
ample, LSA-X captures the required software reliability as a
PrFactor for this dataset, and the new case has a required

level of reliability that is 50% less than the closest analogue.
The LSA-X technique adds one more adaptation step to ad-
just the effort value based on both the software size and in
this example the required software reliability. LSA-X thus
estimates the required effort for the new case as 100 man-
hours, which is more accurate.

4. Evaluation Methodology

This section describes the error measures, datasets, feature
selection methods, evaluation procedure, and configuration
parameters selected and used in this study to evaluation the
performance of the proposed LSA-X technique in compari-
son to other solution adaptation techniques for ABE.

4.1 Five Error Measures

Table 3 summarizes the 5 error measures we used in our
experiments. These 5 error measures were selected accord-
ing to the suggestion by a study of Foss et al. [26], in which
the validity of numerous error measures commonly used in
the software development effort estimation literature were
systematically evaluated. These 5 measures are consider-
ably more robust and valid than many others such as the
well-known MMRE and Pred(25). From the 5 measures se-
lected, 2 are the absolute errors based on the absolute resid-
ual, and the remaining 3 are variants of the standard devia-
tion: Standard Deviation (SD), Relative Standard Deviation
(RSD), and Logarithmic Standard Deviation (LSD).

4.2 19 Datasets and Their PrFactors

We used 19 software effort estimation datasets in our ex-
periments. All of these are available in the tera-PROMISE
software engineering repository (Accessible through [18]),
where the datasets are made available and commonly used
in empirical software engineering studies. To maximize the
validity of our study, these 19 datasets were taken from the
list of 20 datasets which is the highest number of datasets
that appeared in software development effort estimation lit-
erature [4], [13]. We decided to exclude one dataset, namely
Telecom, because it does not contain any software size vari-
ables, which are required by the LSA, MSA, RTM and the
proposed LSA-X techniques.

Table 2 presents the details of the experimental datasets
sorted by the value of r(Pr,PrFactor), along with the details
of the PrFactor selected for each dataset. Even though the
characteristics of the 19 datasets were greatly diversified,
we can categorize the variables selected as the PrFactor in
three groups, all of which are known to be influential factors
of Pr:

• Size, complexity and constraints of the software
project, e.g., Rely, Time, and Flex;

• Developers’ experience, e.g., TeamExp and Lexp;

• Tool usage, e.g., T08, and Tool.

PHANNACHITTA et al.: LSA-X: EXPLOITING PRODUCTIVITY FACTORS IN LINEAR SIZE ADAPTATION
155

Table 2 The 19 benchmark datasets (F = features, N = project cases, Pr = productivity, PrFactor =
productivity factor variable)

Dataset F N Dataset descriptions PrFactor PrFactor Description r(Pr, PrFactor)

China 12 499 Projects from multiple Chinese companies [18] Interface External interface added 0.01
Desharnais-2 11 25 Desharnais projects with language 2 [1] Transactions Number of the logical transactions 0.05
Kemerer 7 15 A small data set from Large Business [19] Ksloc Source lines of code 0.09
Desharnais 8 48 The well-known Canadian software project [1] Envergure Complexity adjustment factors 0.11
Miyazaki94 12 81 Software project developed in COBOL [20] File Number of different record formats 0.16
Desharnais-1 11 46 Desharnais projects with language 1 [1] Envergure Complexity adjustment factors 0.21
Finnish 7 38 Data from different companies in Finland [21] Co N/A 0.30
Maxwell 27 62 Projects from commercial banks in Finland [22] T08 Impact of tools 0.37
Desharnais-3 11 10 Desharnais projects with language 3 [1] TeamExp Team experience 0.39
Albrecht 8 24 Completed projects from IBM in 70s [23] RawFPcounts Size in terms of raw Function Points 0.59
Nasa93-c2 22 37 Nasa93 projects from center 2 [24] Virt Machine volatility 0.54
Cocomo81-e 17 28 Embedded project type in Cocomo81 [12] Lexp Language experience 0.59
Cocomo81 18 63 Nasa software projects [12] Time Time constraint for cpu 0.62
Nasa93 23 93 Nasa software projects [24] Time Time constraint for cpu 0.65
Cocomo-sdr 12 24 Projects from various companies in Turkey [25] Flex Development Flexibility 0.66
Cocomo81-s 17 11 Semidetached project type in Cocomo81 [12] Rely Required software reliability 0.69
Nasa93-c5 22 48 Nasa93 projects from center 5 [24] Time Time constraint for cpu 0.75
Nasa93-c1 22 12 Nasa93 projects from center 1 [24] Rely Required software reliability 0.79
Cocomo81-o 17 24 Organic project type in Cocomo81 [12] Tool Use of software tools 0.81

Table 3 A summary of the 5 error measures used in this study. (xi is
the actual effort, x̂ is the estimated effort, N is the total number of project
cases, SS is a single software size variable, and s is the estimated variance
of ln(xi/x̂i)).

Abbrev. Error measure Formula

1 MAR Mean of Absolute Residual mean(|x − x̂|)
2 MdAR Median of Absolute Residual median(|x − x̂|)

3 SD Standard Deviation

√∑N
i=1(xi−x̂i)2

N−1

4 RSD Relative Standard Deviation

√∑N
i=1

(
(xi−x̂i)2

SSi

)2

N−1

5 LSD Logarithmic Standard Deviation

√∑N
i=1

(
ln(

xi
x̂i

)−
(
− s2

2

))2

N−1

In the case that a PrFactor was selected with a very
low value of r(Pr,PrFactor), e.g. r(Pr,PrFactor) < 0.30,
such as the first 6 data sets in Table 2, we speculate that
these datasets may not contain any real PrFactors. This
may be due to their data collection or being a large and mas-
sively divergent dataset, such as the China dataset, which
consists of numerous project cases collected from various
companies [27]. We therefore hypothesize that the proposed
LSA-X technique will not perform well for these datasets
since the PrFactor seems not to be useful.

4.3 Four Feature Subset Selection Methods

Feature subset selection is one of the most influential fac-
tors determining the performance of an ABE framework [4],
[28]. To avoid the issue of unstable results and to improve
generalization of the results, we adopted 4 feature selection
methods in this study, all of which are often adopted in soft-
ware effort estimation literature [4], [13]:

All selects all the features in a dataset.

Sfs (Sequential forward selection [29]) is a greedy algorithm
that adds features one by one into the feature subset candi-
date until there is no improvement when adding any of the
remaining features. The criteria used to evaluate the im-
provement of Sfs was the same as used in a study by Keung
et al. [4], which is the default MATLAB’s objective func-
tion. This function reports the mean-square error of a simple
linear regression on the training set.

Swr (Stepwise regression [29]) iteratively adds or removes
features from the feature set based on the statistical signif-
icance of a multilinear model in explaining the objective
variable.

Pca (Principal component analysis [8]) uses a transforma-
tion function to map the entire dataset into a new lower-
dimensional space, where remaining values are uncorrelated
but they still retain the same variance as in the original
dataset.

4.4 Evaluation Procedure

To enable and ease the reproduction of the experiments, we
adopted a procedure that was used in many recent promi-
nent studies [4], [8], [13], [30]. In this study, the method
used to sample the training/test instances is based on leave-
one-out approach [31] (a.k.a. Jack-knifing, where each soft-
ware project case is the test instance of a model built from
all the remaining cases). The leave-one-out is our method
of choice, because (1) it is widely used [4], [8], [13], [30],
(2) it does not depend on any randomization, so that
an evaluation over the same dataset will have the ex-
act same result in every single run, and (3) a re-
cent study by Kocaguneli [32] compared leave-one-out
with the widely used alternative N-way cross valida-
tion method, and suggested that the leave-one-out ap-
proach often generates lower estimation bias and is more
robust for small and medium-sized datasets [13], [33]

156
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.1 JANUARY 2016

1: if Wilcoxon(Erri,Err j, 0.95) says they are the same then
2: tiei = tiei + 1
3: tie j = tie j + 1
4: else
5: if better(Erri,Err j) then
6: wini = wini + 1
7: loss j = loss j + 1
8: else
9: win j = win j + 1

10: lossi = lossi + 1
11: end if
12: end if

Fig. 3 Computing the win-tie-loss statistic between adaptation tech-
niques i and j on a single error measure Err. A better performance of
all the 5 error errors is indicated by a lower error values.

(i.e. less than 100 cases). Over 90% of the available
software effort estimation datasets in the tera-PROMISE
repository are this size [18].

The overall performance of an adaptation technique is
summarized from 5 error measures: MAR, MdAR, SD, LSD,
and RSD using the win-tie-loss statistic [4], [13], [30]. The
win-tie-loss statistic adopts a Wilcoxon rank-sum hypothe-
sis test (95% confidence) [34] based on a confidence interval
of the p-hat metric [35]. This variant of the statistical test
was selected because the Wilcoxon rank-sum test is a robust
test method for situations where the samples do not have an
underlying Gaussian distribution, and the confidence inter-
val of p-hat metric was suggested by Zimmerman [36] as a
more stable variant of the Wilcoxon test.

Figure 3 explains the computing procedure of the win-
tie-loss statistic. With this statistic, the results are measured
through three counters, wins, ties, and losses. The statis-
tic counts the results of pairwise comparisons of all pairs of
techniques for each error measure. So the computing proce-
dure shown in Fig. 3 tests one pair of techniques for one er-
ror measure, and is then repeated for all pairs of techniques
and all error measures. Thus, if a technique i totally outper-
forms a technique j in terms of all 5 error measures, its total
wins will increment by 5, while the total losses of technique
j will increase by 5.

A summation of total wins, losses, or wins - losses is
commonly used as a trustworthy procedure to compare the
software effort estimators [4], [37], [38]; however, there is
no generally accepted method among these three interpreta-
tions [13], [34]. In this study, we used only the total wins to
report the detailed results where all the three interpretations
cannot be presented due to space limitations in this paper.
For more summarized results, we presented the comparison
results based on all terms of wins, losses, and wins - losses.
Furthermore, the wins, losses, and wins - losses are iterated
on each single feature subset selection method individually.
Then, the median value of the same summations were calcu-
lated across the 4 feature subset selection methods to present
the overall performance of a solution adaptation technique.
The median was taken here to avoid bias possibly introduced
by any single specific feature selection method.

4.5 Configuration Parameters

In this study, all the ABE variants were implemented us-
ing MATLAB. In the experiments, the baseline ABE frame-
work that all the adaptation techniques used is a variant of
the standard ABE0-kNN framework [4]. The similarity be-
tween project cases is based on the Euclidean function [2].
We normalized all the continuous variables in the interval
between 0 and 1 to assure the equal influence of all the indi-
vidual continuous features. The normalization for a feature
vector i was produced by subtracting the minimum value of
the vector from all the attribute values, then dividing result
by value of the maximum minus the minimum values of i).
This procedure is widely used in effort estimation studies
such as in [4], [8], [37], [39], [40].

For the choice of the number of analogues (k), we
adopted a more optimal approach suggested by Baker [38],
in which the value of k is tuned to be the best fit with any
given training/test splits. Thus, a different training/test split
of a dataset may produce a different k value. This approach
is considerably more intuitive than fixing a single k value
for the entire dataset, which is commonly used in the soft-
ware effort estimation literature [5], [6], [10]. In addition,
selection of the k value in this way also allows us to omit
the sensitivity analysis of the effectiveness of the adaptation
techniques regarding the number of analogues, because the
accuracy is no longer subject to an arbitrary assignment of a
single k value.

Some models such as RTM and NNet require specific
configuration parameters. The parameters we configured for
these models are given below.

LSA: For this technique, the single size variable to be se-
lected is based on experimentations. For each dataset, the
selected size variable is the one that exhibits the highest cor-
relation coefficient with the effort. Since there is no gen-
erally accepted method to select a single size variable, we
adopted this criteria to conform with the essence of the pro-
posed study by Walkerden and Jeffery [5].

RTM: RTM has two specific parameters: the single size
variable and the variable to represent the coherence groups.
For the size variable, we used the same criteria as used in
the LSA technique. For the second variable, we carried out a
literature review on the studies that adopted or replicated
the RTM technique in the area of software effort estima-
tion. Our review found that existing studies [7], [11] sug-
gested using a categorical variable to represent the coher-
ence groups. However; none of the existing studies dis-
cussed the selection criteria when there are more than one
categorical variable present in a dataset. We adopted simple
criteria as follows:

• In cases where no categorical variable existed in a
dataset, we let the entire dataset be a single coherent
group.

• In cases where that there is one or more categorical

PHANNACHITTA et al.: LSA-X: EXPLOITING PRODUCTIVITY FACTORS IN LINEAR SIZE ADAPTATION
157

variable, the variable of choice is the one that gener-
ates coherence groups with the minimum sum of pair-
wise difference of the effort, calculated across all the
divided coherence groups.

GA: In this study, the optimization criteria for the genetic
algorithm is based on the MAR error measure. This is differ-
ent from the proposal studied by Chiu and Huang [9] which
relied on MMRE and PRED. Earlier in this section, we dis-
cussed why these two measures are no longer believed to be
the trustworthy measures.

NNet: We trained the networks using the “trainscg”
MATLAB function because it enables acceleration of the ex-
periments through parallel computation. We configured the
networks with 2 hidden layers as commonly done in several
recent studies such as in [13].

5. Results

Table 4 shows the results of the experimental compari-
son of the 9 adaptation techniques. In this table the win-
tie-loss statistic are summarized by the number of wins.
Each entry in Table 4 is the median of the total sum of
wins aggregated from the 4 feature selection methods and
the 5 error measures across the leave-one-out experiments.
Hence the maximum number of wins for an entry in Ta-
ble 4 is

(
(9 techniques × 4 feature selectors) − 1 self

)
×

5 error measures = 175. This is the maximum number of
wins for a variant that pairs one technique and one fea-
ture selection method. The highlighted entries in Table 4
show the technique with the maximum number of wins
for the dataset in that row. The results for each dataset,
the rows of Table 4, are sorted by the Pearson correla-
tion strength between productivity and productivity factor

Table 4 Win-tie-loss results from (4 feature selection methods x 5 error measures) of Leave-one-out
experiments. The highlighted entires indicate the estimators with best performance in terms of wins.

wins
Datasets

UAVG IRWM LSA MSA LSA-X RTM AQUA GA Nnet
r(Pr,PrFactor)

China 32.50 35.50 37.75 37.75 5.00 34.75 18.00 32.25 43.25 0.01
Desharnais-2 2.50 3.25 25.00 30.50 0.00 31.75 1.00 4.25 1.25 0.05
Kemerer 1.00 1.00 6.50 7.00 1.00 6.50 1.00 1.00 0.75 0.09
Desharnais 12.75 14.00 64.00 64.00 33.75 50.00 3.75 13.75 1.50 0.11
Miyazaki94 10.00 1.75 3.00 3.75 1.50 3.50 1.25 9.50 0.00 0.16
Desharnais-1 5.75 3.75 8.00 10.75 4.25 10.00 0.25 5.75 1.50 0.21

Finnish 5.00 3.50 18.25 18.25 22.25 11.25 1.00 5.00 3.00 0.30
Maxwell 15.00 12.25 27.75 27.75 52.00 14.50 8.00 15.00 10.75 0.37
Desharnais-3 4.75 3.25 7.00 7.00 9.75 8.50 0.00 4.75 0.25 0.39
Albrecht 0.00 0.00 0.00 0.25 0.50 0.00 0.00 0.00 0.00 0.59
Nasa93-c2 23.75 24.25 61.00 61.00 40.25 53.25 28.50 23.75 9.75 0.54
Cocomo81-e 8.00 12.50 45.25 45.25 57.50 66.50 9.00 8.00 3.00 0.59
Cocomo81 12.25 16.25 93.25 93.25 89.00 76.75 15.25 12.25 6.25 0.62
Nasa93 27.00 35.75 84.25 84.25 85.00 72.50 35.00 29.25 15.25 0.65
Cocomo-sdr 16.75 14.50 27.00 27.00 45.25 25.75 13.25 7.00 10.50 0.66
Cocomo81-s 10.25 12.25 31.25 31.25 32.75 22.00 10.75 12.75 9.25 0.69
Nasa93-c5 10.50 13.25 63.50 63.50 76.75 61.50 9.75 10.75 3.75 0.75
Nasa93-c1 11.00 10.50 5.25 5.25 9.00 11.00 12.75 13.50 3.00 0.79
Cocomo81-o 10.75 11.25 34.50 34.50 34.75 17.25 3.75 10.75 5.00 0.81

(r(Pr, PrFactor)).
The results of Table 4 show that the LSA-X technique

performed best in terms of wins for 9 of the 19 datasets,
MSA was next, with 5/19. RTM and the GA were the best
for 2 datasets, while NNet performed the best for 1 dataset.
According to the results of these preliminary experiments,
LSA-X yielded the best general performance.

When we look closely at the r(Pr, PrFactor) column
in Table 4, we can divide the datasets into 2 bands based on
r(Pr, PrFactor) with regard to the accuracy achieved by the
LSA-X technique:

Band 1: datasets with r(Pr,PrFactor) < 0.30;

Band 2: datasets with r(Pr,PrFactor) ≥ 0.30.

LSA-X was the method of choice for datasets with
r(Pr,PrFactor) equal to or greater than 0.30. In this
band, LSA-X had the best performance for 9 out of the
13 datasets. For 3 of the other 4 datasets in this band, it
also performed almost well as the best performers. On the
other hand, LSA-X performed poorly for the datasets with
r(Pr,PrFactor) less than 0.30. In these cases, the MSA tech-
nique performed well for 3 out of the 6 datasets, with RTM,
AQUA, and Nnet as the best performing techniques for each
of the remaining 3 datasets.

To examine which solution adaptation techniques are
best for each band of datasets, we aggregated the wins,
losses, and wins - losses for each band using the mathemat-
ical mean. Table 5 presents the aggregation results. The
highlighted entries in Table 5 show the best techniques in
each band in terms of wins, losses, and wins - losses. Pre-
sented in this way, the results not only provide a ranking of
adaptation techniques across the two bands of datasets, but
also show the stability of teach technique as measured by the

158
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.1 JANUARY 2016

Table 5 A summary of the results of Table 4 in the 2 bands of datasets. The highlighted entries show
the best-performing techniques.

Datasets Measures UAVG IRWM LSA MSA LSA-X RTM AQUA GA Nnet

Band 1
wins 10.75 9.88 24.04 25.63 7.58 22.75 4.21 11.08 8.04

(r < 0.30)
losses 8.67 5.92 1.88 1.88 40.67 1.38 28.33 9.13 26.13

wins-loses 2.08 3.96 22.17 23.75 −33.08 21.38 −24.13 1.96 −18.08

Band 2
wins 11.92 13.04 38.33 38.35 42.67 33.90 11.31 11.75 6.13

(r ≥ 0.30)
losses 33.17 30.79 1.87 1.87 1.00 3.69 37.29 33.98 63.75

wins-losses −21.25 −17.75 36.46 36.48 41.67 30.21 −25.98 −22.23 −57.62

Table 6 A comparison of the 3 most accurate adaptation techniques in terms of the 4 feature subset
selection methods

Datasets Measures
MSA LSA-X RTM

All Sfs Swr Pca All Sfs Swr Pca All Sfs Swr Pca

Band 1
wins 22.17 26.50 28.17 25.67 9.17 8.67 2.50 10.00 20.17 21.00 24.50 25.33

(r < 0.30)
losses 1.00 1.00 1.50 4.00 38.33 39.00 49.00 36.33 1.00 2.00 1.50 1.00

wins-loses 21.17 25.50 26.67 21.67 −29.17 −30.33 −46.50 −26.33 19.17 19.00 23.00 24.33

Band 2
wins 39.92 39.85 33.62 40.00 43.54 42.77 41.23 43.15 36.00 36.62 35.15 27.85

(r ≥ 0.30)
losses 2.38 1.31 0.69 3.08 0.23 0.23 2.31 1.23 2.31 2.77 1.08 8.62

wins-losses 37.54 38.54 32.92 36.92 43.31 42.54 38.92 41.92 33.69 33.85 34.08 19.23

win-tie-loss statistics. For example, a technique having high
wins and low losses is more stable than another technique
with very high wins but also high losses.

Table 5 provides strong evidence that the LSA-X
technique consistently performed best for datasets with
r(Pr,PrFactor) equal to or greater than 0.30, as its wins,
losses, and wins-losses in this table are better than all other
techniques selected in this study. Furthermore, its averaged
losses almost reached 0, the the absolute best possible per-
formance in terms of losses. On the other hand, the datasets
with r(Pr,PrFactor) less than 0.30 are clearly a limitation
of the LSA-X technique. For this band of datasets, Table 5
shows a very close performance among the LSA, MSA and
RTM techniques. MSA is slightly better than the other two
techniques. Hence, for this band of data sets, we suggest the
use of any of these techniques to compensate for the limita-
tion of LSA-X, and would suggest MSA if we have to select
only one technique.

The win-tie-loss results of Table 4 and Table 5 calcu-
lated used the mean of the accuracy results to demonstrate
the generalized performance of each adaptation technique.
To examine more specific results regarding the use of differ-
ent feature subset selection methods, Table 6 shows the per-
formance in regard to all 4 feature selection methods. Due
to space limitations, Table 6 only presents the top 3 solu-
tion adaptation techniques ranked by performance as in Ta-
ble 5. These specific results indicate that for the datasets
with r(Pr,PrFactor) greater than 0.30, LSA-X performed
best when the feature subset selection was selected by the
All method, followed by Sfs, Pca, and Swr in order of wins
- losses. On the other hand, the results in Table 6 for the
datasets in band 1 suggest using the Swr to select the fea-
ture subset for the MSA technique as the best effort estima-
tion variant.

6. Discussion

This study introduces a solution adaptation technique named
LSA-X for analogy-based software effort estimation. The
LSA-X adds one more adaptation step to the Linear Size
Adaptation (LSA) technique by exploiting the productivity
factor variables (PrFactor) in its effort adjustment proce-
dure. The highlighted benefits of the LSA-X technique are
described below.

Benefit 1: We can see from the highlighted entries in Ta-
ble 4 that LSA-X achieved the best generalized performance.
Even though we later found that the LSA-X was consistently
less accurate than other techniques with datasets that exhibit
a value of r(Pr,PrFactor) below 0.30, such case are a mi-
nority of datasets and may be unlikely to arise in practice.

Benefit 2: LSA-X does not require a high computational
power. Compared to more complex adaptation techniques
such as the GA and NNet techniques, LSA-X is significantly
more straightforward, such that even a spreadsheet applica-
tion can handle the necessary computation.

Benefit 3: It is easy to decide when to use LSA-X. As we
observed, a Pearson correlation coefficient between Pr and
PrFactor can simply determine the accuracy of the LSA-X
technique:

• LSA-X is a very robust technique for datasets with
r(Pr,PrFactor) equal to or greater than 0.30;

• LSA-X is consistently inaccurate for datasets with
r(Pr,PrFactor) less than 0.30.

Hence, we recommend the LSA-X technique as the adapta-
tion technique of choice in circumstances where a dataset
exhibits r(Pr,PrFactor) equal or greater than 0.30.

PHANNACHITTA et al.: LSA-X: EXPLOITING PRODUCTIVITY FACTORS IN LINEAR SIZE ADAPTATION
159

6.1 And Why does it Work?

To provide a clear justification as to why exploiting the pro-
ductivity factors using LSA-X is an improvement, further
quantitative analysis may be required. However, this sec-
tion discusses some possible reasons.

The first reason concerns the exploitation of produc-
tivity. The benefit of productivity exploitation in predictive
modeling is well recognized in various research areas such
as Economics, because productivity is one of the impor-
tant factors to analyze to improve the throughput of a work
process [41], [42]. Among the existing solution adaptation
techniques that consider the degrees of difference of both
software size and productivity between the new case and its
analogues, only the LSA-X, MSA and RTM techniques also
calibrate the productivity values in their adaptation proce-
dures. Our results showed the MSA and RTM techniques
were also high performance techniques.

The second reason concerns the use of the PrFactors
in addition to productivity. This is possibly the main rea-
son that LSA-X outperforms all the other techniques when
PrFactors are useful, i.e., r(Pr,PrFactors) ≥ 0.30. Based
on our observations, productivity is considered the second
most influential factor on the effort next to the software
size. That is, when the influence of the software size is re-
moved from the dataset, productivity then becomes the most
dominant factor of the effort. Therefore, when considering
adaptation, we first need to consider the difference in soft-
ware size among analogues, and next, we need to consider
the difference in productivity among analogues. The use of
PrFactors plays the main role in better measuring and adapt-
ing productivity differences among analogues.

Specifically, the use of PrFactors allows the LSA-X
technique to focus the productivity adjustment based only
on the difference in PrFactors between the new case and a
few of its analogues, rather than requiring the adjustment to
be based on the entire coherence group of projects as per-
formed in RTM. A recent study by Kocaguneli et al. [43]
concluded that an estimation that relies on a smaller number
of more relevant analogues will result in better estimation
performance than relying on a larger number of less relevant
analogues. Our results are in agreement with Kocaguneli et
al. as LSA-X achieved significantly improved estimation per-
formance. This finding thus allows us to suggest interesting
future studies to consider exploitation of the degree of rel-
evance between new cases and their analogue as well as to
further exploit productivity.

6.2 Findings

In this section, we further discuss ways to compensate
for the limitation of LSA-X when a given dataset has
r(Pr,PrFactor) less than 0.30. This summarizes our find-
ings based on all tables and results in this paper.

Finding 1: Table 6 shows the best feature subset selection

method is specific for both solution adaptation techniques
and datasets. Hence, for a particular set of data, identify-
ing an appropriate feature subset selection method is just
as important as determining the most suitable adaptation
technique.

Finding 2: According to Table 5 and Table 6, for datasets
with r(Pr,PrFactor) less than 0.30, the MSA technique
performed the best. Table 4 showed that MSA per-
formed as well as LSA-X for some specific datasets with
r(Pr,PrFactor) greater than 0.30. Without any extension
based on the PrFactor, in general, MSA would have pro-
vided the best accuracy. This finding shows that in software
effort estimation, exploitation of r(Pr,PrFactor) contributed
to accuracy.

Finding 3: Results from all tables show that the solution
adaptation techniques utilizing linear adjustment functions,
e.g. LSA-X, are consistently more accurate than those using
non-linear functions e.g. NNet. The results also show that
and adaptation techniques that exploit productivity are more
accurate than any other techniques. This finding supports
the usefulness of exploiting productivity in software devel-
opment effort estimation.

6.3 Threats to Validity

Internal validity questions whether different conclu-
sions can be drawn with respect to the different parameters
used in the experiments. The main possible question of in-
ternal validity is regarding the choice of the optimization
parameters configured for each solution adaptation tech-
nique and for the baseline ABE framework. In our exper-
iments, the optimization parameters that were configured
for each solution adaptation technique and for the baseline
ABE framework were selected to be as intuitive as possi-
ble. Whenever such an approach was available, we selected
a more robust and intuitive configuration approach such as
Baker’s best k [38]. In cases where such general accepted
procedure was not available, we chose an approach that
commonly appeared in the literature, such as the approach
we used to normalize all the continuous variables in the in-
terval between 0 and 1. In cases where neither a general
accepted nor a commonly used configuration was available,
such as the criteria to select the coherence groups for the
RTM technique, we adopted our own criteria that were suf-
ficiently robust without any attempts to improve the existing
techniques, since our main aim is not to find the best config-
uration parameter for any existing techniques.

External validity questions whether the results can
be generalized. In this study, we used a wide range of
datasets consisting of 1,188 software projects [18]. The se-
lected datasets are varied in both size and characteristics, as
they came from different organizations and were developed
in different periods of time. The diversity of the datasets
used this our study is the main reason that the PrFactors se-
lected in different datasets are diversified. Compared to an-
other recent assessment of solution adaption techniques [11]

160
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.1 JANUARY 2016

in which only 7 datasets were used, we believe that both the
number and diversity of datasets used in this study offers a
higher degree of validity than other studies of solution adap-
tation techniques, and is sufficient to justify generalizing our
results.

In this study, we used 4 feature selection methods to
avoid a possible bias because a particular feature subset se-
lection method may perform well with some specific adap-
tation techniques. One possible issue of external validity
regarding feature subset selection concerns the Sfs method.
The improvement criteria of the method we used was the
same as used in the study by Keung et al. [4] that was not
based on ABE. The reason for this approach is that Keung
et al. reported that a training model, e.g. the simple linear
regression, used for this objective function has no influence
on the accuracy of the same estimation model when it was
used as an effort estimator. Thus, it is valid to use any model
as the evaluation criteria for Sfs as long as the same criteria
is applied across all experiments.

Construct validity questions whether or not we are
measuring what we intend to measure. Software effort es-
timation studies are often criticized for inadequate use of
evaluation metrics such as error measures. For example, use
of MMRE by itself is commonly seen in the literature [26],
despite widespread criticism of MMRE as an inappropriate
and biased measure. However, in this study, we maximized
the construct validity by using 5 robust error measures, all
of which were guaranteed there robustness by a statistical
method [26]. Furthermore, the statistical test method we
applied to evaluate the performance of the adaptation tech-
niques is a very robust variant of the Wilcoxon rank-sum
test [36]. We believe that effort estimation using these mea-
sures as well as having the results tested by a robust statisti-
cal method offers a high degree of construct validity for this
study.

7. Conclusion

This paper explores the possibility of exploiting productiv-
ity (Pr) and its influential factor (PrFactor) in the solution
adaptation stage of analogy-based software development ef-
fort estimation. Productivity is one of the essential factors
to analyze to estimate software development effort, and it
is widely studied in many area of expertise [41], [42]. Our
results show strong evidence that the proposed LSA-X adap-
tation technique, which exploits both Pr and PrFactor in
its adaptation procedure, is a successful technique to gen-
erate a robust effort estimate. In an evaluation subject to
a robust statistical test method using Wilcoxon rank-sum
test (95% confidence), the proposed LSA-X technique out-
performed 8 techniques commonly adopted in the literature
and in practice [11], for datasets that exhibit a high corre-
lation (r ≥ 0.30) between Pr and PrFactor. For the other
less common cases, our results showed that LSA-X has lim-
ited accuracy, and we suggest using another adaptation tech-
nique that also based on software size and productivity such
as the MSA and the RTM techniques to compensate for this

limitation.
Specifically, our detailed experiment evaluated both

adaptation techniques and feature selection methods. The
results suggested that:

• For a dataset with r(Pr,PrFactor) ≥ 0.30, the most
accurate results are obtained by adjusting the using the
LSA-X technique and using all features (i.e. no feature
subset selection is performed).

• For a dataset with r(Pr,PrFactor) < 0.30, it is more
accurate to perform feature subset selection using the
stepwise regression method and then adjust the effort
using the MSA technique.

To date, there have been very few studies in soft-
ware development effort estimation that thoroughly exam-
ined the influence of productivity on the improved estima-
tion performance. For this study, the main futures work
include a broader study of productivity and its influential
factor since our findings have strongly supported the useful-
ness of exploiting them. Furthermore, since we can spec-
ify which datasets have accurate adaptation techniques and
which have on-average inaccurate techniques, building an
ensemble of techniques is an interesting future work. A re-
cent study by Kocaguneli [13] suggests that combining mul-
tiple model-based software effort estimation methods will
produce a consistently more accurate performance than any
solo methods. One of the essential criteria for selecting
the multiple methods is to choose only accurate estimation
methods as resources to build an ensemble. Hence, our re-
sults offers a very good promise for future improvements of
analogy-based estimation by exploring an ensemble of mod-
els built with accurate solution adaptation techniques, such
as LSA-X, MSA, and RTM.

Acknowledgements

This research was supported by JSPS KAKENHI Grant
number 26330086, was conducted as a part of the Program
for Advancing Strategic International Networks to Acceler-
ate the Circulation of Talented Researchers, and was sup-
ported in part by the City University of Hong Kong research
fund (Project number 7200354 and 7004222).

References

[1] M. Shepperd and C. Schofield, “Estimating software project ef-
fort using analogies,” IEEE Trans. Softw. Eng., vol.23, no.11,
pp.736–743, 1997.

[2] J. Keung, “Software development cost estimation using analogy:
A review,” Proc. of the 2009 Australian Software Eng Conference,
pp.327–336, 2009.

[3] C. Mair and M. Shepperd, “The consistency of empirical compar-
isons of regression and analogy-based software project cost predic-
tion,” Proc. of the 2005 International Symposium on Empirical Soft-
ware Eng, pp.509–518, 2005.

[4] J. Keung, E. Kocaguneli, and T. Menzies, “Finding conclusion sta-
bility for selecting the best effort predictor in software effort estima-
tion,” Automated Software Engineering, vol.20, no.4, pp.543–567,
2013.

http://dx.doi.org/10.1109/32.637387
http://dx.doi.org/10.1109/aswec.2009.32
http://dx.doi.org/10.1109/isese.2005.1541858
http://dx.doi.org/10.1007/s10515-012-0108-5

PHANNACHITTA et al.: LSA-X: EXPLOITING PRODUCTIVITY FACTORS IN LINEAR SIZE ADAPTATION
161

[5] F. Walkerden and R. Jeffery, “An empirical study of analo-
gy-based software effort estimation,” Empir. Softw. Eng., vol.4,
no.2, pp.135–158, 1999.

[6] C. Kirsopp, E. Mendes, R. Premraj, and M. Shepperd, “An empirical
analysis of linear adaptation techniques for case-based prediction,”
Proc. 5th International Conference on Case-Based Reasoning: Re-
search and Development, pp.231–245, 2003.

[7] M. Jørgensen, U. Indahl, and D. Sjøberg, “Software effort estima-
tion by analogy and “regression toward the mean”,” J. Syst. Softw.,
vol.68, no.3, pp.253–262, 2003.

[8] J. Li, G. Ruhe, A. Al-Emran, and M.M. Richter, “A flexible method
for software effort estimation by analogy,” Empir. Softw. Eng.,
vol.12, no.1, pp.65–106, 2007.

[9] N.-H. Chiu and S.-J. Huang, “The adjusted analogy-based soft-
ware effort estimation based on similarity distances,” J. Syst. Softw.,
vol.80, no.4, pp.628–640, 2007.

[10] Y.F. Li, M. Xie, and T.N. Goh, “A study of the non-linear adjustment
for analogy based software cost estimation,” Empir. Softw. Eng.,
vol.14, no.6, pp.603–643, 2009.

[11] M. Azzeh, “A replicated assessment and comparison of adaptation
techniques for analogy-based effort estimation,” Empir. Softw. Eng.,
vol.17, no.1-2, pp.90–127, 2012.

[12] B.W. Boehm, Software Engineering Economics, 1st ed., Prentice
Hall PTR, Upper Saddle River, NJ, USA, 1981.

[13] E. Kocaguneli, T. Menzies, and J.W. Keung, “On the value of en-
semble effort estimation,” IEEE Trans. Softw. Eng., vol.38, no.6,
pp.1403–1416, 2012.

[14] A. Aamodt and E. Plaza, “Case-based reasoning: foundational is-
sues, methodological variations, and system approaches,” AI Com-
mun, vol.7, no.1, pp.39–59, 1994.

[15] M. Shepperd and G. Kadoda, “Comparing software prediction tech-
niques using simulation,” IEEE Trans. Softw. Eng., vol.27, no.11,
pp.1014–1022, 2001.

[16] E. Mendes, N. Mosley, and S. Counsell, “A replicated assessment of
the use of adaptation rules to improve web cost estimation,” Proc.
of the 2003 International Symposium on Empirical Software Eng,
pp.100–109, 2003.

[17] B. Kitchenham and E. Mendes, “Software productivity measurement
using multiple size measures,” IEEE Trans. Softw. Eng., vol.30,
no.12, pp.1023–1035, 2004.

[18] T. Menzies, M. Rees-Jones, R. Krishna, and C. Pape, “tera-
promise: one of the largest repositories of se research data.”
http://openscience.us/repo/index.html, June 2015.

[19] C.F. Kemerer, “An empirical validation of software cost estimation
models,” Commun. ACM, vol.30, no.5, pp.416–429, 1987.

[20] Y. Miyazaki, M. Terakado, K. Ozaki, and H. Nozaki, “Robust re-
gression for developing software estimation models,” J. Syst. Softw.,
vol.27, no.1, pp.3–16, 1994.

[21] B. Kitchenham and K. Känsälä, “Inter-item correlations among
function points,” Proc. of the 15th International Conference on Soft-
ware Eng, pp.477–480, IEEE, 1993.

[22] K. Maxwell, Applied Statistics for Software Managers, Prentice-
Hall, Englewood Cliffs, NJ. 2002.

[23] A.J. Albrecht and J.E. Gaffney, “Software function, source lines of
code, and development effort prediction: A software science valida-
tion,” IEEE Trans. Softw. Eng., vol.9, no.6, pp.639–648, 1983.

[24] T. Menzies, D. Port, Z. Chen, J. Hihn, and S. Stukes, “Validation
methods for calibrating software effort models,” Proc. of the 27th in-
ternational conference on Software engineering, pp.587–595, 2005.

[25] A. Bakır, B. Turhan, and A.B. Bener, “A new perspective on data
homogeneity in software cost estimation: a study in the embedded
systems domain,” Softw. Qual. J., vol.18, no.1, pp.57–80, 2010.

[26] T. Foss, E. Stensrud, B. Kitchenham, and I. Myrtveit, “A simulation
study of the model evaluation criterion mmre,” IEEE Trans. Softw.
Eng., vol.29, no.11, pp.985–995, 2003.

[27] P. Phannachitta, A. Monden, J. Keung, and K. Matsumoto,
“Case consistency: a necessary data quality property for software

engineering data sets,” Proc. of the 19th International Conference
on Evaluation and Assessment in Software Eng, p.19, ACM, 2015.

[28] Z. Chen, T. Menzies, D. Port, and B. Boehm, “Feature subset se-
lection can improve software cost estimation accuracy,” ACM SIG-
SOFT Software Engineering Notes, vol.30, no.4, pp.1–6, 2005.

[29] E. Alpaydin, Introduction to machine learning, MIT Press, 2014.
[30] E. Kocaguneli, T. Menzies, J. Hihn, and B.H. Kang, “Size doesn’t

matter?: On the value of software size features for effort estimation,”
Proc. of the 8th International Conference on Predictive Models in
Software Eng, New York, NY, USA, pp.89–98, ACM, 2012.

[31] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” Proc. 14th International Joint Con-
ference on Artificial Intelligence, pp.1137–1143, 1995.

[32] E. Kocaguneli and T. Menzies, “Software effort models should be
assessed via leave-one-out validation,” J. Syst. Softw., vol.86, no.7,
pp.1879–1890, 2013.

[33] M.V. Kosti, N. Mittas, and L. Angelis, “Alternative methods using
similarities in software effort estimation,” Proc. of the 8th Interna-
tional Conference on Predictive Models in Software Eng, pp.59–68,
2012.

[34] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” J. Mach. Learn. Res., vol.7, pp.1–30, 2006.

[35] E. Brunner, U. Munzel, and M.L. Puri, “The multivariate nonpara-
metric Behrens–Fisher problem,” J. Stat. Plan. Infer., vol.108, no.1,
pp.37–53, 2002.

[36] D.W. Zimmerman, “Statistical significance levels of nonparametric
tests biased by heterogeneous variances of treatment groups,” The
Journal of General Psychology, vol.127, no.4, pp.354–364, 2000.

[37] E. Kocaguneli, T. Menzies, J. Keung, D. Cok, and R. Madachy, “Ac-
tive learning and effort estimation: Finding the essential content of
software effort estimation data,” IEEE Trans. Softw. Eng., vol.39,
no.8, pp.1040–1053, 2013.

[38] D.R. Baker, “A hybrid approach to expert and model based effort
estimation,” Master’s thesis, Lane Department of Computer Science
and Electrical Engineering, West Virginia University, 2007.

[39] L.C. Briand and I. Wieczorek, “Resource estimation in software en-
gineering,” Encyclopedia of software engineering, 2002.

[40] E. Kocaguneli, T. Menzies, and J.W. Keung, “Kernel methods for
software effort estimation - effects of different kernel functions and
bandwidths on estimation accuracy,” Empir. Softw. Eng., vol.18,
no.1, pp.1–24, 2013.

[41] G.S. de Aquino and S.R. De Lemos Meira, “An Approach to Mea-
sure Value-Based Productivity in Software Projects,” 2009 Ninth In-
ternational Conference on Quality Software, pp.383–389, 2009.

[42] J. Kijne, T. Tuong, J. Bennett, B. Bouman, T. Oweis, et al., “En-
suring food security via improvement in crop water productivity,”
Challenge Program on water and Food: Background Paper, vol.1,
2003.

[43] E. Kocaguneli, T. Menzies, A. Bener, and J.W. Keung, “Exploiting
the essential assumptions of analogy-based effort estimation,” IEEE
Trans. Softw. Eng., vol.38, no.2, pp.425–438, 2012.

http://dx.doi.org/10.1023/a:1009872202035
http://dx.doi.org/10.1016/s0164-1212(03)00066-9
http://dx.doi.org/10.1007/s10664-006-7552-4
http://dx.doi.org/10.1016/j.jss.2006.06.006
http://dx.doi.org/10.1007/s10664-008-9104-6
http://dx.doi.org/10.1007/s10664-011-9176-6
http://dx.doi.org/10.1109/tse.2011.111
http://dx.doi.org/10.1109/32.965341
http://dx.doi.org/10.1109/isese.2003.1237969
http://dx.doi.org/10.1109/tse.2004.104
http://dx.doi.org/10.1145/22899.22906
http://dx.doi.org/10.1016/0164-1212(94)90110-4
http://dx.doi.org/10.1109/icse.1993.346018
http://dx.doi.org/10.1109/tse.1983.235271
http://dx.doi.org/10.1109/icse.2005.1553605
http://dx.doi.org/10.1007/s11219-009-9081-z
http://dx.doi.org/10.1109/tse.2003.1245300
http://dx.doi.org/10.1145/2745802.2745820
http://dx.doi.org/10.1145/2745802.2745820
http://dx.doi.org/10.1145/1082983.1083171
http://dx.doi.org/10.1145/2365324.2365336
http://dx.doi.org/10.1016/j.jss.2013.02.053
http://dx.doi.org/10.1145/2365324.2365333
http://dx.doi.org/10.1016/s0378-3758(02)00269-0
http://dx.doi.org/10.1080/00221300009598589
http://dx.doi.org/10.1109/tse.2012.88
http://dx.doi.org/10.1007/s10664-011-9189-1
http://dx.doi.org/10.1109/qsic.2009.57
http://dx.doi.org/10.1109/tse.2011.27

162
IEICE TRANS. INF. & SYST., VOL.E99–D, NO.1 JANUARY 2016

Passakorn Phannachitta received his
BE (Hons) in Computer Engineering from
Kasetsart University, Thailand. Now he is cur-
rently a Ph.D. student at Nara Institute of Sci-
ence and Technology, Japan. His research in-
terests include software development effort esti-
mation, data mining technique, and high perfor-
mance computing.

Akito Monden received the BE degree
in 1994 in electrical engineering from Nagoya
University, and the ME and DE degrees in 1996
and 1998 in information science from Nara In-
stitute of Science and Technology. He is a pro-
fessor in Graduate School of Natural Science
and Technology at Okayama University, Japan.
He was honorary research fellow at the Univer-
sity of Auckland, New Zealand (2003–2004).
He is a member of the IEEE, ACM, IEICE, IPSJ
and JSSST.

Jacky Keung received his B.Sc (Hons)
in Computer Science from the University of
Sydney, and his Ph.D in Software Engineer-
ing from the University of New South Wales,
Australia. He is an active software engineering
researcher, and his main research area is in soft-
ware effort and cost estimation, empirical mod-
eling and evaluation of complex systems, and
intensive data mining for software engineering
data in the cloud.

Kenichi Matsumoto received the B.E.,
M.E., and PhD degrees in Information and Com-
puter sciences from Osaka University, Japan, in
1985, 1987, 1990, respectively. Dr. Matsumoto
is currently a professor in the Graduate School
of Information Science at Nara Institute Sci-
ence and Technology, Japan. His research inter-
ests include software measurement and software
process. He is a senior member of the IEEE, and
a member of the ACM and IPSJ.

